| Encoding: | UTF-8 |
| Type: | Package |
| Version: | 1.0.4 |
| Date: | 2021-10-19 |
| Title: | Generating Multi-State Survival Data |
| Depends: | R (≥ 2.12.0) |
| Suggests: | survival |
| Description: | Generation of survival data with one (binary) time-dependent covariate. Generation of survival data arising from a progressive illness-death model. |
| License: | GPL-3 |
| URL: | https://github.com/arturstat/genSurv |
| BugReports: | https://github.com/arturstat/genSurv/issues |
| LazyLoad: | yes |
| NeedsCompilation: | yes |
| Packaged: | 2021-10-19 21:06:52 UTC; User |
| Author: | Artur Araujo |
| Maintainer: | Artur Araujo <artur.stat@gmail.com> |
| Repository: | CRAN |
| Date/Publication: | 2021-10-19 22:50:02 UTC |
Generating Multi-State Survival Data
Description
The genSurv software permits to generate data with one binary time-dependent covariate and data stemming from a progressive illness-death model.
Details
| Package: | genSurv |
| Type: | Package |
| Version: | 1.0.4 |
| Date: | 2021-10-19 |
| License: | GPL-3 |
| LazyLoad: | yes |
Author(s)
Artur Araújo, Luís Meira-Machado lmachado@math.uminho.pt
and Susana Faria sfaria@math.uminho.pt
Maintainer: Artur Araújo artur.stat@gmail.com
References
Anderson, P.K., Gill, R.D. (1982). Cox's regression model for counting processes: a large sample study. Annals of Statistics, 10(4), 1100-1120. doi: 10.1214/aos/1176345976
Cox, D.R. (1972). Regression models and life tables. Journal of the Royal Statistical Society: Series B, 34(2), 187-202. doi: 10.1111/j.2517-6161.1972.tb00899.x
Jackson, C. (2011). Multi-State Models for Panel Data: The msm Package for R. Journal of Statistical Software, 38(8), 1–28. doi: 10.18637/jss.v038.i08
Johnson, M. E. (1987). Multivariate Statistical Simulation, John Wiley and Sons.
Johnson, N., Kotz, S. (1972). Distribution in statistics: continuous multivariate distributions, John Wiley and Sons.
Lu J., Bhattacharya G. (1990). Some new constructions of bivariate weibull models. Annals of Institute of Statistical Mathematics, 42(3), 543-559. doi: 10.1007/BF00049307
Meira-Machado, L., Cadarso-Suárez, C., De Uña- Álvarez, J., Andersen, P.K. (2009). Multi-state models for the analysis of time to event data. Statistical Methods in Medical Research, 18(2), 195-222. doi: 10.1177/0962280208092301
Meira-Machado L., Faria S. (2014). A simulation study comparing modeling approaches in an illness-death multi-state model. Communications in Statistics - Simulation and Computation, 43(5), 929-946. doi: 10.1080/03610918.2012.718841
Meira-Machado, L., Roca-Pardiñas, J. (2011). p3state.msm: Analyzing Survival Data from an Illness-Death Model. Journal of Statistical Software, 38(3), 1-18. doi: 10.18637/jss.v038.i03
Meira-Machado, L., Sestelo M. (2019). Estimation in the progressive illness-death model: a nonexhaustive review. Biometrical Journal, 61(2), 245–263. doi: 10.1002/bimj.201700200
Therneau, T.M., Grambsch, P.M. (2000). Modelling survival data: Extending the Cox Model, New York: Springer.
Coerce to an object of class CMM
Description
Function to coerce objects of class TDCM and THMM to objects of class CMM.
Usage
as.CMM(x)
is.CMM(x)
Arguments
x |
Any R object. |
Value
An object with two classes one being data.frame and the other CMM.
Author(s)
Artur Araújo, Luís Meira Machado and Susana Faria
References
Cox, D.R. (1972). Regression models and life tables. Journal of the Royal Statistical Society: Series B, 34(2), 187-202. doi: 10.1111/j.2517-6161.1972.tb00899.x
Jackson, C. (2011). Multi-State Models for Panel Data: The msm Package for R. Journal of Statistical Software, 38(8), 1–28. doi: 10.18637/jss.v038.i08
Meira-Machado, L., Cadarso-Suárez, C., De Uña- Álvarez, J., Andersen, P.K. (2009). Multi-state models for the analysis of time to event data. Statistical Methods in Medical Research, 18(2), 195-222.
Meira-Machado L., Faria S. (2014). A simulation study comparing modeling approaches in an illness-death multi-state model. Communications in Statistics - Simulation and Computation, 43(5), 929-946. doi: 10.1080/03610918.2012.718841
Meira-Machado, L., Roca-Pardiñas, J. (2011). p3state.msm: Analyzing Survival Data from an Illness-Death Model. Journal of Statistical Software, 38(3), 1-18. doi: 10.18637/jss.v038.i03
Meira-Machado, L., Sestelo M. (2019). Estimation in the progressive illness-death model: a nonexhaustive review. Biometrical Journal, 61(2), 245–263. doi: 10.1002/bimj.201700200
Therneau, T.M., Grambsch, P.M. (2000). Modelling survival data: Extending the Cox Model, New York: Springer.
See Also
as.TDCM,
as.THMM,
genCMM,
genTDCM,
genTHMM.
Examples
# generate TDCM data
tdcmdata <- genTDCM(n=100, dist="exponential", corr=0, dist.par=c(1,1),
model.cens="uniform", cens.par=1, beta=c(-3,2), lambda=10)
# coerce TDCM data to CMM data
cmmdata0 <- as.CMM(tdcmdata)
head(cmmdata0, n=20L)
# generate THMM data
thmmdata <- genTHMM( n=100, model.cens="uniform", cens.par=80, beta= c(0.09,0.08,-0.09),
covar=80, rate= c(0.05,0.04,0.05) )
# coerce THMM data to CMM data
cmmdata1 <- as.CMM(thmmdata)
head(cmmdata1, n=20L)
Coerce to an object of class TDCM
Description
Function to coerce objects of class CMM and THMM to objects of class TDCM.
Usage
as.TDCM(x)
is.TDCM(x)
Arguments
x |
Any R object. |
Value
An object with two classes one being data.frame and the other TDCM.
Author(s)
Artur Araújo, Luís Meira Machado and Susana Faria
References
Cox, D.R. (1972). Regression models and life tables. Journal of the Royal Statistical Society: Series B, 34(2), 187-202. doi: 10.1111/j.2517-6161.1972.tb00899.x
Jackson, C. (2011). Multi-State Models for Panel Data: The msm Package for R. Journal of Statistical Software, 38(8), 1–28. doi: 10.18637/jss.v038.i08
Meira-Machado, L., Cadarso-Suárez, C., De Uña- Álvarez, J., Andersen, P.K. (2009). Multi-state models for the analysis of time to event data. Statistical Methods in Medical Research, 18(2), 195-222. doi: 10.1177/0962280208092301
Meira-Machado L., Faria S. (2014). A simulation study comparing modeling approaches in an illness-death multi-state model. Communications in Statistics - Simulation and Computation, 43(5), 929-946. doi: 10.1080/03610918.2012.718841
Meira-Machado, L., Roca-Pardiñas, J. (2011). p3state.msm: Analyzing Survival Data from an Illness-Death Model. Journal of Statistical Software, 38(3), 1-18. doi: 10.18637/jss.v038.i03
Meira-Machado, L., Sestelo M. (2019). Estimation in the progressive illness-death model: a nonexhaustive review. Biometrical Journal, 61(2), 245–263. doi: 10.1002/bimj.201700200
Therneau, T.M., Grambsch, P.M. (2000). Modelling survival data: Extending the Cox Model, New York: Springer.
See Also
as.CMM,
as.THMM,
genCMM,
genTDCM,
genTHMM.
Examples
# generate CMM data
cmmdata <- genCMM( n=1000, model.cens="uniform", cens.par=2.5, beta=c(2,1,-1),
covar=10, rate=c(1,5,1,5,1,5) )
# coerce CMM data to TDCM data
tdcmdata0 <- as.TDCM(cmmdata)
head(tdcmdata0, n=20L)
# generate THMM data
thmmdata <- genTHMM( n=100, model.cens="uniform", cens.par=80, beta= c(0.09,0.08,-0.09),
covar=80, rate= c(0.05,0.04,0.05) )
# coerce THMM data to TDCM data
tdcmdata1 <- as.TDCM(thmmdata)
head(tdcmdata1, n=20L)
Coerce to an object of class THMM
Description
Function to coerce objects of class CMM and TDCM to objects of class THMM.
Usage
as.THMM(x)
is.THMM(x)
Arguments
x |
Any R object. |
Value
An object with two classes one being data.frame and the other THMM.
Author(s)
Artur Araújo, Luís Meira Machado and Susana Faria
References
Cox, D.R. (1972). Regression models and life tables. Journal of the Royal Statistical Society: Series B, 34(2), 187-202. doi: 10.1111/j.2517-6161.1972.tb00899.x
Jackson, C. (2011). Multi-State Models for Panel Data: The msm Package for R. Journal of Statistical Software, 38(8), 1–28. doi: 10.18637/jss.v038.i08
Meira-Machado, L., Cadarso-Suárez, C., De Uña- Álvarez, J., Andersen, P.K. (2009). Multi-state models for the analysis of time to event data. Statistical Methods in Medical Research, 18(2), 195-222. doi: 10.1177/0962280208092301
Meira-Machado L., Faria S. (2014). A simulation study comparing modeling approaches in an illness-death multi-state model. Communications in Statistics - Simulation and Computation, 43(5), 929-946. doi: 10.1080/03610918.2012.718841
Meira-Machado, L., Roca-Pardiñas, J. (2011). p3state.msm: Analyzing Survival Data from an Illness-Death Model. Journal of Statistical Software, 38(3), 1-18. doi: 10.18637/jss.v038.i03
Meira-Machado, L., Sestelo M. (2019). Estimation in the progressive illness-death model: a nonexhaustive review. Biometrical Journal, 61(2), 245–263. doi: 10.1002/bimj.201700200
Therneau, T.M., Grambsch, P.M. (2000). Modelling survival data: Extending the Cox Model, New York: Springer.
See Also
as.CMM,
as.TDCM,
genCMM,
genTDCM,
genTHMM.
Examples
# generate CMM data
cmmdata <- genCMM( n=1000, model.cens="uniform", cens.par=2.5, beta=c(2,1,-1),
covar=10, rate=c(1,5,1,5,1,5) )
# coerce CMM data to THMM data
thmmdata0 <- as.THMM(cmmdata)
head(thmmdata0, n=20L)
# generate TDCM data
tdcmdata <- genTDCM(n=100, dist="exponential", corr=0, dist.par=c(1,1),
model.cens="uniform", cens.par=1, beta=c(-3,2), lambda=10)
# coerce TDCM data to THMM data
thmmdata1 <- as.THMM(tdcmdata)
head(thmmdata1, n=20L)
Generation of Cox Markov data from an illness-death model
Description
Generation of Cox Markov data from an illness-death model.
Usage
genCMM(n, model.cens, cens.par, beta, covar, rate)
Arguments
n |
Sample size. |
model.cens |
Model for censorship. Possible values are "uniform" and "exponential". |
cens.par |
Parameter for the censorship distribution. Must be greater than 0. |
beta |
Vector of three regression parameters for the three transitions: (beta_12,beta_13,beta_23). |
covar |
Parameter for generating the time-fixed covariate. An uniform distribution is used. |
rate |
Vector of dimension six: (shape1, scale1, shape2, scale2, shape3, scale3). A Weibull baseline hazard function is assumed (with two parameters) for each transition (see details below). |
Details
The Weibull distribution with shape parameter \lambda and scale parameter \theta has hazard function given by:
\alpha(t)=\lambda\theta t^{\theta-1}
Value
An object with two classes, data.frame and CMM.
The data structure used for generating survival data from the Cox Markov Model (CMM) is similar as for the time-dependent Cox model (TDCM).
In this case the data structure has one more variable representing the transition (variable trans).
trans=1 denotes the transition from State 1 to State 3 (without observing the intermediate event; State 2);
trans=2 denotes the transition from State 1 to State 2; and trans=3 denotes the transition from State 2 to State 3 (absorbing).
Author(s)
Artur Araújo, Luís Meira Machado and Susana Faria
References
Meira-Machado, L., Cadarso-Suárez, C., De Uña- Álvarez, J., Andersen, P.K. (2009). Multi-state models for the analysis of time to event data. Statistical Methods in Medical Research, 18(2), 195-222. doi: 10.1177/0962280208092301
Meira-Machado L., Faria S. (2014). A simulation study comparing modeling approaches in an illness-death multi-state model. Communications in Statistics - Simulation and Computation, 43(5), 929-946. doi: 10.1080/03610918.2012.718841
Meira-Machado, L., Roca-Pardiñas, J. (2011). p3state.msm: Analyzing Survival Data from an Illness-Death Model. Journal of Statistical Software, 38(3), 1-18. doi: 10.18637/jss.v038.i03
Meira-Machado, L., Sestelo M. (2019). Estimation in the progressive illness-death model: a nonexhaustive review. Biometrical Journal, 61(2), 245–263. doi: 10.1002/bimj.201700200
Therneau, T.M., Grambsch, P.M. (2000). Modelling survival data: Extending the Cox Model, New York: Springer.
See Also
Examples
cmmdata <- genCMM( n=1000, model.cens="uniform", cens.par=2.5, beta=c(2,1,-1),
covar=10, rate=c(1,5,1,5,1,5) )
head(cmmdata, n=20L)
library(survival)
fit_13<-coxph(Surv(start,stop,event)~covariate, data=cmmdata, subset=c(trans==1))
fit_13
fit_12<-coxph(Surv(start,stop,event)~covariate, data=cmmdata, subset=c(trans==2))
fit_12
fit_23<-coxph(Surv(start,stop,event)~covariate, data=cmmdata, subset=c(trans==3))
fit_23
Generation of survival data from a Cox Proportional Hazard Model
Description
Generation of survival data from a Cox Proportional Hazard Model.
Usage
genCPHM(n, model.cens, cens.par, beta, covar)
Arguments
n |
Sample size. |
model.cens |
Model for censorship. Possible values are "uniform" and "exponential". |
cens.par |
Parameter for the censorship distribution. Must be greater than 0. |
beta |
Regression parameter for the time-fixed covariate. |
covar |
Parameter for generating the time-fixed covariate. An uniform distribution is used. |
Value
An object with two classes, data.frame and CPHM.
Author(s)
Artur Araújo, Luís Meira Machado and Susana Faria
References
Cox, D.R. (1972). Regression models and life tables. Journal of the Royal Statistical Society: Series B, 34(2), 187-202. doi: 10.1111/j.2517-6161.1972.tb00899.x
Meira-Machado L., Faria S. (2014). A simulation study comparing modeling approaches in an illness-death multi-state model. Communications in Statistics - Simulation and Computation, 43(5), 929-946. doi: 10.1080/03610918.2012.718841
Meira-Machado, L., Sestelo M. (2019). Estimation in the progressive illness-death model: a nonexhaustive review. Biometrical Journal, 61(2), 245–263. doi: 10.1002/bimj.201700200
See Also
Examples
cphmdata <- genCPHM(n=1000, model.cens="exponential", cens.par=2, beta= 2, covar=1)
head(cphmdata, n=20L)
library(survival)
fit<-coxph(Surv(time,status)~covariate,data=cphmdata)
summary(fit)
Generating data from a Cox model with time-dependent covariates
Description
Generating data from a Cox model with time-dependent covariates.
Usage
genTDCM(n, dist, corr, dist.par, model.cens, cens.par, beta, lambda)
Arguments
n |
Sample size. |
dist |
Bivariate distribution assumed for generating the two covariates (time-fixed and time-dependent). Possible bivariate distributions are "exponential" and "weibull" (see details below). |
corr |
Correlation parameter. Possible values for the bivariate exponential distribution are between -1 and 1 (0 for independency). Any value between 0 (not included) and 1 (1 for independency) is accepted for the bivariate weibull distribution. |
dist.par |
Vector of parameters for the allowed distributions. Two (scale) parameters for the bivariate exponential distribution and four (2 shape parameters and 2 scale parameters) for the bivariate weibull distribution: (shape1, scale1, shape2, scale2). See details below. |
model.cens |
Model for censorship. Possible values are "uniform" and "exponential". |
cens.par |
Parameter for the censorship distribution. Must be greater than 0. |
beta |
Vector of two regression parameters for the two covariates. |
lambda |
Parameter for an exponential distribution. An exponential distribution is assumed for the baseline hazard function. |
Details
The bivariate exponential distribution, also known as Farlie-Gumbel-Morgenstern distribution is given by
F(x,y)=F_1(x)F_2(y)[1+\alpha(1-F_1(x))(1-F_2(y))]
for x\ge0 and y\ge0. Where the marginal distribution functions F_1 and F_2 are exponential with scale parameters \theta_1 and \theta_2 and correlation parameter \alpha, -1 \le \alpha \le 1.
The bivariate Weibull distribution with two-parameter marginal distributions. It's survival function is given by
S(x,y)=P(X>x,Y>y)=e^{-[(\frac{x}{\theta_1})^\frac{\beta_1}{\delta}+(\frac{y}{\theta_2})^\frac{\beta_2}{\delta}]^\delta}
Where 0 < \delta \le 1 and each marginal distribution has shape parameter \beta_i and a scale parameter \theta_i, i = 1, 2.
Value
An object with two classes, data.frame and TDCM.
To accommodate time-dependent effects, we used a counting process data-structure, introduced by Andersen and Gill (1982).
In this data-structure, apart the time-fixed covariates (named covariate), an individual's survival data is expressed by three variables:
start, stop and event. Individuals without change in the time-dependent covariate (named tdcov) are represented by only one line of data,
whereas patients with a change in the time-dependent covariate must be represented by two lines.
For these patients, the first line represents the time period until the change in the time-dependent covariate;
the second line represents the time period that passes from that change to the end of the follow-up.
For each line of data, variables start and stop mark the time interval (start, stop) for the data,
while event is an indicator variable taking on value 1 if there was a death at time stop, and 0 otherwise.
More details about this data-structure can be found in papers by (Meira-Machado et al., 2009).
Author(s)
Artur Araújo, Luís Meira Machado and Susana Faria
References
Anderson, P.K., Gill, R.D. (1982). Cox's regression model for counting processes: a large sample study. Annals of Statistics, 10(4), 1100-1120. doi: 10.1214/aos/1176345976
Cox, D.R. (1972). Regression models and life tables. Journal of the Royal Statistical Society: Series B, 34(2), 187-202. doi: 10.1111/j.2517-6161.1972.tb00899.x
Johnson, M. E. (1987). Multivariate Statistical Simulation, John Wiley and Sons.
Johnson, N., Kotz, S. (1972). Distribution in statistics: continuous multivariate distributions, John Wiley and Sons.
Lu J., Bhattacharya G. (1990). Some new constructions of bivariate weibull models. Annals of Institute of Statistical Mathematics, 42(3), 543-559. doi: 10.1007/BF00049307
Meira-Machado, L., Cadarso-Suárez, C., De Uña- Álvarez, J., Andersen, P.K. (2009). Multi-state models for the analysis of time to event data. Statistical Methods in Medical Research, 18(2), 195-222. doi: 10.1177/0962280208092301
Meira-Machado L., Faria S. (2014). A simulation study comparing modeling approaches in an illness-death multi-state model. Communications in Statistics - Simulation and Computation, 43(5), 929-946. doi: 10.1080/03610918.2012.718841
Meira-Machado, L., Sestelo M. (2019). Estimation in the progressive illness-death model: a nonexhaustive review. Biometrical Journal, 61(2), 245–263. doi: 10.1002/bimj.201700200
Therneau, T.M., Grambsch, P.M. (2000). Modelling survival data: Extending the Cox Model, New York: Springer.
See Also
Examples
tdcmdata <- genTDCM(n=1000, dist="weibull", corr=0.8, dist.par=c(2,3,2,3),
model.cens="uniform", cens.par=2.5, beta=c(-3.3,4), lambda=1)
head(tdcmdata, n=20L)
library(survival)
fit1<-coxph(Surv(start,stop,event)~tdcov+covariate,data=tdcmdata)
summary(fit1)
tdcmdata2 <- genTDCM(n=1000, dist="exponential", corr=0, dist.par=c(1,1),
model.cens="uniform", cens.par=1, beta=c(-3,2), lambda=0.5)
head(tdcmdata2, n=20L)
fit2<-coxph(Surv(start,stop,event)~tdcov+covariate,data=tdcmdata2)
summary(fit2)
Generation of survival data from a time-homogeneous Markov model
Description
Generation of survival data from a time-homogeneous Markov model.
Usage
genTHMM(n, model.cens, cens.par, beta, covar, rate)
Arguments
n |
Sample size. |
model.cens |
Model for censorship. Possible values are "uniform" and "exponential". |
cens.par |
Parameter for the censorship distribution. Must be greater than 0. |
beta |
Vector of three regression parameters for the three transitions: (beta_12,beta_13,beta_23). |
covar |
Parameter for generating the time-fixed covariate. An uniform distribution is used. |
rate |
Vector of dimension three. We assume an exponential baseline hazard function with constant hazard rate for each transition. |
Value
An object with two classes, data.frame and THMM.
For generating survival data from the THMM model, the counting process data structure must contain the following variables:
id, time, state, covariate. Each patient is identified by id.
The variable time represents time for each interval of follow-up while variable state denotes the state of the individual.
Variable covariate is the (time-fixed) covariate to be studied in the regression model.
Individuals without change in the time dependent covariate are represented by two lines of data,
whereas patients with a change in the time-dependent covariate must be represented by three lines.
Author(s)
Artur Araújo, Luís Meira Machado and Susana Faria
References
Jackson, C. (2011). Multi-State Models for Panel Data: The msm Package for R. Journal of Statistical Software, 38(8), 1–28. doi: 10.18637/jss.v038.i08
Meira-Machado, L., Cadarso-Suárez, C., De Uña- Álvarez, J., Andersen, P.K. (2009). Multi-state models for the analysis of time to event data. Statistical Methods in Medical Research, 18(2), 195-222. doi: 10.1177/0962280208092301
Meira-Machado L., Faria S. (2014). A simulation study comparing modeling approaches in an illness-death multi-state model. Communications in Statistics - Simulation and Computation, 43(5), 929-946. doi: 10.1080/03610918.2012.718841
Meira-Machado, L., Sestelo M. (2019). Estimation in the progressive illness-death model: a nonexhaustive review. Biometrical Journal, 61(2), 245–263. doi: 10.1002/bimj.201700200
Therneau, T.M., Grambsch, P.M. (2000). Modelling survival data: Extending the Cox Model, New York: Springer.
See Also
Examples
thmmdata <- genTHMM( n=100, model.cens="uniform", cens.par=80, beta= c(0.09,0.08,-0.09),
covar=80, rate= c(0.05,0.04,0.05) )
head(thmmdata, n=20L)