
Package ‘forceR’
March 1, 2023

Title Force Measurement Analyses

Description For cleaning and analysis of graphs, such as animal closing force
measurements.
'forceR' was initially written and optimized to deal with insect bite force
measurements, but can be used for any time series. Includes a full workflow
to load, plot and crop data, correct amplifier and baseline drifts,
identify individual peak shapes (bites), rescale (normalize) peak curves,
and find best polynomial fits to describe and analyze force curve shapes.

Version 1.0.20

Date 2023-02-28

License MIT + file LICENSE

URL https://github.com/Peter-T-Ruehr/forceR

BugReports https://github.com/Peter-T-Ruehr/forceR/issues

Encoding UTF-8

RoxygenNote 7.2.3

Imports dplyr, graphics, grDevices, filesstrings, magrittr, purrr,
readr, roll, stats, stringr

Depends R (>= 4.2)

VignetteBuilder knitr

Suggests ggplot2, knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

Maintainer Peter T. Rühr <peter.ruehr@gmail.com>

LazyData true

NeedsCompilation no

Author Peter T. Rühr [aut, cre] (<https://orcid.org/0000-0003-2776-6172>),
Alexander Blanke [ctb] (<https://orcid.org/0000-0003-4385-6039>)

Repository CRAN

Date/Publication 2023-03-01 08:22:36 UTC

1

https://github.com/Peter-T-Ruehr/forceR
https://github.com/Peter-T-Ruehr/forceR/issues
https://orcid.org/0000-0003-2776-6172
https://orcid.org/0000-0003-4385-6039

2 amp_drift_corr

R topics documented:

amp_drift_corr . 2
avg_peaks . 4
baseline_corr . 5
classifier . 8
convert_measurement . 9
correct_peak . 10
crop_measurement . 12
df.all . 13
df.all.200 . 13
df.all.200.tax . 14
find_best_fits . 14
find_strongest_peaks . 16
forceR_example . 18
load_mult . 19
load_single . 20
models . 21
peaks.df . 21
peaks.df.100.avg . 22
peaks.df.norm . 22
peaks.df.norm.100 . 23
peak_duration_max_force . 23
peak_to_poly . 24
plot_measurement . 25
plot_peaks . 26
print_progress . 27
reduce_frq . 28
red_peaks_100 . 29
rescale_peaks . 31
rescale_to_range . 32
simulate_bites . 33
sort_files . 35
summarize_measurements . 36
today . 37
y_to_force . 37

Index 40

amp_drift_corr Charge Amplifier Drift Correction

Description

Removes the systemic, asymptotical drift of charge amplifiers with resistor-capacitor (RC) circuits.

amp_drift_corr 3

Usage

amp_drift_corr(
filename,
tau = 9400,
res.reduction = 10,
plot.to.screen = FALSE,
write.data = FALSE,
write.PDFs = FALSE,
write.logs = FALSE,
output.folder = NULL,
show.progress = FALSE

)

Arguments

filename Path to file on which amplifier drift correction should be performed.

tau Numeric time constant of charge amplifier in the same time unit as the measure-
ment data. Default: 9400

res.reduction A numeric value to reduce the number of time steps by during plotting. Speeds
up the plotting process and reduces PDF size. Has no effect on the results, only
on the plots. Default: 10.

plot.to.screen A logical value indicating if results should be plotted in the current R plot device.
Default: FALSE.

write.data A logical value indicating if drift-corrected file should be saved. If yes, it will
be saved in output.folder. Default: FALSE.

write.PDFs A logical value indicating whether results should be saved as PDFs. Does
not slow down the process as much as printing to the R plot device and is
considered necessary to quality check the results. If yes, it will be saved in
output.folder/PDFs. Default: FALSE.

write.logs A logical value indicating whether a log file with information on the method
and values used to correct the amplifier drift should be saved. Is considered
necessary for reproducibility. If yes, it will be saved in output.folder/logs.
Default: FALSE.

output.folder Path to folder where data, PDF and log files should be stored.

show.progress A logical value indicating if progress should be printed to the console. Slows
down the process. Default: FALSE.

Details

forceR generally expects file names to start with a leading number specifying the measurement
number (E.g. "0001_G_maculatus.csv"). The number ("0001") is used to keep data files, log files,
and PDF files of the same measurement associated with each other.

The input file should be in the following format:

t y
t.1 y.2

4 avg_peaks

... ...
t.n y.n

Value

Returns a tibble containing the amplifier drift-corrected data in the following format

t y
t.1 y.2
... ...
t.n y.n

Examples

define file for amplifier drift correction
filename <- forceR_example(type = "raw")

Run amplifier drift correction without saving files or printing to screen:
file.ampdriftcorr <- amp_drift_corr(filename = filename,

tau = 9400,
res.reduction = 10,
plot.to.screen = FALSE,
write.data = FALSE,
write.PDFs = FALSE,
write.logs = FALSE,
output.folder,
show.progress = FALSE)

file.ampdriftcorr

Run amplifier drift correction with saving files and printing to screen:
- commented out to pass package tests
file.ampdriftcorr <- amp_drift_corr(filename = filename,
tau = 9400,
res.reduction = 10,
plot.to.screen = TRUE,
write.data = TRUE,
write.PDFs = TRUE,
write.logs = TRUE,
output.folder = "./ampdriftcorr",
show.progress = TRUE)
#
file.ampdriftcorr

avg_peaks Average Curves per Group

baseline_corr 5

Description

Calculates mean curve shape per group (here: species) and rescales result on the y axis to range
from 0 to 1.

Usage

avg_peaks(df, path.data = NULL)

Arguments

df The resulting tibble of the function red_peaks_100(). See ?red_peaks_100
for more details.

path.data A string character defining where to save the results. If NULL, data will not be
saved to disk. Default: NULL.

Value

This function returns a tibble made of three columns: species containing the species names, index
ranging from 1 to 100 for each species, and force.norm.100 containing the averaged and rescaled
curve of each species.

Examples

Using the forceR::df.all.200.tax dataset:

calculate mean curves per species
peaks.df.100.avg <- avg_peaks(df = forceR::peaks.df.norm.100,

path.data = NULL)

plot averaged normalized curves per species
require(ggplot2)
ggplot(peaks.df.100.avg,

aes(x = index ,
y = force.norm.100.avg,
colour=species)) +

geom_line()

baseline_corr Automatic or Manual Baseline Correction of Time Series

Description

If baseline (zero-line) of measurement is unstable (e.g. due to temperature fluctuations, wind, ...),
the baseline needs to be continually adjusted throughout the measurement. This script allows an
automatic adjustment of the baseline. The automatic approach invokes a sliding window, dur-
ing which the ’minimum’ within each sliding window is stored. A ’minimum’ is defined by the
quantile.size: if set to 0.05, the value below which only 5% of the measurement data within the

6 baseline_corr

sliding window lies, is treated as the current window’s minimum. This prevents the treatment of
potential artifacts as minima. In a second iteration, another sliding window calculates the average
of these ’minima’. The resulting values are subtracted from the original time series. This approach
works well for time series with relatively short peaks. If the automatic approach does not yield
acceptable results, an interactive manual approach to correct the baseline can be performed instead.

Usage

baseline_corr(
filename,
corr.type = "auto",
window.size.mins = 1000,
window.size.means = NULL,
quantile.size = 0.05,
y.scale = 0.5,
res.reduction = 10,
Hz = 100,
plot.to.screen = FALSE,
write.data = FALSE,
write.PDFs = FALSE,
write.logs = FALSE,
output.folder = NULL,
show.progress = FALSE

)

Arguments

filename A character string containing the full path to the measurement file that needs
correction. See Details for info on what the file should look like.

corr.type Character string defining the desired mode of baseline correction. One of "auto"
or "manual". Default: "auto"

window.size.mins

A numeric value for the size of the search window to find minima in. Should be
in the same time unit as the measurement. Longer peaks require higher values,
shorter peaks require smaller values. Default: 1000.

window.size.means

A numeric value for the size of the window to average the minima in. Should be
in the same time unit as the measurement. By default (NULL), the same value as
specified for window.size.mins is used.

quantile.size A numerical value between 0 and 1 to define the quantile which is treated as the
’minimum’ of a sliding window. Default: 0.05.

y.scale A numeric value to reduce the y-axis range during plotting. This simplifies the
manual placement of the points during the manual correction procedure.

res.reduction A numeric value to reduce the number of time steps by during plotting. Speeds
up the plotting process and reduces PDF size. Has no effect on the results, only
on the plots. Default: 10.

baseline_corr 7

Hz A numeric value to reduce sampling frequency for temporary analyses. This
works as a smoothing filter during temporary analyses and does not reduce the
actual sampling frequency of the data. Default: 100.

plot.to.screen A logical value indicating if results should be plotted in the current R plot device.
Default: FALSE.

write.data A logical value indicating if drift-corrected file should be saved. If yes, it will
be saved in output.folder. Default: FALSE.

write.PDFs A logical value indicating whether results should be saved as PDFs. Does
not slow down the process as much as printing to the R plot device and is
considered necessary to quality check the results. If yes, it will be saved in
output.folder/PDFs. Default: FALSE.

write.logs A logical value indicating whether a log file with information on the method and
values used to correct the baseline drift should be saved. Is considered necessary
for reproducibility. If yes, it will be saved in output.folder/logs. Default:
FALSE.

output.folder Path to folder where data, PDF and log files should be stored. Default: NULL.

show.progress A logical value indicating if progress should be printed to the console. Default:
FALSE.

Details

forceR generally expects file names to start with a leading number specifying the measurement
number (E.g. "0001_G_maculatus.csv"). The number ("0001") is used to keep data files, log files,
and PDF files of the same measurement associated with each other.

The input files should to be in the following format:

t y
t.1 y.2
... ...
t.n y.n

In case there are more than two columns, only the first two columns will be used. If the first two
columns are not named ’t’ and ’y’, they will be renamed.

Value

Returns a tibble containing the amplifier baseline drift-corrected data in the following format

t y
t.1 y.2
... ...
t.n y.n

8 classifier

Examples

#'########### AUTOMATIC MODE
define file to apply the baseline drift correction to
filename <- forceR_example(type = "ampdriftcorr")

run automatic baseline drift corrections without saving files or
printing to screen:
file.baseline_corr <- baseline_corr(filename = filename,

corr.type = "auto",
window.size.mins = 1000,
window.size.means = NULL,
quantile.size = 0.05,
y.scale = 0.5,
res.reduction = 10,
Hz = 100,
plot.to.screen = FALSE,
write.data = FALSE,
write.PDFs = FALSE,
write.logs = FALSE,
show.progress = FALSE)

file.baseline_corr

#'########### MANUAL MODE

define file to apply the baseline drift correction to
filename <- forceR_example(type = "ampdriftcorr")

run interactive baseline drift corrections with saving files and
printing to screen: - out-commented to pass package tests

file.baseline_corr <- baseline_corr(filename = filename,
corr.type = "manual",
window.size.mins = 1000,
window.size.means = NULL,
quantile.size = 0.05,
y.scale = 0.5,
res.reduction = 10,
Hz = 100,
plot.to.screen = TRUE,
output.folder = "./baselinecorr",
show.progress = TRUE)

file.baseline_corr

classifier Classifier

convert_measurement 9

Description

Start and end time values of the 5 strongest peaks per species of df.all with the names of the
measurements in which they occur.

Usage

classifier

Format

A data frame with 24 rows and 5 columns:

species species names

specimen specimen names

measurement measurement names

amp amplifier values, in V/N

lever.ratio ration of on-lever to out-lever of mesaurement setup

Details

Result of rescale_peaks().

convert_measurement Converts LJStream *.dat file to standard time series.

Description

Converts LJStream *.dat file to standard time series.

Usage

convert_measurement(file, path.data = NULL, collect_garbage = FALSE)

Arguments

file File path to raw measurement (*.dat file).

path.data A string character defining where to save the results. If NULL, data is not stored
in a file. Default: NULL.

collect_garbage

Logical. If TRUE, then the gc() command will be run silently to try to clean up
memory. This may help when running convert_measurement in a loop, even
though memory cluttering cannot be fully prevented. If such a loop crashes,
the loop should be split into several separate loops to convert all files. Default:
FALSE.

10 correct_peak

Value

Returns and, if path.data is not NULL, saves data in csv-format in path.data.

The output tibble has the following format:

t y
t.1 y.1
... ...
t.n y.n

Examples

get file path of forceR example file
filename <- forceR_example(type = "LJStream")
file.converted <- convert_measurement (file = filename,

path.data = NULL)
file.converted

correct_peak Manually Correct Single Peak

Description

Interactive correction of a single peak.

Usage

correct_peak(
df.peaks,
df.data,
measurement,
peak,
additional.msecs = 500,
path.data = NULL

)

Arguments

df.peaks The resulting tibble of the function find_peaks(). See ?find_peaks for more
details.

df.data A data frame or tibble in the below format. The columns t (time), force,
measurement, and specimen. (measurement ID) must be present. This will
usually be the same table that was used before in find_peaks().

correct_peak 11

measurement A character string defining the measurement ID (e.g. measurement number) of
the peak to be corrected. Must be congruent with the respective measurement
ID within df.peaks and df.

peak A numerical value defining the peak to be corrected.
additional.msecs

A numerical value defining the time before and after the originally defined
window of the peak to be corrected. Higher values allow defining start and
end points further away from the original start and end points. Default: 500.
@param path.data A string character defining where to save the result and log
file. If NULL (default), data is not stored in files. Log files cannot be retrieved in
this case.

path.data A string character defining where to save the results. If NULL (default), data is
not stored in a file.

Details

When running the function, you will be prompted to select the actual start and end of the current
peak of the current measurement. If more or less than exactly 2 points are defined, the process is
terminated.

Value

Changes values within df.peaks and returns the changed tibble.

df.data needs to contain the following columns:

t force measurement
t.1 force.1 measurement.1
...
t.n force.n measurement.m

Examples

Using the forceR::df.all.200.tax dataset:

This function needs user input.
peaks.df <- correct_peak(df.peaks = forceR::peaks.df,

df.data = forceR::df.all.200.tax,
measurement = "m_01",
peak = 1,
additional.msecs = 5)

12 crop_measurement

crop_measurement Crop Time Series

Description

Interactive function to crop a time series.

Usage

crop_measurement(file, path.data = NULL)

Arguments

file File path to measurement.

path.data A string character defining where to save the results. If NULL, data is not stored
in a file. Default: NULL.

Details

Select points at start and end of desired part of measurements. Only the last two points will be taken
into account to allow the user to correct erroneous clicks.

If a measurement contains two distinct regions of bites with a lot of unnecessary data and/or mea-
surement artefacts in-between (such as user-made peaks), I recommend to manually copy the RAW
data files, give the copy a new measurement number (as if it was actually a separate measurement),
and crop the distinct parts containing actual bites separately from the two copies of the file. For
more distinct regions, create more copies.

I recommend to not crop the files too much in case baseline corrections are needed later, because
then the baseline_corr() function will not be able to figure out where the actual baseline might
be. Leaving several seconds before and after the first and last bite of a series will prevent such
problems.

Value

Returns and, if path.data is not NULL, saves data in csv-format in path.data.

The tibble has the following format:

t y
t.1 y.1
... ...
t.n y.n

Examples

get file path of forceR example file
filename <- forceR_example(type = "raw")

df.all 13

crop file without storing result as file - out-commented to pass package tests
file.cropped <- crop_measurement(file = filename,
path.data = NULL)

file.cropped

df.all Simulated Force Measurements with Taxonomic Info.

Description

A series of 24 measurements with six simulated peaks each. Simulated using the simulate_bites()
function . Fits the classifier sheet that is also part of the forceR package.

Usage

df.all

Format

A data frame with 9,600 rows and 3 columns:

t time, in ms
y measured values, in V
measurement measurement names

df.all.200 Simulated Time Series - e.g. Bite Force Measurements

Description

A series of 24 measurements with six simulated peaks each. Simulated using the simulate_bites()
function. Reduced to a sampling frequency of 200 Hz with reduce_frq(). Fits the classifier
sheet that is also part of the forceR package.

Usage

df.all.200

Format

A data frame with 1,944 rows and 3 columns:

t time, in ms
y measured values, in V
measurement measurement names

14 find_best_fits

df.all.200.tax Simulated Force Measurements with Taxonomic Info.

Description

A series of 24 measurements with six simulated peaks each. Simulated using the simulate_bites()
function and translated into force values with y_to_force(). Fits the classifier sheet that is also
part of the forceR package.

Usage

df.all.200.tax

Format

A data frame with 1,944 rows and 5 columns:

species species names

specimen specimen names

measurement measurement names

t time, in ms

force measured values, in N

find_best_fits Find Best Polynomial Fits for Curves

Description

Calculates best model fits for all curves based on AIC criterion. The function fits polynomial
functions with 1 to 20 coefficients and uses the Akaike Information Criterion (AIC) to evaluate the
goodness of the fits. A model is considered a good fit, when the percentage of change from one
model to the next (e.g. a model with 6 coefficients to a model with 7 coefficients) is, e.g. < 5% when
threshold = 5. The first for models meeting this criterion are plotted as colored graphs and the
AICs of these models are visualized in a second plot for each curve. All first four coefficients per
curve that fulfill the criterion are stored and in the end, a histogram of how often which coefficients
were good fits is plotted as well. The function returns the numerical value of the coefficient that
fulfilled the criterion of a good fit in most curves.

find_best_fits 15

Usage

find_best_fits(
df,
degrees = 1:20,
threshold = 5,
zero_threshold = NULL,
plot.to.screen = FALSE,
path.data = NULL,
path.plots = NULL,
show.progress = FALSE

)

Arguments

df The resulting tibble of the function avg_peaks(). See below for more details.

degrees Numerical vector of polynomial degrees to test. Cannot be infinitely high - if two
high, throws error: 'degree' must be less than number of unique points.
Default: 1:20.

threshold Percentage of AIC change compared to previous degree to fit the good-fit-criteria
(s.a.). Default: 5.

zero_threshold Either numerical or NULL: If numerical, the function checks if the graph of the
current model starts and ends near zero, e.g. below 0.2 if zero_threshold =
0.2. Default: NULL.

plot.to.screen A logical value indicating if results should be plotted in the current R plot device.
Default: FALSE.

path.data A string character defining where to save the results. If NULL, data is not stored
in a file. Default: NULL.

path.plots A string character defining where to save the plots. If NULL, plots will not be
saved to PDF files. Default: NULL.

show.progress A logical value indicating if progress should be printed to the console. Default:
FALSE.

Details

#’ This function expects a tibble made of three columns as df: species containing the species
names, index numerical column, e.g. time (but can be arbitrary continuous unit), for each species,
and force.norm.100 containing the averaged and rescaled curve of each species.

Value

Returns the a numerical value representing the number of coefficient that was most often under the
first 4 models that were followed by an AIC-change <= 5% by the next model. Additionally, plots
showing the model fits and a histogram of the coefficients that met the 5%-criterion can be plotted
to the plot device or saved as PDFs in path.plots.

16 find_strongest_peaks

Examples

Using the forceR::peaks.df.100.avg dataset:

find smallest polynomial degree that best describes all curves
best.fit.poly <- find_best_fits(df = forceR::peaks.df.100.avg)

best.fit.poly

find_strongest_peaks Find Peaks

Description

Identifies peaks in a first iteration and optimizes the starts and ends of the strongest peaks per species
in a second iteration.

Usage

find_strongest_peaks(
df,
no.of.peaks = 5,
initial.threshold = 0.05,
slope.length.start = 5,
slope.length.end = 5,
slope.thresh.start = 0.02,
slope.thresh.end = 0.02,
path.data = NULL,
path.plots = NULL,
show.progress = FALSE

)

Arguments

df A data frame or tibble in the below format. The columns t (= time), force and
measurement (= measurement ID) must be present.

no.of.peaks A numeric value defining how many peaks per species (not per measurement")
should be identified. The function will always return the strongest peaks. De-
fault: 5

initial.threshold

A numeric value defining the threshold (in % of the maximum force of the mea-
surement) that is used during the first iteration. Default: 0.05

slope.length.start

A numeric value defining the window size (in time steps) of slope calculation
for peak starts during the second iteration. Default: 5

find_strongest_peaks 17

slope.length.end

A numeric value defining the window size (in time steps) of slope calculation
for peak ends during the second iteration. Default: 5

slope.thresh.start

A numeric value defining the threshold at which to stop the sliding window and
save the current time point as the actual start of the current peak. Default: 0.04

slope.thresh.end

A numeric value defining the threshold at which to stop the sliding window and
save the current time point as the actual end of the current peak. Default: 0.04

path.data A string character defining where to save the results. If NULL (default), data is
not stored in a file. Default: NULL.

path.plots A string character defining where to save the plots. Default: NULL.

show.progress A logical value indicating if progress should be printed to the console. Default:
FALSE.

Details

The input data frame df needs to contain the following columns:

t force measurement
t.1 force.1 measurement.1
...
t.n force.n measurement.m

Value

Creates a tibble in the following format and saves it as a CSV-file: The column species contains
one species per row
(species.1 ... species.n).

The column measurements contains as many measurements as no.of.peaks, separated by ’;’:
(measurement.1; ...; measurements.no.of.peaks).

The column starts contains as many peak starts as no.of.peaks, separated by ’;’:
(start.1; ...; start.no.of.peaks).

The column ends contains as many peak ends as no.of.peaks, separated by ’;’:
(end.1; ...; end.no.of.peaks).

Examples

require(dplyr)
Using the forceR::df.all.200.tax dataset:

reduce dataset (only rows 40 to 95 of species A (containing data of
measurement 1 and 2 (m_01 and m_02)))

df.all.200.tax_filtered <- forceR::df.all.200.tax[40:95,] %>%
filter(species == "species_A")

find the 4 strongest peaks

18 forceR_example

peaks.df <- find_strongest_peaks(df = df.all.200.tax_filtered,
no.of.peaks = 4)

plot results (three peaks in measurement 1, 1 peak in measurement 2):
plot_peaks(df.peaks = peaks.df,
df.data = df.all.200.tax_filtered,
additional.msecs = 20)

forceR_example Get path to forceR example

Description

forceR comes with example files of short bite force measurements. The files are stored in forceR's
inst/extdata folder, and this function returns the path to that folder or one of the files so they can
be used in examples.

Usage

forceR_example(type = "folder")

Arguments

type A character string (either "folder", "raw", or "ampdriftcorr") defining if the
path returned be the function should point to one of the the example files or the
folder containing them. Default: "folder".

Value

If type = "folder": returns the file path to the folder containing BF_raw.csv and BF_ampdriftcorr.csv.

If type = "LJStream": returns the file path to BF_raw.csv, which contains a short bite force raw
measurement.

If type = "raw": returns the file path to BF_raw.csv, which contains a short bite force raw mea-
surement.

If type = "ampdriftcorr": returns the file path to BF_ampdriftcorr.csv, which contains a short
bite force raw measurement where the amplifier drift as been corrected for by the amp_drift_corr()
funcion.

load_mult 19

load_mult Load Multiple Measurements

Description

Loads multiple measurements.

Usage

load_mult(folder, columns = c(1:2), show.progress = FALSE)

Arguments

folder Character string containing the path to the measurements.

columns A vector of column numbers. The first entry will be used as the x-axis values,
the second entry as y-axis values. All other columns will be ignored. Default:
c(1,2).

show.progress A logical value indicating if progress should be printed to the console. Default:
FALSE.

Details

The input files need to be in the following format (even though column names do not matter):

t y
t.1 y.1
... ...
t.n y.n

All columns except the first two are removed.

Value

Returns a tibble in the format

t y filename
t.1 y.1 ...
...
t.n y.n ...

Examples

store name of folder that contains files
input.folder <- forceR_example(type = "folder")

20 load_single

load a mutiple files
df.all <- load_mult(folder = input.folder,

columns = c(1:2),
show.progress = FALSE)

load_single Load single measurement

Description

Loads a single measurement.

Usage

load_single(filename, columns = c(1:2))

Arguments

filename Character string containing the path to measurement file.

columns A vector of column numbers. The first entry will be used as the x-axis values,
the second entry as y-axis values. All other columns will be ignored. Default:
c(1,2).

Details

#’ The input files need to be in the following format (even though column names do not matter):

t y
t.1 y.1
... ...
t.n y.n

All columns except the first two are removed.

Value

A tibble with two columns named "t" and "y".

Examples

Store filename
filename <- forceR_example(type="raw")

df.1 <- load_single(filename,
columns = c(1:2))

models 21

models Polynomial Models Describing Average Peak Shapes.

Description

Extracted from df.all.

Usage

models

Format

A list with 4 named entries, each containing the 4-degree polynomial model that describes the
average peak shape of the given species.

peaks.df Starts and Ends of the 5 Strongest Peaks

Description

Start and end time values of the 5 strongest peaks per species of df.all with the names of the
measurements in which they occur.

Usage

peaks.df

Format

A data frame with 4 rows and 4 columns:

species species names

measurements measurement names

starts start values, in ms

ends end values, in ms

Details

Result of rescale_peaks().

22 peaks.df.norm

peaks.df.100.avg Average Peak Shapes per Species

Description

Normalized force values describing the average shape of the 5 strongest peaks per species of df.all

Usage

peaks.df.100.avg

Format

A data frame with 400 rows and 3 columns:

species species names

index values from 1:100 in each species

force.norm.100.avg normalized values reduced to 100 observations per species, in N

peaks.df.norm Normalized Peak Shapes

Description

Normalized force values describing the shapes of all 5 strongest peaks per species of df.all

Usage

peaks.df.norm

Format

A data frame with 223 rows and 6 columns:

measurement measurement names

peak peak numbers

t.norm time values from 0:1 in each measurement, in ms

force.norm force values from 0:1 in each measurement, in N

species species names

specimen specimen names

Details

Result of rescale_peaks().

peaks.df.norm.100 23

peaks.df.norm.100 Normalized Peak Shapes with 100 Observations

Description

Normalized force values describing the shapes of all 5 strongest peaks per species of df.all, re-
duced to 100 observations per measurement.

Usage

peaks.df.norm.100

Format

A data frame with 2000 rows and 6 columns:

species species names

measurement measurement names

specimen specimen names

peak peak numbers

index values from 1:100 in each measurement

force.norm.100 normalized values reduced to 100 observations per measurement, in N

Details

Result of rescale_peaks().

peak_duration_max_force

Peak Duration and Maximum Force

Description

Calculate duration and maximum force for each individual peak.

Usage

peak_duration_max_force(
df.peaks,
df.data,
path.data = NULL,
show.progress = FALSE

)

24 peak_to_poly

Arguments

df.peaks The resulting tibble of the function find_peaks(). See ?find_peaks for more
details.

df.data A data frame or tibble in the below format. The columns t (time), force,
measurement, and specimen. (measurement ID) must be present. This will
usually be the same table that was used before in find_peaks().

path.data A string character defining where to save the results. If NULL (default), data is
not stored in a file.

show.progress A logical value indicating if progress should be printed to the console. Default:
FALSE.

Value

Changes values within df.peaks and returns the changed tibble.

df.data needs to contain the following columns:

t force measurement
t.1 force.1 measurement.1
...
t.n force.n measurement.m

Examples

Using the forceR::df.all.200.tax dataset:

This function needs user input.
peaks.df <- correct_peak(df.peaks = forceR::peaks.df,

df.data = forceR::df.all.200.tax,
measurement = "m_01",
peak = 1,
additional.msecs = 5)

peak_to_poly Convert Time Series to Polynomial

Description

Convert Time Series to Polynomial

Usage

peak_to_poly(df, coeff, path.data = NULL, show.progress = FALSE)

plot_measurement 25

Arguments

df The resulting tibble of the function avg_peaks(). See ?avg_peaks for more
details.

coeff A numerical value indicating the number of coefficients the model used to fit on
the time series data should have.

path.data A string character defining where to save the results as *.csv and *.R. If NULL,
data is not stored in files. Default: NULL.

show.progress A logical value indicating if progress should be printed to the console. Default:
FALSE.

Value

A list with the length equal to the number of unique species within df containing the fitted models.

Examples

Using the forceR::peaks.df.100.avg dataset:

define the number of coefficients the polynomial models should have
number_of_coeffs = 4

convert curves to polynomial models
models <- peak_to_poly(df = forceR::peaks.df.100.avg,

coeff = number_of_coeffs)

models

plot_measurement Plot raw measurement

Description

Plots a time series.

Usage

plot_measurement(file, columns = c(1:2))

Arguments

file File path to measurement.
columns A vector of column numbers. The first entry will be used as the x-axis values,

the second entry as y-axis values. All other columns will be ignored. Default:
c(1,2).

Details

#’ The input files need to be in the following format (even though column names do not matter):

26 plot_peaks

t y
t.1 y.1
... ...
t.n y.n

Value

Creates a plot in the current plot device.

Examples

filename = forceR_example(type = "raw")
plot_measurement(filename)

plot_peaks Plot Peaks

Description

Plots the peaks identified by the function find_peaks().

Usage

plot_peaks(
df.peaks,
df.data,
additional.msecs = 2000,
plot.to.screen = TRUE,
path.plots = NULL,
show.progress = FALSE

)

Arguments

df.peaks df.peaks The resulting tibble of the function find_peaks(). See ?find_peaks
for more details.

df.data A data frame or tibble in the below format. The columns t (time), force and
measurement (measurement ID) must be present. This will usually be the same
table that was used before in find_peaks().

additional.msecs

A numeric value indicating how many m.secs before and after the actual peak
curve should be plotted. Default: 2000

plot.to.screen A logical value indicating if results should be plotted in the current R plot device.
Default: TRUE.

print_progress 27

path.plots A string character defining where to save the plots. If NULL, plots will not be
saved to PDF files. Default: NULL

show.progress A logical value indicating if progress should be printed to the console. Default:
FALSE.

Details

df.peaks at least needs to contain the following columns:

measurements | starts | ends | | :—-: | :—-: |:—-: |:—-: | | measurements.1 | starts.1 | ends.1
| | ... | ... | ... | | measurements.n | starts.m | ends.m |

Check forceR::peaks.df to see an example tibble.

df.data at least needs to contain the following columns:

t force measurement
t.1 force.1 measurement.1
...
t.n force.n measurement.m

Check forceR::df.all.200.tax to see an example tibble.

Value

Plots one graph per peak curve and, if plot.to.pdf == TURE, saves all peak curves as one PDF at
path.plots.

Examples

Using the first row of forceR::peaks.df and the forceR::df.all.200.tax dataset:

plot peaks
plot_peaks(df.peaks = forceR::peaks.df[1,],

df.data = forceR::df.all.200.tax,
additional.msecs = 20) # instead of the default (2000) because of

the highly downsampled example dataset.

print_progress Print progress

Description

Prints loop progress in [%] to console.

Usage

print_progress(current, end)

28 reduce_frq

Arguments

current Numeric value of current loop iteration.

end Numeric value number last loop iteration.

Value

Prints percentage of loop progress to console.

reduce_frq Reduce Sampling Frequency

Description

Reduces the sampling frequency to a certain Hz value. If the desired frequency is smaller than the
original frequency, the data remains unchanged.

Usage

reduce_frq(df, Hz = 200, measurement.col = NULL)

Arguments

df Data frame or tibble in the below mentioned format.

Hz Numeric value of desired frequency. Default 200
measurement.col

Character string. If measurement.col is not defined, the whole input data
frames will be treated as if it was just one single time series. This is okay for
data frames like that indeed only contain one time series, but for data frames
with multiple time series, a grouping column needs to be defined. Default: NULL

Details

The input data frame or tibble should have the following format:

t y
t.1 y.1
... ...
t.n y.n

or, if measurement.col is not NULL, then

t y measurement.col
t.1 y.1 ...
...
t.n y.n ...

red_peaks_100 29

Since, when not NULL, the measurement.col is called by its character string, the position of the
column does not matter, except it must not be among the first two columns which are reserved for t
and y.

All columns except the first two are removed. Values in t are expected to be in m.secs.

Value

Returns a tibble reduced to the desired frequency in the following format:

t y
t.1 y.1
... ...
t.n y.n

or, if measurement.col is not NULL, then

t y measurement.col
t.1 y.1 ...
...
t.n y.n ...

Examples

require(dplyr)
Using the forceR::df.all dataset that was
simulated with forceR::simulate_bites()

reduce sampling frequency to 200 Hz
df.all.200 <- reduce_frq(df = df.all,

Hz = 200,
measurement.col = "measurement")

plot(df.all.200 %>%
filter(measurement == "m_02") %>%
select(t, y),

type = "l", col = "black")
lines(df.all.200 %>%

filter(measurement == "m_01") %>%
select(t, y),

type = "l", col = "blue")

red_peaks_100 Reduce Peaks

30 red_peaks_100

Description

Reduces curves to 100 observations per peak.

Usage

red_peaks_100(
df,
plot.to.screen = FALSE,
path.data = NULL,
path.plots = NULL,
show.progress = FALSE

)

Arguments

df The resulting tibble of the function rescale_peaks(). The columns species,
specimen, measurement, peak, and force.norm must be present. See ?rescale_peaks
for more details.

plot.to.screen A logical value indicating if results should be plotted in the current R plot device.
Default: FALSE.

path.data A string character defining where to save the results. If NULL, data will not be
saved to disk. Default: NULL.

path.plots A string character defining where to save result plots. If NULL, plots will not be
saved to disk. Default: NULL.

show.progress A logical value indicating if progress should be printed to the console. Default:
FALSE.

Value

This function returns a tibble with a similar format as df, but the columns t, force, t.norm and
force.norm are replaced by the columns index, ranging from 1 to 100, and force.norm.100,
containing the rescaled force data ranging from 0 to 1. Since the time series has been reduced to
100 observations, this tibble will always contain 100 rows per peak.

df needs to contain the following columns:

force measurement peak
force.norm.norm.1 measurement.1 peak.1

...
force.norm.n measurement.m peak.n

Examples

Using the forceR::df.all.200.tax dataset:

rescale_peaks 31

peaks.df.norm.100 <- red_peaks_100(df = forceR::peaks.df.norm,
path.data = NULL,
path.plots = NULL,
show.progress = FALSE)

peaks.df.norm.100

rescale_peaks Rescale Peaks

Description

Rescales time series in x and y to values ranging from 0 to 1.

Usage

rescale_peaks(
df.peaks,
df.data,
plot.to.screen = FALSE,
path.data = NULL,
show.progress = FALSE

)

Arguments

df.peaks The resulting tibble of the function find_strongest_peaks(). See ?find_strongest_peaks
for more details.

df.data A data frame or tibble in the below format. The columns t (time), force and
measurement (measurement ID) must be present. This will usually be the same
table that was used before in find_strongest_peaks().

plot.to.screen A logical value indicating if results should be plotted in the current R plot device.
Default: FALSE.

path.data A string character defining where to save the results. If NULL, data will not be
saved to disk. Default: NULL.

show.progress A logical value indicating if progress should be printed to the console. Default:
FALSE.

Details

df.peaks at least needs to contain the following columns:

species measurements starts ends
species.1 measurements.1 starts.1 ends.1

...
species.n measurements.n starts.m ends.m

32 rescale_to_range

Check forceR::peaks.df to see an example tibble.

df.data at least needs to contain the following columns:

t force measurement
t.1 force.1 measurement.1
...
t.n force.n measurement.m

Check forceR::df.all.200.tax to see an example tibble.

Value

This function returns a tibble in the same format as df, but with the additional columns t.norm and
force.norm which will contain the rescaled time and force data both ranging from 0 to 1.

Examples

Using the forceR::df.all.200.tax and forceR::df.all.200.tax datasets:

rescale bites
peaks.df.norm <- rescale_peaks(df.peaks = forceR::peaks.df,

df.data = forceR::df.all.200.tax,
plot.to.screen = FALSE,
path.data = NULL,
show.progress = FALSE)

maximum values of time and force both range from 0 - 1:
range(peaks.df.norm$t.norm)
range(peaks.df.norm$force.norm)

rescale_to_range Scale data series to new minimum and maximum

Description

Maps a series of numeric values to a new range defined by minimum (from) and maximum (to).

Usage

rescale_to_range(data, from, to)

Arguments

data numeric vector containing the data to be scaled
from minimum of new range
to maximum of new range

simulate_bites 33

Value

numeric vector with scaled data

Examples

rescale_to_range(data = 1:10,
from = 1,
to = 100)

simulate_bites Simulate bites

Description

Simulates either sinusoidal or plateau-like bites.

Usage

simulate_bites(
no.of.bites = 5,
length.of.bite = 1000,
length.of.series = 10000,
max.y = 1,
max.y.jit = NULL,
peak.pos = 50,
slope.perc.start = 10,
slope.perc.end = slope.perc.start,
jit = NULL,
bite.type = "sin",
plot = TRUE

)

Arguments

no.of.bites Number of bites in time series. Default: 5.

length.of.bite Length of each bite. Default: 1000.
length.of.series

Length of the whole time series. Default: 10000.

max.y Maximum y value. Default: 1.

max.y.jit Jitter above and below maximum y value in [%] of maximum y value. Default:
NULL.

peak.pos Position (in percent) of peak within peak curve. Only applies to bite.type = "sin
(sinusoidal bites.) Default: same as 50.

slope.perc.start

Percentage of how much of the whole bite is defined by the ascending slope.
Only applies to bite.type = "plat (plateau-like bites.) Default: 10.

34 simulate_bites

slope.perc.end Percentage of how much of the whole bite is defined by the descending slope.
Only applies to bite.type = "plat (plateau-like bites.) Default: same as
slope.perc.start.

jit Jitter along the whole time series. Default: NULL.

bite.type String: either "sin" or "plat" for sinusoidal or plateau-like bites, respectively.
Default: "sin".

plot Logical. If TRUE, the simulated time series will be plotted to the active plot
device. Default: TRUE.

Value

Returns a tibble with the columns t and y containing simulated bites.

Examples

simulate a time series with sinusoidal bites
where the peaks are located in the centers of the bites.
simulate_bites(no.of.bites = 5,

length.of.bite = 1000,
length.of.series = 10000,
max.y = 5,
max.y.jit = 15,
jit = 0.5,
peak.pos = 0.5,
bite.type = "sin",
plot = TRUE)

simulate a time series with sinusoidal bites
where the peaks are located towards the ends of the bites.
simulate_bites(no.of.bites = 5,

length.of.bite = 1000,
length.of.series = 10000,
max.y = 5,
max.y.jit = 15,
jit = 0.5,
peak.pos = 0.8,
bite.type = "sin",
plot = TRUE)

simulate a time series with plateau-like bites
simulate_bites(no.of.bites = 5,

length.of.bite = 1000,
length.of.series = 10000,
max.y = 5,
max.y.jit = 15,
jit = 1,
bite.type = "plat",
plot = TRUE)

simulate a time series with plateau-like bites
with slowly ascending bite start and abprupt bite end.

sort_files 35

simulate_bites(no.of.bites = 5,
length.of.bite = 1000,
length.of.series = 10000,
max.y = 5,
max.y.jit = 15,
slope.perc.start = 60,
slope.perc.end = 10,
jit = 1,
bite.type = "plat",
plot = TRUE)

sort_files Sorts files after corrections

Description

The files of each of the various possible correction steps (cropping, amplififer correction, drift
correction) are all located in their own folders. This function gets all files that represent the last cor-
rection step of a given measurement out of all those folders and saves them in the results.folder.

Usage

sort_files(data.folders, results.folder, move = FALSE)

Arguments

data.folders Character vector containing full folder paths of folders to check. This list must
be sorted according to the chronology of previous file editing. If a measure-
ment exists in the last folder, this is copied or moved into the results.folder,
and files of the same measurement located in the other folders will be ignored.
Hence, the one file per measurement that underwent most correction steps will
be stored in the results.folder, while the rest of the files of the same mea-
surement remain in place.

results.folder Character string defining the full path to the folder where the desired files will
be stored.

move A logical value specifying if files should be moved (move = TRUE) or copied
(move = FALSE). Default: FALSE.

Details

The function will look for leading numbers in the file names specifying the measurement num-
ber to find corresponding files in the different folders. E.g., it will identify "0001_ABCD.csv",
"0001_ABCD_ampdriftcorr.csv", and "0001_ABCD_ampdriftcorr_baselincorr.csv" as stemming
from the same measurement and sort them accordingly.

Value

This functions does not create new files but sorts existing files. It does, however, create the
results.folder in case it did not exist before.

36 summarize_measurements

Examples

define data.folders
data.folders <- c("./raw",

"./cropped",
"./ampdriftcorr",
"./baselinecorr")

define the folder in which one corrected file per original raw measurement
should be stored.
results.folder <- "./corrected"

run the file sorting - commented out to pass package tests
sort_files(data.folders = data.folders,
results.folder = results.folder,
move = FALSE)

summarize_measurements

Summarize Table

Description

Finds minimum, maximum and standard deviation of force per measurement and taxon and creates
summary tibble.

Usage

summarize_measurements(df, var1, var2)

Arguments

df Data frame or tibble containing at least three columns. The column names must
contain the grouping variables defined in var1 and var2 and the column force
(time series of force measurements).

var1 A character string defining the column to calculate minimal and maximal force
values per measurement. This must be the column that contains the unique
measurement ID, e.g. measurement number.

var2 A character string defining the column for which the summary should be calcu-
lated.

Value

A tibble summarizing the input data frame df. The resulting tibble will contain the columns t,
force, measurement, species, specimen, amp, lever.ratio, max.F.measurement, mean.F.specimen,
max.F.specimen, sdv.max.F.specimen, n.measurements.in.specimen.

y_to_force 37

Examples

Using the forceR::df.all.200.tax dataset:

sumarize by measurement and specimen
df.summary.specimen <- summarize_measurements(df = df.all.200.tax,

var1 = "measurement",
var2 = "specimen")

plot results
Not run:
require(ggplot2)
ggplot(data = df.summary.specimen, mapping = aes(x=specimen,y=max.F.measurement)) +

geom_jitter(aes(color='blue'),alpha=0.7) +
geom_boxplot(fill="bisque",color="black",alpha=0.3) +
scale_y_log10() +
labs(y="max(F)/specimen") +
guides(color="none") +
theme_minimal()

End(Not run)

today Get Today’s Date as String

Description

Creates a character string containing today’s date in the format "yyyy_mm_dd" which can be used
in file names.

Usage

today()

Value

date.string a character string of today’s date in the format "yyyy_mm_dd"

y_to_force Convert Time Series to Force

38 y_to_force

Description

Converts a time series, e.g. a continuous voltage measurement from a sensor to force data according
to an amplification value and, depending on the measurement setup, the lever ratio of the rocker
forwarding the force from the point the force acts on to the sensor.

Usage

y_to_force(df, classifier, measurement.col)

Arguments

df Data frame or tibble in the below mentioned format. This should contain the
time series, with one line per time step and measurement.

classifier Classifier in the below mentioned format.
measurement.col

Character string. If measurement.col is not defined, the whole input data
frames will be treated as if it was just one single time series. This is okay for
data frames like that indeed only contain one time series, but for data frames
with multiple time series, a grouping column needs to be defined. Default: NULL

Details

These values should be stored in a classifier (s. below). At the same, it adds specimen and
species info from the respective columns of the classifier.

The classifier should have the following format:

species specimen measurement amp lever.ratio
species.1 specimen.1 measurement.1 amp.1 lever.ratio.1

...
species.n specimen.n measurement.n amp.n lever.ratio.n

It must contain one row per unique measurement number that is present in the df.

The force (F) in Newton is calculated via the following formula:

F = y * lever.ratio * (1 / amp)

where y is the measurement series, e.g. in V,
amp is the amplification value, e.g. in V/N,
and lever.ratio is the mechanical lever ratio of the measurement setup.

df should have the following format:

t y measurement
t.1 y.1 measurement.1
t.2 y.2 measurement.1
...
t.n y.n measurement.1
t.1 y.1 measurement.2
t.2 y.2 measurement.2

y_to_force 39

...
t.m y.m measurement.2
...
t.o y.o measurement.o

Value

Returns a tibble in the same format as the input tibble with an additional column called ’"’force’.

Examples

convert y column of df.all to force column and add taxonomic data
using info from classifier
df.all.tax <- y_to_force(df = forceR::df.all.200,

classifier = forceR::classifier,
measurement.col = "measurement")

df.all.tax

Index

∗ datasets
classifier, 8
df.all, 13
df.all.200, 13
df.all.200.tax, 14
models, 21
peaks.df, 21
peaks.df.100.avg, 22
peaks.df.norm, 22
peaks.df.norm.100, 23

amp_drift_corr, 2
avg_peaks, 4

baseline_corr, 5

classifier, 8
convert_measurement, 9
correct_peak, 10
crop_measurement, 12

df.all, 13
df.all.200, 13
df.all.200.tax, 14

find_best_fits, 14
find_strongest_peaks, 16
forceR_example, 18

load_mult, 19
load_single, 20

models, 21

peak_duration_max_force, 23
peak_to_poly, 24
peaks.df, 21
peaks.df.100.avg, 22
peaks.df.norm, 22
peaks.df.norm.100, 23
plot_measurement, 25

plot_peaks, 26
print_progress, 27

red_peaks_100, 29
reduce_frq, 28
rescale_peaks, 31
rescale_to_range, 32

simulate_bites, 33
sort_files, 35
summarize_measurements, 36

today, 37

y_to_force, 37

40

	amp_drift_corr
	avg_peaks
	baseline_corr
	classifier
	convert_measurement
	correct_peak
	crop_measurement
	df.all
	df.all.200
	df.all.200.tax
	find_best_fits
	find_strongest_peaks
	forceR_example
	load_mult
	load_single
	models
	peaks.df
	peaks.df.100.avg
	peaks.df.norm
	peaks.df.norm.100
	peak_duration_max_force
	peak_to_poly
	plot_measurement
	plot_peaks
	print_progress
	reduce_frq
	red_peaks_100
	rescale_peaks
	rescale_to_range
	simulate_bites
	sort_files
	summarize_measurements
	today
	y_to_force
	Index

