Package ‘ghclass’

May 6, 2025
Title Tools for Managing Classes on GitHub
Version 0.3.1

Description Interface for the GitHub API that enables efficient
management of courses on GitHub. It has a functionality for
managing organizations, teams, repositories, and users on GitHub
and helps automate most of the tedious and repetitive tasks
around creating and distributing assignments.

License GPL-3
URL https://github.com/rundel/ghclass

BugReports https://github.com/rundel/ghclass/issues
Depends R (>=3.4.0)

Imports baseb4enc, fs, gh, glue, httr, lubridate, purrr, rlang,
tibble, whisker, withr, dplyr, cli (>= 3.0.0), lifecycle

Suggests here, knitr, rmarkdown, sodium, styler, usethis, gert, readr,
gitcreds

Encoding UTF-8
RoxygenNote 7.3.2
NeedsCompilation no

Author Colin Rundel [aut, cre],
Mine Cetinkaya-Rundel [aut],
Therese Anders [ctb]

Maintainer Colin Rundel <rundel@gmail.com>
Repository CRAN
Date/Publication 2025-05-06 16:20:02 UTC

Contents

ACLON . . . vt v o e e s
action_badge
branch e

https://github.com/rundel/ghclass
https://github.com/rundel/ghclass/issues

2 action
github_api_limit. e 6
github_orgs e 7
github_rate_limit 8
github_whoami L 9
github_with_pat 10
ISSUE . . o o o o e e e e 11
local_repo e 13
local_repo_rename e e e e e 15
org_create_assignment e e e e e e e e e e 15
org_details. L e 16
Org_MEMDETIS v v it e e e e e e e e e e e e e e e e e 18
OFZ PEITIL . . o v v vttt ettt e e e e e e e e e e 20
PAZES . o o e e e 21
) 22
TEPO_COTE . v v v v e e e e e e e et e e e e e e e e e e e e e 23
repo_details 26
repo_file L e e e 28
repo_notification L e 31
TEPO_Style e 32
TEPO_USET . v v v v v vt e 33
TEAIM i e e e e e e e 35
team_MEMDbDEIS e e e e e e e 36
USET o . v v v e 37

Index 39

action Retrieve information about GitHub Actions workflows and their runs.

Description

* action_workflows() - retrieve details on repo workflows.
e action_runs() - retrieve details on repo workflow runs.
e action_status() - DEPRECATED - retrieve details on most recent workflow runs.
e action_runtime() - retrieves runtime durations for workflow runs.
e action_artifacts() - retrieve details on available workflow artifacts.
e action_artifact_download() - downloads artifact(s) into a local directory.
e action_artifact_delete() - deletes artifact(s).
Usage

action_artifacts(repo, keep_expired = FALSE, which = c("latest”, "all"))

action_artifact_delete(repo, ids)

action_artifact_download(

action 3

repo,
dir,

ids = action_artifacts(repo),
keep_zip = FALSE,

file_pat = "",
overwrite = FALSE

)

action_runs(
repo,
branch = NULL,
event = NULL,
status = NULL,
created = NULL,
limit =1

)

action_status(
repo,
branch = NULL,
event = NULL,
status = NULL,
created = NULL,
limit =1

)

action_runtime(
repo,
branch = NULL,
event = NULL,
status = NULL,
created = NULL,
limit =1

)

action_workflows(repo, full = FALSE)

Arguments

repo Character. Address of repository in owner/name format.
keep_expired Logical. Should expired artifacts be returned.

which Character. Either "latest” to return only the most recent of each artifact or
"all" to return all artifacts.

ids Integer or data frame. Artifact ids to be downloaded or deleted. If a data frame
is passed then the id column will be used.

dir Character. Path to the directory where artifacts will be saved.

keep_zip Logical. Should the artifact zips be saved (TRUE) or their contents (FALSE).

4 action_badge

file_pat Character. If extracting zip with multiple files, regexp pattern to match filename.

overwrite Logical. Should existing files be overwritten.

branch Character. Filter runs associated with a particular branch.

event Character. Filter runs for triggered by a specific event. See here for possible
event names.

status Character. Filter runs for a particular status or conclusion (e.g. completed or
success).

created Character. Filter runs for a given creation date. See here for date query syntax.

limit Numeric. Maximum number of workflow runs to return. Default 1. Note results

are chronologically ordered, so 1imit = 1 will return the most recent action run
for a repository.

full Logical. Should all workflow columns be returned. Default FALSE.

Value

action_workflows(), action_runs(), action_runtime(), and action_artifacts all return
tibbles containing information on requested repos’ available workflows, recent workflow runs,
workflow runs runtimes, and generated artifacts respectively.

action_artifact_download() returns a character vector containing the paths of all downloaded
fules

action_artifact_delete() returns an invisible data frame containing repository names and ids
of the deleted artifacts.

Examples

Not run:
action_workflows("rundel/ghclass”)

action_runs("rundel/ghclass")
action_runtime(c("rundel/ghclass"”, "rundel/parsermd”))
action_artifacts(c("rundel/ghclass”, "rundel/parsermd”))

End(Not run)

action_badge Add or remove GitHub Actions badges from a repository

Description

* action_add_badge() - Add a GitHub Actions badge to a file.

* action_remove_badge() - Remove one or more GitHub Action badges from a file.

https://docs.github.com/en/actions/automating-your-workflow-with-github-actions/events-that-trigger-workflows
https://docs.github.com/en/search-github/getting-started-with-searching-on-github/understanding-the-search-syntax#query-for-dates

branch

Usage

action_add_badge(

repo,
workflow =
where =

NULL,

nA on
L

line_padding = "\n\n\n",
file = "README.md"

)
action_remove_badge(repo, workflow_pat = ".x?" file = "README.md")
Arguments
repo Character. Address of repository in owner/name format.
workflow Character. Name of the workflow.
where Character. Regex pattern indicating where to insert the badge, defaults to the

line_padding
file
workflow_pat

Value

beginning of the target file.
Character. What text should be added after the badge.
Character. Target file to be modified, defaults to README . md.#

Character. Name of the workflow to be removed, or a regex pattern that matches
the workflow name.

Both action_add_badge() and action_remove_badge () invisibly return a list containing the re-
sults of the relevant GitHub API call.

branch

Create and delete branches in a repository

Description

* branch_create() - creates a new branch from an existing GitHub repo.

* branch_delete() - deletes a branch from an existing GitHub repo.

* branch_remove() - previous name of branch_delete, deprecated.

Usage

branch_create(repo, branch, new_branch)

branch_delete(repo, branch)

branch_remove(repo, branch)

6 github_api_limit

Arguments
repo GitHub repository address in owner/repo format.
branch Repository branch to use.
new_branch Name of branch to create.

Value

branch_create()and branch_remove () invisibly return a list containing the results of the relevant
GitHub API call.

See Also

repo_branches

Examples

Not run:
repo_create("”ghclass-test”, "test_branch”, auto_init=TRUE)

branch_create("ghclass-test/test_branch”, branch = "main"”, new_branch = "test")
repo_branches("ghclass-test/test_branch"”)

branch_delete("ghclass-test/test_branch”, branch="test")
repo_branches("ghclass-test/test_branch"”)

repo_delete("ghclass-test/test_branch”, prompt = FALSE)

End(Not run)

github_api_limit Tools for limiting gh’s GitHub api requests.

Description
e github_get_api_limit() - returns the current limit on results returned by gh.

e github_set_api_limit() - sets a limit on results returned by gh.

Usage
github_get_api_limit()
github_set_api_limit(limit = 10000L)

Arguments

limit The maximum number of records to return from an API request.

github_orgs 7

Details

This value is stored in the "ghclass.api.limit" option globally.

Value

github_get_api_limit() returns a single integer value.

github_set_api_limit() invisibily returns the value of the 1imit argument.

Examples

github_get_api_limit()
github_set_api_limit(500)

github_get_api_limit()

github_orgs Collect details on the authenticated user’s GitHub organization mem-
berships (based on the current PAT).

Description
Collect details on the authenticated user’s GitHub organization memberships (based on the current
PAT).

Usage

github_orgs(quiet = FALSE)

Arguments

quiet Logical. Should status messages be shown.

Value

Returns a tibble with organization details.

Examples

Not run:
github_orgs()

End(Not run)

8 github_rate_limit

github_rate_limit Tools for handling GitHub personal access tokens (PAT)

Description

* github_get_token - returns the user’s GitHub personal access token (PAT).

» github_set_token - defines the user’s GitHub PAT by setting the GITHUB_PAT environmental
variable. This value will persist until the session ends or gihub_reset_token() is called.

e github_reset_token - removes the value stored in the GITHUB_PAT environmental variable.

e github_test_token - checks if a PAT is valid by attempting to authenticate with the GitHub
APL

* github_token_scopes - returns a vector of scopes granted to the token.

Usage

github_rate_limit()

github_graphql_rate_limit()

github_get_token()

github_set_token(token)

github_reset_token()

github_test_token(token = github_get_token())

github_token_scopes(token = github_get_token())

Arguments

token Character. Either the literal token, or the path to a file containing the token.

Details

This package looks for the personal access token (PAT) in the following places (in order):

¢ Value of GITHUB_PAT environmental variable.

* Any GitHub PAT token(s) stored with gitcreds via gitcreds_set().

For additional details on creating a GitHub PAT see the usethis vignette on Managing Git(Hub)
Credentials. For those who do not wish to read the entire article, the quick start method is to use:

e usethis::create_github_token() - to create the token and then,

* gitcreds::gitcreds_set() - to securely cache the token.

https://usethis.r-lib.org/articles/articles/git-credentials.html
https://usethis.r-lib.org/articles/articles/git-credentials.html

github_whoami 9

Value

github_get_token() returns the current PAT as a character string with the gh_pat class. See
gh: :gh_token() for additional details.

github_set_token() and github_reset_token() return the result of Sys. setenv() and Sys.unsetenv()
respectively.

github_test_token() invisibly returns a logical value, TRUE if the test passes, FALSE if not.

github_token_scopes() returns a character vector of granted scopes.

Examples

Not run:
github_test_token()

github_token_scopes()

(pat = github_get_token())
github_set_token("ghp_BadTokenBadTokenBadTokenBadTokenBadToken")
github_get_token()

github_test_token()

github_set_token(pat)

End(Not run)

github_whoami Returns the login of the authenticated user (based on the current PAT).

Description

Returns the login of the authenticated user (based on the current PAT).

Usage

github_whoami(quiet = FALSE)

Arguments

quiet Logical. Should status messages be shown.

Value

Character value containing user login.

10 github_with_pat

Examples

Not run:
github_whoami ()

End(Not run)

github_with_pat withr-like functions for temporary personal access token

Description

Temporarily change the GITHUB_PAT environmental variable for GitHub authentication. Based on
the withr interface.

Usage

with_pat(new, code)

local_pat(new, .local_envir = parent.frame())

Arguments
new Temporary GitHub access token
code Code to execute with the temporary token

.local_envir The environment to use for scoping.

Details

if new = NA is used the GITHUB_PAT environment variable will be unset.

Value

The results of the evaluation of the code argument.

Examples

Not run:
with_pat("1234", print(github_get_token()))

End(Not run)

issue

11

issue

GitHub Issue related tools

Description

e issue_create creates a new issue.

* issue_close closes an existing issue.

* issue_edit edits the properties of an existing issue.

Usage

issue_close(repo, number)

issue_create(

repo,
title,
body,
labels = character(),
assignees = character(),
delay = @
)
issue_edit(
repo,
number,
title = NULL,
body = NULL,
state = NULL,

milestone = NULL,
labels = list(),

assignees

Arguments
repo
number
title
body
labels
assignees

delay

state

list()

Character. Address of one or more repositories in owner/name format.
Integer. GitHub issue number.

Character. Title of the issue.

Character. Content of the issue.

Character. Vector of the labels to associate with this issue

Character. Vector of logins for users assigned to the issue.

Numeric. Delay between each API request. Issue creation has a secondary rate
limit (~ 20/min).

Character. State of the issue. Either "open" or "closed".

12 issue

milestone Character. The number of the milestone to associate this issue with. Only users
with push access can set the milestone for issues. The milestone is silently
dropped otherwise.

Value

All functions invisibly return a list containing the results of the relevant GitHub API call.

See Also

repo_issues

Examples

Not run:
repo_create("ghclass-test”, "test_issue”)

issue_create(
"ghclass-test/test_issue”,
title = "Issue 1",
body = "This is an issue”

)

issue_create(
"ghclass-test/test_issue”,
title = "Issue 2", body = "This is also issue”,
label = "Important”

)

issue_create(
"ghclass-test/test_issue”,

title = "Issue 3", body = "This is also issue”,
label = c("Important”, "Super Important"”),
assignees = "rundel”

)

issue_close("ghclass-test/test_issue”, 1)

issue_edit(
"ghclass-test/test_issue”, 2,
title = "New issue 2 title!”,
body = "Replacement body text”
)

ghclass: :repo_issues("ghclass-test/test_issue”)
repo_delete("ghclass-test/test_issue”, prompt=FALSE)

End(Not run)

local_repo 13

local_repo Functions for managing local git repositories

Description

* local_repo_clone() - Clones a GitHub repository to a local directory

* local_repo_add() - Equivalent to git add - stages a file in a local repository.

* local_repo_commit() - Equivalent to git commit - commits staged files in a local reposi-
tory.

* local_repo_push() - Equivalent to git push - push a local repository.

e local_repo_pull() - Equivalent to git pull - pull a local repository.

* local_repo_branch() - Equivalent to git branch - create a branch in a local repository.

* local_repo_log() - Equivalent to git log - returns a data frame for git log entries.

Usage

local_repo_add(repo_dir, files = ".")
local_repo_branch(repo_dir, branch)
local_repo_clone(

repo,

local_path = ".",

branch = NULL,

mirror = FALSE,
verbose = FALSE

)

local_repo_commit(repo_dir, message)
local_repo_log(repo_dir, max = 100)
local_repo_pull(repo_dir, verbose = FALSE)

local_repo_push(

repo_dir,
remote = "origin",
branch = NULL,

force = FALSE,
prompt = TRUE,
mirror = FALSE,
verbose = FALSE

local_repo

Arguments
repo_dir Vector of repo directories or a single directory containing one or more repos.
files Files to be staged
branch Repository branch to use.
repo GitHub repo address with the form owner/name.
local_path Local directory to store cloned repos.
mirror Equivalent to --mirror
verbose Display verbose output.
message Commit message
max Maximum number of log entries to retrieve per repo.
remote Repository remote to use.
force Force push?
prompt Prompt before force push?
Details

All local_repo_=* functions depend on the gert library being installed.

Value

local_repo_clone() invisibly returns a character vector of paths for the local repo directories.
local_repo_log() returns a tibble containing repository details.

All other functions invisibly return a list containing the results of the relevant call to gert.

Examples

Not run:
repo = repo_create("ghclass-test”, "local_repo_test")

dir = file.path(tempdir(), "repos")
local_repo = local_repo_clone(repo, dir)

local_repo_log(dir)

Make a local change and push
writeLines("Hello World”, file.path(local_repo, "hello.txt"))

local_repo_add(local_repo, "hello.txt")
local_repo_commit(local_repo, "Added hello world")
local_repo_push(local_repo)

repo_commits(repo)

Pulling remote changes

local_repo_rename 15

n

repo_modify_file(repo, "hello.txt", pattern = ".x", content = "!!!" method = "after")
local_repo_pull(local_repo)

local_repo_log(dir)

repo_delete("ghclass-test/local_repo_test”, prompt=FALSE)

End(Not run)

local_repo_rename Rename local directories using a vector of patterns and replacements.

Description
This function is meant to help with renaming local student repos to include something more useful
like Last, First name or a unique identifier for the purposes of ordering repository folders.
Usage

local_repo_rename(repo_dir, pattern, replacement)

Arguments
repo_dir Character. Vector of repo directories or a single directory containing one or
more repos.
pattern Character. One or more regexp patterns to match to directory names.
replacement Character. One or more text strings containing the replacement value for matched
patterns.
Value

Returns a character vector of the new repo directory paths, or NA if the rename failed.

org_create_assignment Create a team or individual assignment

Description
This is a higher level function that combines the following steps:

* Create repos
* Create teams and invite students if necessary
* Add teams or individuals to the repositories

» Mirror a template repository to assignment repositories

16

org_details

Usage
org_create_assignment(
org,
repo,
user,
team = NULL,

source_repo = NULL,
private = TRUE,
add_badges = FALSE

)
Arguments
org Character. Name of the GitHub organization.
repo Character. Name of the repo(s) for the assignment.
user Character. GitHub username(s).
team Character. Team names, if not provided an individual assignment will be cre-
ated.
source_repo Character. Address of the repository to use as a template for all created repos.
private Logical. Should the created repositories be private.
add_badges Logical. Should GitHub action badges be added to the README.
Value

An invisible list containing the results of each step.

org_details Obtain details on an organization’s repos and teams

Description

org_exists() - returns TRUE if the organization(s) exist on GitHub and FALSE otherwise.
org_teams() - returns a (filtered) vector of organization teams.

org_team_details() - returns a data frame of all organization teams containing identification
and permission details.

org_repos() - returns a (filtered) vector of organization repositories.

org_repo_search() - search for repositories within an organization (preferred for large or-
ganizations).

org_repo_stats() - returns a tibble of repositories belonging to a GitHub organization along
with some basic statistics about those repositories.

org_details

Usage

org_exists(org)

17

org_repo_search(org, name, extra = "", full_repo = TRUE)

org_repo_stats(
org,
branch = NULL
filter = "",
filter_type =
inc_commits =

’

"in:name",
TRUE,

inc_issues = TRUE,
inc_prs = TRUE

)

org_repos(
org,
filter = NULL

’

exclude = FALSE,

full_repo = TRUE,

sort = c¢("full_name”, "created”, "updated”, "pushed"),

direction = c("asc"”, "desc"),

type = c("all”, "public”, "private”, "forks"”, "sources", "member”, "internal")

)

org_team_details(org)

org_teams(org, filter = NULL, exclude = FALSE, team_type = c("name”, "slug"))

Arguments

org
name

extra

full_repo

branch

filter
filter_type

inc_commits
inc_issues

inc_prs

Character. Name of the GitHub organization(s).
Character. Full or partial repo name to search for within the org

Character. Any additional search qualifiers, see Searching for repositories for
details.

Logical. Should the full repository address be returned (e.g. owner/repo instead
of just repo).

Character. The branch to use for counting commits, if NULL then each repo’s
default branch is used.

Character. Regular expression pattern for matching (or excluding) results

Character. One or more GitHub search in qualifiers. See documentation for
more details.

Logical. Include commit statistics (branch, commits, last_update)
Logical. Include issue statistics (open_issues, closed_issues)

Logical. Include pull request statistics (open_prs, merged_prs, closed_prs)

https://docs.github.com/en/free-pro-team@latest/github/searching-for-information-on-github/searching-for-repositories
https://help.github.com/en/articles/searching-for-repositories

18 org_members

exclude Logical. Should entries matching the regular expression be excluded or in-
cluded.
sort Character. Sorting criteria to use, can be one of "created", "updated”, "pushed",

or "full_name".
direction Character. Sorting order to use.

type Character. Specifies the type of repositories you want, can be one of "all", "pub-

sanon non

lic", "private", "forks", "sources", "member", or "internal".

team_type Character. Either "slug" if the team names are slugs or "name" if full team names
are provided.
Value

org_exists() returns a logical vector.

org_teams(), org_repos, and org_repo_search() return a character vector of team or repo
names.

org_team_details() and org_repo_stats() return tibbles.

Examples
Not run:
Org repos and teams
org_repos("ghclass-test"”)
org_repos("ghclass-test”, filter = "hwi-")
org_teams("ghclass-test"”)

org_team_details("ghclass-test"”)

End(Not run)

org_members Tools for managing organization membership

Description

* org_invite() - invites user(s) to a GitHub organization.

* org_remove() - remove user(s) from an organization (and all teams within that organization).
* org_members() - returns a (filtered) vector of organization members.

* org_pending() - returns a (filtered) vector of pending organization members.

* org_admins() - returns a vector of repository administrators. In the case of a non-organization
owner (e.g. a user account) returns the owner’s login.

org_members 19

Usage

org_admins(org)

org_invite(org, user)

org_members(org, filter = NULL, exclude = FALSE, include_admins = TRUE)

org_pending(org, filter = NULL, exclude = FALSE)
org_remove(org, user, prompt = TRUE)
Arguments
org Character. Name of the GitHub organization(s).
user Character. GitHub username(s).
filter Character. Regular expression pattern for matching (or excluding) results
exclude Logical. Should entries matching the regular expression be excluded or in-
cluded.
include_admins Logical. Should admin users be included in the results.
prompt Logical. Prompt before removing member from organization.
Value

org_members(), org_pending(), and org_admins all return a character vector of GitHub account
names.

org_invite() and org_remove () invisibly return a list containing the results of the relevant GitHub
API calls.

Examples
Not run:
Org Details
org_admins("ghclass-test"”)
org_admins("rundel”) # User, not an organization
Org Membership - Invite, Status, and Remove
students = c("ghclass-anya”, "ghclass-bruno”, "ghclass-celine”,
"ghclass-diego”, "ghclass-elijah”,"ghclass-francis"”)
org_invite("ghclass-test”, students)
org_members("ghclass-test"”)

org_pending("ghclass-test")

org_remove("ghclass-test”, students, prompt = FALSE)

20 org_perm

org_pending("ghclass-test")

End(Not run)

org_perm Organization permissions

Description

* org_sitrep() - Provides a situation report on a GitHub organization.
* org_set_repo_permission() - Change the default permission level for org repositories.

org_workflow_permissions() - Obtain the current default workflow permission value for the
organization.

org_set_workflow_permissions() - Change the current default workflow permission value for
the organization.
Usage

org_sitrep(org)
org_set_repo_permission(
org,

repo_permission = c("none"”, "read"”, "write”, "admin")

)

org_workflow_permissions(org)

org_set_workflow_permissions(org, workflow_permission = c("read”, "write"))
Arguments
org Character. Name of the GitHub organization(s).

repo_permission
Default permission level members have for organization repositories:
¢ read - can pull, but not push to or administer this repository.
* write - can pull and push, but not administer this repository.
* admin - can pull, push, and administer this repository.
* none - no permissions granted by default.

workflow_permission
The default workflow permissions granted to the GITHUB_TOKEN when run-
ning workflows in the organization. Accepted values:"read"” or "write”.

pages 21

Value

org_sitep() invisibly returns the org argument.
org_set_repo_permission() invisibly return a the result of the relevant GitHub API call.
org_workflow_permissions() returns a character vector with value of either "read” or "write".

org_set_workflow_permissions() invisibly return a the result of the relevant GitHub API call.

Examples

Not run:
org_sitrep(”ghclass-test")

org_set_repo_permission(“ghclass-test”, "read”)
org_workflow_permissions("”ghclass-test")
org_set_workflow_permissions(”ghclass-test”, "write")

org_sitrep("ghclass-test”)

Cleanup
org_set_repo_permission(“ghclass-test”, "none")
org_set_workflow_permissions(”ghclass-test”, "read")

End(Not run)

pages Retrieve information about GitHub Pages sites and builds.

Description

* pages_enabled() - returns TRUE if a Pages site exists for the repo.
* pages_status() - returns more detailed information about a repo’s Pages site.
* pages_create() - creates a Pages site for the provided repos.

* pages_delete() - deletes the Pages site for the provided repos.

Usage
pages_enabled(repo)

pages_status(repo)

pages_create(
repo,
build_type = c("legacy”, "workflow"),
branch = "main",

22 pr

path = "/docs”
)

pages_delete(repo)

Arguments
repo Character. Address of repositories in owner/name format.
build_type Character. Either "workflow” or "legacy" - the former uses GitHub actions to
build and publish the site (requires a workflow file to achieve this).
branch Character. Repository branch to publish.
path Character. Repository path to publish.
Value

pages_enabled() returns a named logical vector - TRUE if a Pages site exists, FALSE otherwise.
pages_status() returns a tibble containing details on Pages sites.

pages_create() & pages_delete() return an invisible list containing the API responses.

Examples

Not run:
pages_enabled("rundel/ghclass”)

pages_status(”"rundel/ghclass")

End(Not run)

pr GitHub Pull Request related tools

Description

* pr_create() - create a pull request GitHub from the base branch to the head branch.

Usage
pr_create(repo, title, head, base, body = "", draft = FALSE)
Arguments
repo Character. Address of one or more repositories in "owner/name" format.
title Character. Title of the pull request.
head Character. The name of the branch where your changes are implemented. For

cross-repository pull requests in the same network, namespace head with a user
like this: username:branch.

repo_core 23

base Character. The name of the branch you want the changes pulled into. This
should be an existing branch on the current repository. You cannot submit a pull
request to one repository that requests a merge to a base of another repository.

body Character. The text contents of the pull request.

draft Logical. Should the pull request be created as a draft pull request (these cannot
be merged until allowed by the author).

Value

pr_create() invisibly return a list containing the results of the relevant GitHub API calls.

See Also

repo_issues

Examples

Not run:
repo_create("ghclass-test”, "test_pr"”, auto_init=TRUE)

branch_create("ghclass-test/test_pr"”, branch = "main”, new_branch = "test")

repo_modify_file("ghclass-test/test_pr", "README.md", pattern = "test_pr”,
content = "Hello"”, method = "after"”, branch = "test")

pr_create("ghclass-test/test_pr"”, title = "merge"”, head = "test”, base = "main")
repo_delete("ghclass-test/test_pr", prompt = FALSE)

End(Not run)

repo_core GitHub Repository tools - core functions

Description

* repo_create() - create a GitHub repository.
* repo_delete() - delete a GitHub repository.

* repo_rename() - rename a repository, note that renamed repositories retain their unique iden-
tifier and can still be accessed via their old names due to GitHub re-directing.

* repo_exists() - returns TRUE if the GitHub repository exists. It will also print a message if
a repository has been renamed, unless quiet = TRUE.

* repo_mirror() - mirror the content of a repository to another repository, the target repo must
already exist.

* repo_mirror_template() - mirror the content of a source template repository to a new repos-
itory, the target repo must not already exist.

* repo_is_template() - returns TRUE if a repository is a template repo.
* repo_set_template() - change the template status of a repository.

Usage

repo_create(
org,
name,
prefix = "",
suffix = "",
private = TRUE,
auto_init = FALSE,
gitignore_template = "R"
)

repo_delete(repo, prompt = TRUE)
repo_exists(repo, strict = FALSE, quiet = FALSE)
repo_is_template(repo)
repo_mirror(

source_repo,

target_repo,

overwrite = FALSE,

verbose = FALSE,

warn = TRUE
)

repo_mirror_template(source_repo, target_repo, private = TRUE)
repo_rename(repo, new_repo)

repo_set_template(repo, status = TRUE)

Arguments
org Character. GitHub organization that will own the repository
name Character. Repository name
prefix Character. Common repository name prefix
suffix Character. Common repository name suffix
private Logical. Should the new repository be private or public.
auto_init Logical. Should the repository be initialized with a README . md.

gitignore_template
Character. . gitignore language template to use.

repo_core

repo Character. Address of repository in owner/repo format.
prompt Logical. Should the user be prompted before deleting repositories. Default
true.

strict Logical. Should the old name of a renamed repositories be allowed.

repo_core 25

quiet Logical. Should details on renamed repositories be printed.
source_repo Character. Address of template repository in owner/name format.
target_repo Character. One or more repository addresses in owner/name format. Note when
using template repos these new repositories must not exist.
overwrite Logical. Should the target repositories be overwritten.
verbose Logical. Display verbose output.
warn Logical. Warn the user about the function being deprecated.
new_repo Character. New name of repository without the owner.
status Logical. Should the repository be set as a template repository
Value

repo_create() returns a character vector of created repos (in owner/repo format)
repo_exists() and repo_is_template() both return a logical vector.

All other functions invisibly return a list containing the results of the relevant GitHub API calls.

Examples

Not run:
repo_create(”ghclass-test”, "repo_test")

repo_exists("ghclass-test/repo_test")
repo_rename("ghclass-test/repo_test”, "repo_test_new")
The new repo exists
repo_exists("ghclass-test/repo_test_new")

The old repo forwards to the new repo

repo_exists("ghclass-test/repo_test")

Check for the redirect by setting “strict = TRUE®
repo_exists(”ghclass-test/repo_test”, strict = TRUE)

The prefered way of copying a repo is by making the source a template
repo_is_template("ghclass-test/repo_test_new")
repo_set_template("ghclass-test/repo_test_new")
repo_is_template(”ghclass-test/repo_test_new")

Given a template repo we can then directly copy the repo on GitHub
repo_mirror_template("ghclass-test/repo_test_new”, "ghclass-test/repo_test_copy")

repo_exists("ghclass-test/repo_test_copy")

26

Cleanup
repo_delete(

c("ghclass-test/repo_test_new",
"ghclass-test/repo_test_copy"),

prompt = FALSE
)

End(Not run)

repo_details

repo_details

GitHub Repository tools - repository details

Description

* repo_clone_url() - Returns the url, for cloning, a GitHub repo (either ssh or https)

¢ repo_branches() - Returns a (filtered) vector of branch names.
* repo_commits() - Returns a tibble of commits to a GitHub repository.

* repo_issues() - Returns a tibble of issues for a GitHub repository.

* repo_n_commits() - Returns a tibble of the number of commits in a GitHub repository (and

branch).

* repo_prs() - Returns a tibble of pull requests for a GitHub repository.
* repo_pushes() - Returns a tibble of push activity to a GitHub repository.

Usage

repo_branches(repo)

repo_clone_url(repo, type =

repo_commits(
repo,

branch = NULL,
sha = branch,

path = NULL,

author = NULL,
since = NULL,
until = NULL,

quiet = FALSE

)

repo_issues(
repo,

c("https”, "ssh"))

repo_details 27

state = c("open”, "closed”, "all"),
assignee = NULL,

creator = NULL,

mentioned = NULL,

labels = NULL,

sort = c("created”, "updated”, "comments"),
direction = c("desc”, "asc"),
since = NULL

repo_n_commits(repo, quiet = FALSE)
repo_prs(repo, state = c("open”, "closed”, "all"))

repo_pushes(
repo,
branch = NULL,
author = NULL,

time_period = c("all time", "day", "week"”, "month", "quarter”, "year"),
quiet = FALSE
)
Arguments

repo Character. Address of repository in owner/name format.

type Character. Clone url type, either "https" or "ssh".

branch Character. Branch to list commits from.

sha Character. SHA to start listing commits from.

path Character. Only commits containing this file path will be returned.

author Character. GitHub login or email address by which to filter commit author.

since Character. Only issues updated at or after this time are returned.

until Character. Only commits before this date will be returned, expects YYYY-MM-DDTHH:MM: SSZ
format.

quiet Logical. Should an error message be printed if a repo does not exist.

state Character. Pull request state.

assignee Character. Return issues assigned to a particular username. Pass in "none" for
issues with no assigned user, and "*" for issues assigned to any user.

creator Character. Return issues created the by the given username.

mentioned Character. Return issues that mentioned the given username.

labels Character. Return issues labeled with one or more of of the given label names.

sort Character. What to sort results by. Can be either "created", "updated"”, or "com-
ments".

direction Character. The direction of the sort. Can be either "asc" or "desc".

time_period Character. The time period to filter by. Options are "all time", "day", "week",

non

"month", "quarter", "year".

28

Value

repo_file

repo_clone_url() and repo_branches() both return a character vector.

repo_commits(), repo_issues(), repo_n_commits(), and repo_prs() all return a tibble.

Examples

Not run:
repo_clone_url("rundel/ghclass")

repo_branches("rundel/ghclass™)

repo_commits("rundel/ghclass"”)

repo_issues("rundel/ghclass”)

repo_n_commits("”rundel/ghclass”, branch = "master")

repo_prs("rundel/ghclass")

End(Not run)

repo_file GitHub Repository tools - file functions

Description

Usage

repo_add_file() - Add / update files in a GitHub repository. Note that due to delays in
caching, files that have been added very recently might not yet be displayed as existing and
might accidentally be overwritten.

repo_delete_file() - Delete a file from a GitHub repository
repo_modify_file() - Modify an existing file within a GitHub repository.
repo_1s() - Low level function for listing the files in a GitHub Repository
repo_put_file() - Low level function for adding a file to a GitHub repository

repo_get_file() - Low level function for retrieving the content of a file from a GitHub
Repository

repo_get_readme() - Low level function for retrieving the content of the README.md of a
GitHub Repository

repo_add_file(

repo,
file,

message = NULL,
repo_folder = NULL,

repo_file

branch = NULL,
preserve_path

29

= FALSE,

overwrite = FALSE

)

repo_delete_file(repo, path, message = NULL, branch = NULL)

repo_get_file(repo, path, branch = NULL, quiet = FALSE, include_details = TRUE)

repo_get_readme(repo, branch = NULL, include_details = TRUE)

repo_ls(repo, path = ".", branch = NULL, full_path = FALSE)

repo_modify_file(

repo,
path,

pattern,
content,

method = c("replace”, "before”, "after"),

all = FALSE,

message = "Modified content”,

branch = NULL
)

repo_put_file(
repo,
path,
content,

message = NULL,
branch = NULL,
verbose = TRUE

Arguments
repo
file
message

repo_folder

branch
preserve_path

overwrite

path

quiet

Character. Address of repository in owner/name format.
Character. Local file path(s) of file or files to be added.
Character. Commit message.

Character. Name of folder on repository to save the file(s) to. If the folder does
not exist on the repository, it will be created.

Character. Name of branch to use.
Logical. Should the local relative path be preserved.

Logical. Should existing file or files with same name be overwritten, defaults to
FALSE.

Character. File’s path within the repository.

Logical. Should status messages be printed.

30 repo_file

include_details
Logical. Should file details be attached as attributes.

repo_delete_file()m repo_modify_file(), and repo_put_file() all in-
visibly return a list containing the results of the relevant GitHub API calls.

repo_1ls() returns a character vector of repo files in the given path.

repo_get_file() and repo_get_readme() return a character vector with API
results attached as attributes if include_details = TRUE

full_path Logical. Should the function return the full path of the files and directories.
pattern Character. Regex pattern.

content Character or raw. Content of the file.

method Character. Should the content replace the matched pattern or be inserted before

or after the match.

all Character. Should all instances of the pattern be modified (TRUE) or just the first
(FALSE).
verbose Logical. Should success / failure messages be printed
Examples
Not run:
repo = repo_create(”"ghclass-test”, "repo_file_test”, auto_init=TRUE)
repo_ls(repo, path = ".")

repo_get_readme(repo, include_details = FALSE)
repo_get_file(repo, ".gitignore”, include_details = FALSE)
repo_modify_file(

repo, path = "README.md", pattern = "repo_file_test"”,

content = "\n\nHello world!\n", method = "after”

)

repo_get_readme(repo, include_details = FALSE)

repo_add_file(repo, file = system.file("DESCRIPTION", package="ghclass"))
repo_get_file(repo, "DESCRIPTION", include_details = FALSE)
repo_delete_file(repo, "DESCRIPTION")

repo_delete(repo, prompt=FALSE)

End(Not run)

repo_notification 31

repo_notification GitHub Repository tools - notification functions

Description

* repo_ignore() - Ignore a GitHub repository.
* repo_unwatch() - Unwatch / unsubscribe from a GitHub repository.
* repo_watch() - Watch / subscribe to a GitHub repository.

* repo_watching() - Returns a vector of your watched repositories. This should match the list
at github.com/watching.

Usage
repo_unwatch(repo)
repo_watch(repo)
repo_ignore(repo)

repo_watching(filter = NULL, exclude = FALSE)

Arguments
repo repository address in owner/repo format
filter character, regex pattern for matching (or excluding) repositories.
exclude logical, should entries matching the regex be excluded or included.
Value

repo_ignore(), repo_unwatch(), and repo_watch() all invisibly return a list containing the re-
sults of the relevant GitHub API call.

repo_watching() returns a character vector of watched repos.

Examples

Not run:
repo_ignore("Sta323-Sp19/hw1")

repo_unwatch("rundel/ghclass"”)
repo_watch("rundel/ghclass”)

End(Not run)

https://github.com/watching

32

repo_style

repo_style

Style repository with styler

Description

* repo_style implements "non-invasive pretty-printing of R source code" of .R or .Rmd files
within a repository using the styler package and adhering to tidyverse formatting guide-

lines.

Usage

repo_style(

repo,

files = c("x.R", "x.Rmd"),
branch = "styler”,

base,

create_pull_request = TRUE,

draft = TRUE,

tag_collaborators = TRUE,

prompt = TRUE

Arguments

repo

files

branch

base

Character. Address of repository in "owner/name" format.

Character or vector of characters. Names of .R and/or .Rmd files that styler
should be applied to.

Character. Name of new branch to be created or overwritten. Default is "styler".

Character. Name of branch that contains the .R and/or .Rmd files to be styled

create_pull_request

draft

Logical. If TRUE, a pull request is created from branch to base.

Logical. Should the pull request be created as a draft pull request? (Draft PRs
cannot be merged until allowed by the author)

tag_collaborators

prompt

Value

Logical. If TRUE, a message with the repository collaborators is displayed.

Character. Prompt the user before overwriting an existing branch.

The functions returns NULL invisibly.

repo_user 33

repo_user GitHub Repository tools - user functions

Description

* repo_add_user() - Add a user to a repository

* repo_remove_user() - Remove a user from a repository

* repo_add_team() - Add a team to a repository

* repo_remove_team() - Remove a team from a repository

* repo_user_permission() - Change a collaborator’s permissions for a repository
* repo_team_permission() - Change a team’s permissions for a repository

* repo_collaborators() - Returns a data frame of repos, their collaborators, and their per-
missions.

* repo_contributors() - Returns a data frame containing details on repository contributor(s).

Usage
repo_add_team(
repo,
team,
permission = c("push”, "pull”, "admin”, "maintain”, "triage"),
team_type = c("name”, "slug")
)
repo_team_permission(
repo,
team,
permission = c("push”, "pull”, "admin”, "maintain”, "triage"),
team_type = c("name”, "slug")
)
repo_add_user(
repo,
user,
permission = c("push”, "pull”, "admin", "maintain”, "triage")
)
repo_user_permission(
repo,
user,
permission = c("push”, "pull”, "admin", "maintain”, "triage")

repo_collaborators(repo, include_admins = TRUE)

34 repo_user

repo_contributors(repo)
repo_remove_team(repo, team, team_type = c("name”, "slug"))

repo_remove_user(repo, user)

Arguments
repo Character. Address of repository in owner/repo format.
team Character. Slug or name of team to add.
permission Character. Permission to be granted to a user or team for repo, defaults to "push".
team_type Character. Either "slug" if the team names are slugs or "name" if full team names
are provided.
user Character. One or more GitHub usernames.

include_admins Logical. If FALSE, user names of users with Admin rights are not included,
defaults to TRUE.

Details
Permissions can be set to any of the following:

* "pull” - can pull, but not push to or administer this repository.
* "push” - can pull and push, but not administer this repository.
e "admin” - can pull, push and administer this repository.

* "maintain” - Recommended for project managers who need to manage the repository without
access to sensitive or destructive actions.

* "triage" - Recommended for contributors who need to proactively manage issues and pull
requests without write access.
Value

repo_collaborators() and repo_contributoes return a tibble.

All other functions invisibly return a list containing the results of the relevant GitHub API calls.

Examples
Not run:
repo = repo_create(”ghclass-test”, "hwl")
team_create("ghclass-test”, "team_awesome")

repo_add_user(repo, "rundel”)
repo_add_team(repo, "team_awesome")
repo_remove_team(repo, "team_awesome")

repo_collaborators(repo)

team 35

repo_contributors(repo)
repo_contributors(”rundel/ghclass")

Cleanup
repo_delete(repo, prompt=FALSE)

End(Not run)

team Create, delete, and rename teams within an organization

Description

* team_create() - create teams in a GitHub organization
* team_delete() - delete a team from a GitHub organization.

* team_rename() - rename an existing team

Usage

team_create(
org,
team,
prefix = "",
wn

suffix ,
privacy = c("secret”, "closed")

team_delete(org, team, team_type = c("name”, "slug"), prompt = TRUE)

team_rename(org, team, new_team, team_type = c("name”, "slug”))
Arguments
org Character. Name of the GitHub organization.
team Character. Name of teams.
prefix Character. Shared prefix.
suffix Character. Shared suffix.
privacy Character. Level of privacy for team, "closed" (visible to all members of the

organization) or "secret" (only visible to organization owners and members of a
team), default is "closed"

team_type Character. Either "slug" if the team names are slugs or "name" if full team names
are provided.

prompt Logical. Should the user be prompted before deleting team. Default true.

new_team character, new team name.

36 team_members

Value

All functions invisibly return a list containing the results of the relevant GitHub API calls.

Examples

Not run:
team_create("ghclass-test”,c("hwl-team@1”, "hwl-team@2"))

org_teams("ghclass-test”, "hwl-")

team_rename("ghclass-test”, "hwl-team@2”, "hwl-team@3")
org_teams("ghclass-test”, "hwl-")

team_delete("ghclass-test”, "hwl-team@1”, prompt = FALSE)
org_teams("ghclass-test”, "hwl-")

Cleanup

team_delete("ghclass-test”, org_teams("ghclass-test”, "hw1-"), prompt = FALSE)

End(Not run)

team_members Tools for inviting, removing, and managing members of an organiza-
tion team

Description

e team_invite() - add members to team(s).

* team_remove() - remove members from team(s).

e team_members() - returns a tibble of team members.

* team_pending() - returns a tibble of pending team members.

* team_repos() - returns a tibble of teams and their repos.

Usage
team_invite(org, user, team, team_type = c("name”, "slug"))
team_members(org, team = org_teams(org), team_type = c("name"”, "slug"))
team_pending(org, team = org_teams(org), team_type = c("name”, "slug"))
team_remove(org, user, team, team_type = c("name”, "slug"))

team_repos(org, team = org_teams(org), team_type = c("name”, "slug"))

user 37

Arguments
org Character. Name of the GitHub organization.
user Character. One or more GitHub users to invite.
team Character. Name of teams.
team_type Character. Either "slug" if the team names are slugs or "name" if full team names
are provided.
Value

team_members(), team_pending(), and team_repos() all return a tibble.

team_invite() and team_remove() invisibly return a list containing the results of the relevant
GitHub API calls.

Examples

Not run:
team_create("ghclass-test”,c("hwl-team@1”,"hwl-team@2"))

team_invite("ghclass-test”, user = "rundel”, team = c("hwl-team@1”, "hwl-team@2", "missing_team"))
team_remove("ghclass-test”, user = "rundel”, team = c("hwl-team@1”, "missing_team"))
team_members("”ghclass-test”, org_teams("ghclass-test”, "hwl-"))

team_pending("ghclass-test"”, org_teams("ghclass-test”, "hwl-"))
Add team repo

repo_create("ghclass-test”, name = "hwl-team@2")
repo_add_team("ghclass-test/hwl-team@2", team = "hwl-team@2")
team_repos("ghclass-test”, org_teams("ghclass-test”, "hw1-"))

Cleanup

repo_delete("ghclass-test/hwl-team@2", prompt = FALSE)

team_delete("ghclass-test”, org_teams(”ghclass-test”, "hwl1-"), prompt = FALSE)

End(Not run)

user GitHub user related tools

Description

* user_exists() - returns TRUE if the username(s) (or organization) exist on GitHub and FALSE
otherwise. Note that GitHub considers organizations to be a type of user.

* user_repos() - returns a (filtered) vector of repositories belonging to the user.

» user_type() - returns a vector of the accounts’ types.

38 user

Usage

user_exists(user)

user_repos(
user,
type = c("owner”, "all", "public”, "private”, "member"),
filter = NULL,
exclude = FALSE,
full_repo = TRUE

user_type(user)

Arguments
user Character. GitHub username(s).
type Character. Can be one of "all", "owner", "public", "private", "member".
filter Character. Regular expression pattern for matching (or excluding) repositories.
exclude Logical. Should entries matching the regular expression in filter be excluded
or included?
full_repo Logical. Should the full repository address be returned (e.g. owner/repo instead
of just repo)?
Value

user_exists() returns a logical vector.

user_repos() and user_type () retrun a character vector.

Examples

Not run:
user_exists(c("rundel”, "ghclass-test”, "hopefullydoesnotexist”))

user_repos("rundel”, type = "public”, filter = "ghclass")
user_repos("ghclass-test")

org_repos(”ghclass-test"”)

user_type(c("rundel”, "ghclass-test"”))

End(Not run)

Index

action, 2

action_add_badge (action_badge), 4
action_artifact_delete (action), 2
action_artifact_download (action), 2
action_artifacts (action), 2
action_badge, 4

action_remove_badge (action_badge), 4
action_runs (action), 2
action_runtime (action), 2
action_status (action), 2
action_workflows (action), 2

branch, 5

branch_create (branch), 5
branch_delete (branch), 5
branch_remove (branch), 5

gh::gh_token(), 9

github_api_limit, 6

github_get_api_limit
(github_api_limit), 6

github_get_token (github_rate_limit), 8

github_graphgl_rate_limit
(github_rate_limit), 8

github_orgs, 7

github_rate_limit, 8

github_reset_token (github_rate_limit),
8

github_set_api_limit
(github_api_limit), 6

github_set_token (github_rate_limit), 8

github_test_token (github_rate_limit), 8

github_token (github_rate_limit), 8

github_token_scopes
(github_rate_limit), 8

github_whoami, 9

github_with_pat, 10

issue, 11
issue_close (issue), 11

issue_create (issue), 11
issue_edit (issue), 11

local_pat (github_with_pat), 10
local_repo, 13

local_repo_add (local_repo), 13
local_repo_branch (local_repo), 13
local_repo_clone (local_repo), 13
local_repo_commit (local_repo), 13
local_repo_log (local_repo), 13
local_repo_pull (local_repo), 13
local_repo_push (local_repo), 13
local_repo_rename, 15

org_admins (org_members), 18
org_create_assignment, 15
org_details, 16
org_exists (org_details), 16
org_invite (org_members), 18
org_members, 18
org_pending (org_members), 18
org_perm, 20
org_remove (org_members), 18
org_repo_search (org_details), 16
org_repo_stats (org_details), 16
org_repos (org_details), 16
org_set_repo_permission (org_perm), 20
org_set_workflow_permissions
(org_perm), 20
org_sitrep (org_perm), 20
org_team_details (org_details), 16
org_teams (org_details), 16
org_workflow_permissions (org_perm), 20

pages, 21

pages_create (pages), 21
pages_delete (pages), 21
pages_enabled (pages), 21
pages_status (pages), 21
pr, 22

40

pr_create (pr), 22

repo_add_file (repo_file), 28
repo_add_team (repo_user), 33
repo_add_user (repo_user), 33
repo_branches, 6

repo_branches (repo_details), 26
repo_clone (local_repo), 13
repo_clone_url (repo_details), 26
repo_collaborators (repo_user), 33
repo_commits (repo_details), 26
repo_contributors (repo_user), 33
repo_core, 23

repo_create (repo_core), 23
repo_delete (repo_core), 23
repo_delete_file (repo_file), 28
repo_details, 26

repo_exists (repo_core), 23
repo_file, 28

repo_get_file (repo_file), 28
repo_get_readme (repo_file), 28
repo_ignore (repo_notification), 31
repo_is_template (repo_core), 23
repo_issues, 12,23

repo_issues (repo_details), 26
repo_ls (repo_file), 28

repo_mirror (repo_core), 23
repo_mirror_template (repo_core), 23
repo_modify_file (repo_file), 28
repo_n_commits (repo_details), 26
repo_notification, 31

repo_prs (repo_details), 26
repo_pushes (repo_details), 26
repo_put_file (repo_file), 28
repo_remove_team (repo_user), 33
repo_remove_user (repo_user), 33
repo_rename (repo_core), 23
repo_set_template (repo_core), 23
repo_style, 32

repo_team_permission (repo_user), 33
repo_unwatch (repo_notification), 31
repo_user, 33

repo_user_permission (repo_user), 33
repo_watch (repo_notification), 31
repo_watching (repo_notification), 31

team, 35
team_create (team), 35
team_delete (team), 35

INDEX

team_invite (team_members), 36
team_members, 36

team_pending (team_members), 36
team_remove (team_members), 36
team_rename (team), 35
team_repos (team_members), 36

user, 37

user_exists (user), 37
user_repos (user), 37
user_type (user), 37

with_pat (github_with_pat), 10

	action
	action_badge
	branch
	github_api_limit
	github_orgs
	github_rate_limit
	github_whoami
	github_with_pat
	issue
	local_repo
	local_repo_rename
	org_create_assignment
	org_details
	org_members
	org_perm
	pages
	pr
	repo_core
	repo_details
	repo_file
	repo_notification
	repo_style
	repo_user
	team
	team_members
	user
	Index

