Package ‘eKRLS’

November 7, 2024
Type Package

Title Generalized Kernel Regularized Least Squares
Version 1.0.4

Date 2024-11-07

Encoding UTF-8

License GPL (>=2)

Description Kernel regularized least squares, also known as kernel ridge regression,
is a flexible machine learning method. This package implements this method by
providing a smooth term for use with 'mgcv' and uses random sketching to
facilitate scalable estimation on large datasets. It provides additional
functions for calculating marginal effects after estimation and for use with
ensembles (‘SuperLearning'), double/debiased machine learning ('DoubleML"),
and robust/clustered standard errors (‘sandwich'). Chang and Goplerud (2024)
<doi:10.1017/pan.2023.27> provide further details.

LinkingTo Rcpp, RcppEigen

Imports Rcpp (>= 1.0.6), Matrix, mlr3, R6

Depends mgcv, sandwich (>= 2.4.0)

Suggests SuperLearner, mlr3misc, DoubleML, testthat
SystemRequirements GNU make

RoxygenNote 7.3.2

NeedsCompilation yes
URL https://github.com/mgoplerud/gKRLS

BugReports https://github.com/mgoplerud/gKRLS/issues

Author Qing Chang [aut],
Max Goplerud [aut, cre]

Maintainer Max Goplerud <mgoplerud@austin.utexas.edu>
Repository CRAN
Date/Publication 2024-11-07 22:30:02 UTC


https://doi.org/10.1017/pan.2023.27
https://github.com/mgoplerud/gKRLS
https://github.com/mgoplerud/gKRLS/issues

2 calculate_effects

Contents
calculate_effects. . . . . . . . L e e 2
gKRLS . . . e 7
ml_gKRLS . . . . . 10
Index 13
calculate_effects Marginal Effects
Description

These functions calculate marginal effects or predicted values after estimating a model with gam or

bam.
Usage
calculate_effects(
model,
data = NULL,
variables = NULL,
continuous_type = c("IQR", "minmax", "derivative"”, "onesd", "predict”,

"second_derivative”),
conditional = NULL,
individual = FALSE,
vcov = NULL,
raw = FALSE,
use_original = FALSE,
epsilon = 1e-07,
verbose = FALSE

)

calculate_interactions(
model,
variables,
Q0I = c("AMIE", "ACE", "AME", "AIE"),

)
get_individual_effects(x)

## S3 method for class 'gKRLS_mfx'
print(x, ...)

## S3 method for class 'gKRLS_mfx'
summary (object, ...)



calculate_effects

Arguments

model
data

variables

continuous_type

conditional

individual

vCoVv

raw

A model estimated using functions from mgcv (e.g., gam or bam).

A data frame that is used to calculate the marginal effect or set to NULL which
will employ the data used when estimating the model. The default is NULL.
Using a custom dataset may have unexpected implications for continuous and
character/factor variables. See "WARNINGS" for more discussion.

A character vector that specifies the variables for which to calculate effects. The
default, NULL, calculates effects for all variables.

A character value, with a default of "IQR", that indicates the type of marginal
effects to estimate when the variable is continuous (i.e. not binary, logical, fac-
tor, or character). Options are "IQR" (compares the variable at its 25% and
75% percentile), "minmax” (compares the variable at its minimum and max-
imum), "derivative” (numerically approximates the derivative at each ob-
served value), "second_derivative” (numerically approximates the second
derivative at each observed value), "onesd” (compares one standard deviation
below and one standard deviation above the mean of the variable). It also accepts
a named list where each named element corresponds to a continuous variable
and has a two-length vector as each element. The two values are then compared.
If this is used, then all continuous variables must have two values specified.

A special option ("predict") produces predictions (e.g., predict(model, type
= "response")) at each observed value and then averages them together. This,
in conjunction with conditional, provides a way of calculating quantities such
as predicted probability curves using an "observed value" approach (e.g., Han-
mer and Kalkan 2013). Examples are provided below.

A data.frame or NULL. This is an analogue of Stata’s at() option and the at
argument in the margins package. For a marginal effect on some variable "a”,
this specifies fixed values for certain other covariates, e.g. data.frame("b" =
0). If conditional is NULL, all other covariates are held at their observed value.
If conditional is a data.frame, then each row represents a different combina-
tion of covariate values to be held fixed, and marginal effects are calculated
separately for each row. Examples are provided below.

A logical value. TRUE calculates individual effects (i.e. an effect for each obser-
vation in the data). The default is FALSE.

A matrix that specifies the covariance matrix of the parameters. The default,
NULL, uses the standard covariance matrix from mgcv. This can be used to
specify clustered or robust standard errors using output from (for example)
sandwich.

A logical value. TRUE returns the raw values used to calculate the effect in addi-
tion to the estimated effect. The default is FALSE. If TRUE, an additional column
...1id is present in the estimated effects that reports whether the row corre-
sponds to the effect (effect), the first value (raw_0) or the second value (raw_1)
where effect=raw_1 - raw_0. For "derivative”, this is further scaled by
the step size. For "second_derivative”, effect=raw_2 - 2 *x raw_1 + raw_o,
scaled by the step size; see the discussion for epsilon for how the step size is
calculated.



4 calculate_effects

use_original A logical value that indicates whether to use the estimation data (TRUE) or data
(FALSE) when calculating quantities such as the IQR for continuous variables
or the levels to examine for factor variables. Default (FALSE) uses the pro-
vided data; if data = NULL, this is equivalent to using the estimation data. The
"WARNINGS" section provides more discussion of this option.

epsilon A numerical value that defines the step size when calculating numerical deriva-
tives (default of 1e-7). For "derivative”, the step size for the approximation
is h = e - max(1, max(|z|)), i.e. f'(z) =~ %hf(th) Please see Leeper
(2016) for more details.

For "second_derivative”, the step size is h = [e - max(1, max(|z]))]°%, i.e.
() ~ fla+h)=2f(x)+f(z—h)

h2

verbose A logical value that indicates whether to report progress when calculating the
marginal effects. The default is FALSE.

Q0I A vector of quantities of interest calculate for calculate_interactions. Op-
tions include "AME" (average marginal effect), "ACE" (average combination ef-
fect), "AIE" (average interaction effect) and "AMIE" (average marginal interac-
tion effect); see "Details" for more information. The default setting calculates
all four quantities.

An argument used for calculate_interactions to pass arguments to calculate_effects.
It is unused for summary.gKRLS_mfx.

X An object estimated using calculate_effects.
object A model estimated using functions from mgcv (e.g., gam or bam).
Details

Overview: calculate_effects returns a data.frame of class "gKRLS_mfx" that reports the es-
timated average marginal effects and standard errors. Other columns include "type” that reports

the type of marginal effect calculated. For families with multiple predicted outcomes (e.g., multino-

mial), the column "response” numbers the different outcomes in the same order as predict.gam(object)
for the specified family. Many (but not all) extended and generalized families from mgcv are in-
cluded.

The conditional argument while setting continuous_type = "predict” can be used to estimate
predicted values at different covariate strata (e.g., to create an "observed value" predicted probability
curve for a logistic regression). The examples provide an illustration.

Interactions: calculate_interactions provides some simple functions for calculating interac-
tion effects between variables. The default quantities it can produce are listed below. Egami and
Imai (2019) provide a detailed exposition of these quantities. All marginalization is done using an
"observed value" approach, i.e. over the estimation data or a custom dataset provided to data.

* "AME" or Average Marginal Effect: This is the standard quantity reported from calculate_effects.

* "ACE" or Average Combination Effect: This is the effect of changing two variables simulta-
neously on the outcome.

e "AMIE" or Average Marginal Interaction Effect: This is ACE minus each corresponding
AME.



calculate_effects 5

* "AIE" or Average Interaction Effect: This has a "conditional effect" interpretation and reports
the difference in average effect of one variable ("A") between two different levels of a second
variable ("B").

Other Functions: get_individual_effects extracts the individual-level effects that are esti-
mated if individual=TRUE.

Value

Both calculate_effects and calculate_interactions return data.frames. calculate_effects
contains attributes—including the ones noted below—that may be useful for other analyses.

» "gradient": This contains the gradients used to calculate the standard error (via the delta
method) for the estimates from calculate_effects. There is one column for each quantity
calculated in the main object. The format of this object depends on the family used for gam or
bam. This could be used manually to calculate a standard error on the difference between two
estimated marginal effects.

e "N_eff": The number of observations (in the estimation data) minus the effective degrees
of freedom. This is used when calculating p-values as the degrees of freedom for the t-
distribution.

e "N": The number of observations.

WARNINGS

Using a custom dataset for data, i.e. a dataset other than the estimation data, may have unexpected
implications. For continuous and character/factor variables, the estimated marginal effects may
depend on the distribution of the variable in data. For example, if continuous_type="IQR", the
variable x1 is counterfactually set to quantile(data$x1, @.25) and quantile(data$x1, @.75)
where data is provided by calculate_effects (versus the estimation data). To force this range to
be set based on the estimation data, set use_original=TRUE.

This default behavior if data is provided may be undesirable and thus calculate_effects will
issue a warning if this situation arises and a custom data is provided. These settings are subject to
change in future releases.

References

Egami, Naoki, and Kosuke Imai. 2019. "Causal Interaction in Factorial Experiments: Application
to Conjoint Analysis." Journal of the American Statistical Association. 114(526):529-540.

Hanmer, Michael J., and Kerem Ozan Kalkan. 2013. "Behind the Curve: Clarifying the Best Ap-
proach to Calculating Predicted Probabilities and Marginal Effects from Limited Dependent Vari-
able Models." American Journal of Political Science 57(1): 263-277.

Leeper, Thomas J. 2016. "Interpreting Regression Results using Average Marginal Effects with R’s
margins." Working paper available at https://s3.us-east-2.amazonaws.com/tjl-sharing/
assets/AverageMarginalEffects.pdf.


https://s3.us-east-2.amazonaws.com/tjl-sharing/assets/AverageMarginalEffects.pdf
https://s3.us-east-2.amazonaws.com/tjl-sharing/assets/AverageMarginalEffects.pdf

6 calculate_effects

Examples

set.seed(654)

n <- 50

x1 <= rnorm(n)

x2 <= rnorm(n)

x3 <= rnorm(n)

state <- sample(letters[1:5], n, replace = TRUE)
y <-0.3 % x1 +0.4*x2+ 0.5 % x3 + rnorm(n)
data <- data.frame(y, x1, x2, x3, state)

# Make character variables into factors for mgcv
data$state <- factor(data$state)

# A gKRLS model
fit_gKRLS <- mgcv::gam(y ~ state + s(x1, x2, x3, bs = "gKRLS"), data = data)

# calculate marginal effect using derivative
calculate_effects(fit_gKRLS, variables = "x1", continuous_type = "derivative")

# calculate marginal effect by specifying conditional variables
calculate_effects(fit_gKRLS,

variables = "x1",

conditional = data.frame(x2 = c(0.6, 0.8), x3 = 0.3)
)

# calculate interaction effects between two variables
# use the default setting ("IQR") for the baseline and
# comparison categories for each variable
calculate_interactions(fit_gKRLS,

variables = list(c("x1", "x2")),

QOI = c('AIE', 'AMIE')
)

# calculate marginal effect by specifying a factor conditional variable
# estimate the individual marginal effects
out <- calculate_effects(fit_gKRLS,
variables = "x1", individual = TRUE,
conditional = data.frame(state = c("a”, "b", "c")), continuous_type = "derivative”

)

# Extract the individual marginal effects:
# shorthand for attr(fit_main, 'individual')
get_individual_effects(out)

# calculated the average expected value across a grid of "x1”

# using an observed value approach for the other covariates

calculate_effects(fit_gKRLS, conditional = data.frame(x1 = c(@, 0.2, 0.4, 0.6)),
continuous_type = 'predict’

)



gKRLS 7

gKRLS Generalized Kernel Regularized Least Squares

Description

This page documents how to use gkRLS as part of a model estimated with mgcv. Post-estimation
functions to calculate marginal effects are documented elsewhere, e.g. calculate_effects.

Usage

gKRLS(

)

sketch_method = "subsampling”,

standardize = "Mahalanobis”,

bandwidth = NULL,

sketch_multiplier = 5,

sketch_size_raw = NULL,

sketch_prob = NULL,

rescale_penalty = TRUE,

truncate.eigen.tol = sqrt(.Machine$double.eps),
demean_kernel = FALSE,

remove_instability = TRUE

get_calibration_information(object)

Arguments

sketch_method A string that specifies which kernel sketching method should be used (default of

non

"subsampling"). Options include "subsampling”, "gaussian”, "bernoulli”,
or "none” (no sketching). Drineas et al. (2005) and Yang et al. (2017) provide
more details on these options.

To force "subsampling” to select a specific set of observations, you can provide
a vector of row positions to sketch_method. This manually sets the size of the
sketching multiplier, implicitly overriding other options in gKRLS. The examples
provide an illustration.

standardize A string that specifies how the data is standardized before calculating the dis-

tance between observations. The default is "Mahalanobis” (i.e., demeaned and
transformed to have an identity covariance matrix). Other options are "scaled”
(all columns are scaled to have mean zero and variance of one) or "none"” (no
standardization).

bandwidth A bandwidth P for the kernel where each element of the kernel (4, j) is defined

by exp(—||z; — z;||3/P). The default (NULL) uses the number of covariates
in the kernel or the rank of the corresponding design matrix. An additional
option ("calibrate"”) choses P to maximize the variance of the kernel, e.g.,
var(vec(K)) for the unsketched case. This follows Hartman et al. (2024) with
modifications when the kernel is sketched. Please see gKRLS_addendum.pdf
for a formal exposition.


https://github.com/mgoplerud/gKRLS/blob/master/.github/gKRLS_addendum.pdf

8 gKRLS

sketch_multiplier
A number that sets the size of the sketching dimension: sketch_multiplier
* ceiling(N*(1/3)) where N is the number of observations. The default is 5;
Chang and Goplerud (2024) find that increasing this to 15 may improve stability
for certain complex kernels. sketch_size_raw can directly set the size of the
sketching dimension.

sketch_size_raw
A number to set the exact size of the sketching dimension. The default, NULL,
means that this argument is not used and the size depends on the number of
observations; see sketch_multiplier. Exactly one of sketch_size_raw or
sketch_multiplier must be NULL.

sketch_prob A probability for an element of the sketching matrix to equal 1 when using
Bernoulli sketching. Yang et al. (2017) provide more details.

rescale_penalty
A logical value for whether the penalty should be rescaled for numerical stabil-
ity. See documentation for mgcv: : smooth. spec on the meaning of this term.
The default is TRUE.

truncate.eigen.tol
A threshold to remove columns of the penalty SK ST whose eigenvalues are
small (below truncate.eigen.tol). These columns are removed from the
sketched kernel and avoids instability due to numerically very small eigenvalues.
The default is sqrt(.Machine$double.eps). This adjustment can be disabled
by setting remove_instability = FALSE.

demean_kernel A logical value that indicates whether columns of the (sketched) kernel should
be demeaned before estimation. The default is FALSE.

remove_instability
A logical value that indicates whether numerical zeros (set via truncate.eigen. tol)
should be removed when building the penalty matrix. The default is TRUE.

object Model estimated using mgcv: : gam or mgcv: : bam

Details

Overview: The gkRLS function should not be called directly. Its options, described above, control
how gKRLS is estimated. It should be passed to mgcv as follows: s(x1, x2, x3, bs = "gkRLS", xt
= gKRLS(...)). Multiple kernels can be specified and have different gkRLS arguments. It can also
be used alongside the existing options for s() in mgcv.

If bandwidth="calibrate”, the function get_calibration_information reports the estimated
bandwidth and time (in minutes) needed to do so.

Default Settings: By default, bs = "gkRLS" uses Mahalanobis distance between the observations,
random sketching using subsampling sketching (i.e., where the kernel is constructed using a random
sample of the observations; Yang et al. 2017) and a sketching dimension of 5 * ceiling(N*(1/3))
where N is the number of observations. Chang and Goplerud (2024) provide an exploration of
alternative options.

Notes: Please note that variables must be separated with commas inside of s(. . .) and that charac-
ter variables should usually be passed as factors to work smoothly with mgcv. When using this func-
tion with bam, the sketching dimension uses chunk.size in place of N and thus either chunk.size
or sketch_size_raw must be used to cause the sketching dimension to increase with N.



gKRLS 9

Value

gKRLS returns a named list with the elements in "Arguments".

References

Chang, Qing, and Max Goplerud. 2024. "Generalized Kernel Regularized Least Squares." Political
Analysis 32(2):157-171.

Hartman, Erin, Chad Hazlett, and Ciara Sterbenz. 2024. "kpop: A Kernel Balancing Approach for
Reducing Specification Assumptions in Survey Weighting." Journal of the Royal Statistical Society
Series A: Statistics in Society doi:10.1093/jrsssa/qnae082.

Drineas, Petros, Michael W. Mahoney, and Nello Cristianini. 2005. "On the Nystrom Method for
Approximating a Gram Matrix For Improved Kernel-Based Learning." Journal of Machine Learn-
ing Research 6(12):2153-2175.

Yang, Yun, Mert Pilanci, and Martin J. Wainwright. 2017. "Randomized Sketches for Kernels: Fast
and Optimal Nonparametric Regression." Annals of Statistics 45(3):991-1023.

Examples

set.seed(123)

n <- 100

x1 <= rnorm(n)

x2 <= rnorm(n)

x3 <= rnorm(n)

state <- sample(letters[1:5], n, replace = TRUE)

y <- 0.3 x x1 +0.4*% x2+ 0.5 * x3 + rnorm(n)

data <- data.frame(y, x1, x2, x3, state)

data$state <- factor(data$state)

# A gkKRLS model without fixed effects

fit_gKRLS <- mgcv::gam(y ~ s(x1, x2, x3, bs = "gKRLS"), data = data)
summary (fit_gKRLS)

# A gKRLS model with fixed effects outside of the kernel
fit_gKRLS_FE <- mgcv::gam(y ~ state + s(x1, x2, x3, bs = "gKRLS"), data = data)

# HC3 is not available for mgcv; this uses the effective degrees of freedom
# instead of the number of columns; see ?estfun.gam for details

robust <- sandwich::vcovHC(fit_gKRLS, type = 'HC1'")

cluster <- sandwich::vcovCL(fit_gKRLS, cluster = data$state)

# Change default standardization to "scaled”, sketch method to Gaussian,
# and alter sketching multiplier
fit_gKRLS_alt <- mgcv::gam(y ~ s(x1, x2, X3,

bs = "gKRLS",
xt = gKRLS(
standardize = "scaled”,
sketch_method = "gaussian”,
sketch_multiplier = 2
)
),
data = data

)


https://doi.org/10.1093/jrsssa/qnae082

10 ml_gKRLS

# A model with multiple kernels

fit_gKRLS_2 <- mgcv::gam(y ~ s(x1, x2, bs = 'gkRLS"') + s(x1, x3, bs = "gKRLS'), data = data)

# A model with a custom set of ids for sketching

id <- sample(1:n, 5)

fit_gKRLS_custom <- mgcv::gam(y ~ s(x1, bs = "gKRLS', xt = gKRLS(sketch_method = id)), data = data)
# Note that the ids of the sampled observations can be extracted

# from the fitted mgcv object

stopifnot(identical(id, fit_gKRLS_custom$smooth[[1]]$subsampling_id))

# calculate marginal effect (see ?calculate_effects for more examples)
calculate_effects(fit_gKRLS, variables = "x1")

ml_gKRLS Machine Learning with gKRLS

Description

This provides a number of functions to use gkRLS (and mgcv more generally) as part of machine
learning algorithms. Integration into SuperLearner and DoubleML (and mlr3) is described below.

Usage

SL.mgcv(Y, X, newX, formula, family, obsWeights, bam = FALSE, ...)

## S3 method for class 'SL.mgcv'
predict(object, newdata, allow_missing_levels = TRUE, ...)

add_bam_to_mlr3()

Arguments

Y This is not usually directly specified in SL.mgcv, see the examples below and
documentation in SuperlLearner for more details.

X This is not usually directly specified in SL.mgcv, see the examples below and
documentation in SuperlLearner for more details.

newX This is not usually directly specified in SL.mgcv, see the examples below and
documentation in SuperLearner for more details.

formula A formula used for gam or bam from mgcv. This must be specified, see the
examples.

family This is not usually directly specified in SL.mgcv, see the examples below and
documentation in SuperLearner for more details.

obsWeights This is not usually directly specified in SL.mgcv, see the examples below and
documentation in SuperlLearner for more details.

bam A logical value for whether mgcv: : bam should be used instead of mgcv: : gam.

Default is FALSE. For large datasets, this can dramatically improve estimation
time. Wood et al. (2015) and mgcv provide details on bam.

Additional arguments to mgcv: : gam and mgcv: : bam.



ml_gKRLS 11

object This is not usually directly specified in SL.mgcv, see the examples below and
documentation in SuperlLearner for more details.

newdata This is not usually directly specified in SL.mgcv, see the examples below and
documentation in SuperLearner for more details.
allow_missing_levels

A logical variable that indicates whether missing levels in factors are allowed
for prediction. The default is TRUE.

Details

Ensembles: SuperLearner integration is provided by SL.mgcv and the corresponding predict
method. mgcv: :bam can be enabled by using bam = TRUE. A formula without an outcome must
be explicitly provided.

Please note that it is often useful to load SuperLearner before gkRLS or mgcv to avoid functions
including gam and s being masked from other packages.

Double Machine Learning: DoubleML integration is provided in two ways. First, one could load
mlr3extralearners to access regr.gamand classif.gam.

Second, this package provides mgcv: : bamintegration directly with a slight adaption of the mlr3extralearner
implementation (see ?LearnerClassifBam for more details). These can be either manually added

to the list of mlr3 learners by calling add_bam_to_mlr3() or direct usage. Examples are provided

below. For classif.bam and regr.bam, the formula argument is mandatory.

Value
All three of the returned functions are usually called for use in other functions, i.e. creating objects
for use in SuperlLearner or adding bam models to m1r3.

References
Wood, Simon N., Yannig Goude, and Simon Shaw. 2015. "Generalized Additive Models for Large
Data Sets." Journal of the Royal Statistical Society: Series C (Applied Statistics) 64(1):139-155.

Examples

set.seed(789)

N <- 100

x1 <= rnorm(N)

x2 <- rbinom(N, size = 1, prob = .2)
y <= x1%3 - 0.5 * x2 + rnorm(N, 0, 1)
y<-y=*x10

X <- cbind(x1, x2, x1 + x2 * 3)
X <= cbind(X, "x3" = rexp(nrow(X)))

if (requireNamespace("SuperLearner”, quietly = TRUE)) {
# Estimate Ensemble with SuperLearner
require(SuperLearner)
sl_m <- function(...) { SL.mgcv(formula = ~ x1 + x2 + x3, ...) }
fit_SL <- SuperlLearner::SuperLearner(
Y =y, X = data.frame(X),



n

SL.library = "sl_m

)
pred <- predict(fit_SL, newdata = data.frame(X))

# Estimate Double/Debiased Machine Learning

if (requireNamespace("DoubleML”, quietly = TRUE)) {
require(DoubleML)
# Load the models; for testing *ONLY* have multiplier of 2
double_bam_1 <- LearnerRegrBam$new()
double_bam_1$param_set$values$formula <- ~ s(x1, x3, bs = "gKRLS",
xt = gKRLS(sketch_multiplier = NULL, sketch_size_raw = 2))
double_bam_2 <- LearnerClassifBam$new()
double_bam_2$param_set$values$formula <- ~ s(x1, x3, bs = "gKRLS",
xt = gKRLS(sketch_multiplier = NULL, sketch_size_raw = 2))

# Create data
dml_data <- DoubleMLData$new(
data = data.frame(X, y),
x_cols = c("x1", "x3"), y_col = "y",
d_cols = "x2"
)
# Estimate effects treatment (works for other DoubleML methods)
dml_est <- DoubleMLIRM$new(
data = dml_data,
n_folds = 2,
ml_g = double_bam_1,
ml_m = double_bam_2
)$Fit()

ml_gKRLS



Index

add_bam_to_mlr3 (ml1_gKRLS), 10

calculate_effects, 2, 7
calculate_interactions
(calculate_effects), 2

get_calibration_information (gKRLS), 7

get_individual_effects
(calculate_effects), 2

gKRLS, 7

ml_gKRLS, 10

predict.SL.mgcv (ml_gKRLS), 10
print.gKRLS_mfx (calculate_effects), 2

SL.mgcv (ml_gKRLS), 10

summary.gKRLS_mfx (calculate_effects), 2

13



	calculate_effects
	gKRLS
	ml_gKRLS
	Index

