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glmmrOptim-package Approximate Optimal Experimental Designs Using Generalised Lin-
ear Mixed Models

Description

Optimal design analysis algorithms for any study design that can be represented or modelled as a
generalised linear mixed model including cluster randomised trials, cohort studies, spatial and tem-
poral epidemiological studies, and split-plot designs. See <https://github.com/samuel-watson/glmmrBase/blob/master/README.md>
for a detailed manual on model specification. A detailed discussion of the methods in this pack-
age can be found in Watson, Hemming, and Girling (2023) <doi:10.1177/09622802231202379>.
glmmrOptim provides algorithms for identifying (approximately) c-optimal experimental designs
for experiments described by a generalised linear mixed model.

Algorithms

glmmrOptim provides algorithms for identifying (approximately) c-optimal experimental designs
for experiments described by a generalised linear mixed model. Each data row constitutes an ob-
servation, which can be grouped into experimental units. The aim is to then find either the discrete
subset of experimental units, or the optimal weights on each unit, to minimise the GLS variance
criterion. There are four main algorithms:

• Reverse greedy search. This combinatorial algorithm starts from the complete set of exper-
imental units and successively removes the unit that minimises the variance until the target
sample size is reached.

• Local search. This combinatorial algorithm starts from a design of the target sample size and
successively swaps units that minimise the variance until no improving swap can be made.

• Optimal weights for uncorrelated experimental units. A second-order cone program is used
to determine the optimal experimental weights for each unit, where the units are uncorrelated
with one another.

• Optimal mixed model weights. An algorithm base on the mixed model weights is used to
identify the optimal experimental weights, units may be correlated.

The package also provides support for finding the optimal rounding of weights to integers. Ro-
bust optimal experimental designs can be identified by including multiple plausible models in the
algorithms.

Model specification

The glmmrOptim package uses the glmmrBase package for model specification and calculation.
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Package development

The package is still in development and there may still be bugs and errors. While we do not expect
the general user interface to change there may be changes to the underlying library as well as new
additions and functionality.

Author(s)

Sam Watson [aut, cre], Yi Pan [aut]

Maintainer: Sam Watson <S.I.Watson@bham.ac.uk>

apportion Generate exact designs from approximate weights

Description

Given a set of optimal weights for experimental conditions generate exact designs using several
rounding methods.

Usage

apportion(w, n)

Arguments

w A vector of weights.
n The size of the exact designs to return.

Details

Allocating ‘n‘ items to ‘k‘ groups proportionally to set of weights ‘w‘ is known as the apportion-
ment problem. The problem most famously arose when determining how many members each state
should have in the U.S. House of Representatives based on their proportion of the population. The
solutions are named after their proposers in the early U.S. Hamilton’s method initially allocates
‘floor(n*w)‘ observations to each experimental condition and then allocates the remaining obser-
vations based on the largest remainders ‘n*w - floor(n*w)‘. The other methods (Adams, Jefferson,
and Webster) are divisor methods. The vector of counts is ‘m‘, which is either all zeros for Jefferson
and Webster and all ones for Adams, and we define ‘pi <- n*w‘ and then iteratively add observa-
tions based on the largest values of ‘pi/alpha‘ where ‘alpha‘ is either: * m + 0.5 (Webster) * m +
1 (Jefferson) * m (Adams) Pukelsheim and Rieder, 1996 <doi:10.2307/2337232> discuss efficient
rounding of experimental condition weights and determine that a variant of Adam’s method is the
most efficient. Results using this method are labelled "Pukelsheim" in the output; there may be mul-
tiple designs using this procedure. Pukelsheim and Rieder’s method assumes there is a minimum of
one experimental condition of each type, whereas the other methods do not have this restriction.

Value

A named list. The names correspond to the method of rounding (see Details), and the entries are
vectors of integers indicating the count of each type of experimental condition.
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Examples

w <- c(0.45,0.03,0.02,0.02,0.03,0.45)
apportion(w,10)

DesignSpace A GLMM Design Space

Description

A GLMM Design Space

A GLMM Design Space

Details

A class-based representation of a "design space" that contains one or more Model objects.

An experimental study is comprised of a collection of experimental conditions, which are one or
more observations made a pre-specified locations/values of covariates. A design space represents
the collection of all possible experimental conditions for the study design and plausible models
describing the data generating process. The main purpose of this class is to identify optimal study
designs, that is the set of ‘n‘ experimental conditions from all possible experimental conditions that
minimise the variance of a parameter of interest across the specified GLMMs.

A ‘DesignSpace‘ object is intialised using one or more Model objects. Design objects can be added
or removed from the collection. All designs must have the same number of rows in their design
matrices (X and Z) and the same number of experimental conditions. The DesignSpace functions
can modify the linked design objects.

**Initialisation** The experimental condition refers to the smallest "unit" of the study design that
could be included in the design. For example, in a cluster randomised trial, the experimental condi-
tion may be single individuals such that we can observed any number of individuals in any cluster
period (including none at all). In this case the experimental condition would be equivalent to row
number. Alternatively, we may have to observe whole cluster periods, and we need to choose which
cluster periods to observe, in which case the each observation in a different cluster-period would
have the same experimental condition identifier. Finally, we may determine that the whole cluster
in all periods (a "sequence") is either observed or not.

**Approximate c-Optimal designs** The function returns approximate c-optimal design(s) of size
m from the design space with N experimental conditions. The objective function is

CTM−1C

where M is the information matrix and C is a vector. Typically C will be a vector of zeros with
a single 1 in the position of the parameter of interest. For example, if the columns of X in the
design are an interdept, the treatment indicator, and then time period indicators, the vector C may be
‘c(0,1,0,0,...)‘, such that the objective function is the variance of that parameter. If there are multiple
designs in the design space, the C vectors do not have to be the same as the columns of X in each
design might differ. All the algorithms included in this package are described in Watson, Hemming,
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and Girling (2023) <doi:10.1177/09622802231202379> and Watson (2023) <doi:10.1007/s11222-
023-10280-w>.

If the experimental conditions are correlated with one another, then one of three combinatorial
algorithms can be used, see Watson and Pan, 2022 <doi:10.1007/s11222-023-10280-w>. The al-
gorithms are: (i) local search, which starts from a random design of size m and then makes the
best swap between an experimental condition in and out of the design until no variance improving
swap can be made; (ii) greedy search, which starts from a design of size p « n and then sequen-
tially adds the best experimental condition until it generates a design of size m; (iii) reverse greedy
search, which starts from the complete set of N experimental conditions and sequentially removes
the worst experimental condition until it generates a design of size m. Note that only the local
search has provable bounds on the solution.

If the experimental conditional are uncorrelated (but there is correlation between observations
within the same experimental condition) then optionally an alternative algorithm can be used to ap-
proximate the optimal design using a second-order cone program (see Sangol, 2015 <doi:10.1016/j.jspi.2010.11.031>
and Holland-Letz et al 2011 <doi:10.1111/j.1467-9868.2010.00757.x>). The approximate algo-
rithm will return weights in [0,1] for each unique experimental condition representing the "propor-
tion of effort" to spend on each design condition. There are different ways to translate these weights
into integer values, which are returned see apportion. Use of the approximate optimal design algo-
rithm can be disabled used ‘use_combin=TRUE‘

A weights algorithm for cases including when the observations are correlated are also included. This
algorithm determines the GLMM estimation weights that minimise the variance. The algorithm
is described in Watson, Hemming, and Girling (2023) <doi:10.1177/09622802231202379> along
with the other algoithms in this package.

In some cases the optimal design will not be full rank with respect to the design matrix X of the
design space. This will result in a non-positive definite information matrix, and an error. The
program will indicate which columns of X are likely "empty" in the optimal design. The user can
then optionally remove these columns in the algorithm using the ‘rm_cols‘ argument, which will
delete the specified columns and linked observations before starting the algorithm.

The algorithm will also identify robust optimal designs if there are multiple designs in the design
space. There are two options for robust optimisation. Both involve a weighted combination of the
value of the function from each design, where the weights are specified by the ‘weights‘ field in
the design space. The weights represent the prior probability or plausibility of each design. The
weighted sum is either a sum of the absolute value of the c-optimal criterion or its log (e.g. see
Dette, 1993 <doi:10.1214/aos/1176349149>).

Value

An environment that is ‘DesignSpace‘ class object

Public fields

weights A vector denoting the prior weighting of each Design in the design space. Required if
robust optimisation is used based on a weighted average variance over the linked designs. If
it is not specified in the call to ‘new()‘ then designs are assumed to have equal weighting.

experimental_condition A vector indicating the unique identifier of the experimental condition
for each observation/row in the matrices X and Z.
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Methods

Public methods:
• DesignSpace$new()

• DesignSpace$add()

• DesignSpace$remove()

• DesignSpace$print()

• DesignSpace$n()

• DesignSpace$optimal()

• DesignSpace$show()

• DesignSpace$clone()

Method new(): Create a new Design Space
Creates a new design space from one or more glmmr designs.

Usage:
DesignSpace$new(..., weights = NULL, experimental_condition = NULL)

Arguments:

... One or more glmmrBase Model objects. The designs must have an equal number of obser-
vations.

weights Optional. A numeric vector of values between 0 and 1 indicating the prior weights
to assign to each of the designs. The weights are required for optimisation, if a weighted
average variance is used across the designs. If not specified then designs are assumed to
have equal weighting.

experimental_condition Optional. A vector of the same length as the number of obser-
vations in each design indicating the unique identifier of the experimental condition that
observation belongs to, see Details. If not provided, then it is assumed that all observations
are separate experimental conditions.

Returns: A ‘DesignSpace‘ object

Examples:

\dontshow{
glmmrBase::setParallel(FALSE) # for the CRAN check
setParallelOptim(FALSE)
}
df <- nelder(~ ((int(2)*t(3)) > cl(3)) > ind(5))
df$int <- df$int - 1
des <- Model$new(formula = ~ int + factor(t) - 1+ (1|gr(cl)) + (1|gr(cl,t)),

covariance = c(0.04,0.01),
mean = rep(0,4),
data=df,
family=gaussian())

ds <- DesignSpace$new(des)
#add another design
des2 <- Model$new(formula = ~ int + factor(t) - 1 + (1|gr(cl)) + (1|gr(cl,t)),

covariance = c(0.05,0.8),
mean = rep(0,4),



DesignSpace 7

data=df,
family=gaussian())

ds$add(des2)
#report the size of the design
ds$n()
#we can access specific designs
ds$show(2)$n()
#and then remove it
ds$remove(2)
#or we could add them when we construct object
ds <- DesignSpace$new(des,des2)
#we can specify weights
ds <- DesignSpace$new(des,des2,weights=c(0.1,0.9))
#and add experimental conditions
ds <- DesignSpace$new(des,des2,experimental_condition = df$cl)

Method add(): Add a design to the design space

Usage:
DesignSpace$add(x)

Arguments:

x A ‘Design‘ to add to the design space

Returns: Nothing

Examples:

#See examples for constructing the class

Method remove(): Removes a design from the design space

Usage:
DesignSpace$remove(index)

Arguments:

index Index of the design to remove

Returns: Nothing

Examples:

#See examples for constructing the class

Method print(): Print method for the Design Space

Usage:
DesignSpace$print()

Arguments:

... ignored

Returns: Prints to the console all the designs in the design space

Examples:

#See examples for constructing the class
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Method n(): Returns the size of the design space and number of observations

Usage:
DesignSpace$n()

Examples:
#See examples for constructing the class

Method optimal(): Approximate c-optimal design of size m
Algorithms to identify an approximate c-optimal design of size m within the design space.

Usage:
DesignSpace$optimal(
m,
C,
attenuate_pars = FALSE,
V0 = NULL,
rm_cols = NULL,
keep = FALSE,
verbose = TRUE,
algo = c(1),
use_combin = FALSE,
robust_log = FALSE,
kr = FALSE,
p,
tol = 1e-08

)

Arguments:
m A positive integer specifying the number of experimental conditions to include.
C Either a vector or a list of vectors of the same length as the number of designs, see Details.
attenuate_pars Logical indicating whether to adapt the marginal expecation in non-linear

models
V0 Optional. If a Bayesian c-optimality problem then this should be a list of prior covariance

matrices for the model parameters the same length as the number of designs.
rm_cols Optional. A list of vectors indicating columns of X to remove from each design, see

Details.
keep Logical indicating whether to "keep" the optimal design in the linked design objects and

remove any experimental conditions and columns that are not part of the optimal design.
Irreversible, so that these observations will be lost from the linked design objects. Defaults
to FALSE.

verbose Logical indicating whether to reported detailed output on the progress of the algo-
rithm. Default is TRUE.

algo A vector of integers indicating the algorithm(s) to use. 1 = local search, 2 = greedy search,
3 = reverse greedy search. Declaring ‘algo = 1‘ for example will use the local search.
Providing a vector such as ‘c(3,1)‘ will execute the algorithms in order, so this would run
a reverse greedy search followed by a local search. Note that many combinations will be
redundant. For example, running a greedy search after a local search will not have any
effect. One can also use a general weights algorithm called the ’girling’ algorithm, setting
‘algo="girling"‘.
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use_combin Logical. If the experimental conditions are uncorrelated, if this option is TRUE
then the hill climbing algorithm will be used, otherwise if it is FALSE, then a fast approxi-
mate alternative will be used. See Details

robust_log Logical. If TRUE and there are multiple designs in the design space then the
robust criterion will be a sum of the log of the c-optimality criterion weighted by the study
weights, and if FALSE then it will be a weighted sum of the absolute value.

kr Logical. Whether to use the Kenwood-Roger small sample bias corrected variance matrix
for the fixed effect parameters. We do not recommend using this as it can produce some
strange results and its behaviour is not well understood.

p Optional. Positive integer specifying the size of the starting design for the greedy algorithm
tol Optional scalar specifying the termination tolerance of the Girling algorithm.

Returns: A named list. If using the weighting method then the list contains the optimal exper-
imental weights and a list of exact designs of size ‘m‘, see apportion. If using a combinatorial
algorithm then the list contains the rows in the optimal design, the indexes of the experimental
conditions in the optimal design, the variance from this design, and the total number of function
evaluations. Optionally the linked designs are also modified (see option ‘keep‘).

Examples:

\dontshow{
glmmrBase::setParallel(FALSE) # for the CRAN check
setParallelOptim(FALSE)
}
df <- nelder(~(cl(6)*t(5)) > ind(5))
df$int <- 0
df[df$t >= df$cl, 'int'] <- 1
des <- Model$new(
formula = ~ factor(t) + int - 1 + (1|gr(cl)),
covariance = c(0.05),
mean = c(rep(0,5),0.6),
data=df,
family=gaussian(),
var_par = 1

)
ds <- DesignSpace$new(des)

#find the optimal design of size 30 individuals using reverse greedy search
# change algo=1 for local search, and algo = 2 for greedy search
opt2 <- ds$optimal(30,C=list(c(rep(0,5),1)),algo=3)

#let the experimental condition be the cluster
# these experimental conditions are independent of one another
ds <- DesignSpace$new(des,experimental_condition = df$cl)
# now find the optimal 4 clusters to include
# approximately, finding the weights for each condition
opt <- ds$optimal(4,C=list(c(rep(0,5),1)))
# or use the local search algorithm
opt <- ds$optimal(4,C=list(c(rep(0,5),1)),use_combin = TRUE,algo=1)
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#robust optimisation using two designs
des2 <- Model$new(
formula = ~ factor(t) + int - 1 + (1|gr(cl)*ar1(t)),
covariance = c(0.05,0.8),
mean = c(rep(0,5),0.6),
data=df,
family=gaussian(),
var_par = 1

)
ds <- DesignSpace$new(des,des2)
#weighted average assuming equal weights using local search
\donttest{
opt <- ds$optimal(30,C=list(c(rep(0,5),1),c(rep(0,5),1)),algo=1)
}

Method show(): Returns a linked design

Usage:
DesignSpace$show(i)

Arguments:
i Index of the design to return

Examples:
#See examples for constructing the class

Method clone(): The objects of this class are cloneable with this method.

Usage:
DesignSpace$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `DesignSpace$new`
## ------------------------------------------------

df <- nelder(~ ((int(2)*t(3)) > cl(3)) > ind(5))
df$int <- df$int - 1
des <- Model$new(formula = ~ int + factor(t) - 1+ (1|gr(cl)) + (1|gr(cl,t)),

covariance = c(0.04,0.01),
mean = rep(0,4),
data=df,
family=gaussian())

ds <- DesignSpace$new(des)
#add another design
des2 <- Model$new(formula = ~ int + factor(t) - 1 + (1|gr(cl)) + (1|gr(cl,t)),

covariance = c(0.05,0.8),
mean = rep(0,4),
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data=df,
family=gaussian())

ds$add(des2)
#report the size of the design
ds$n()
#we can access specific designs
ds$show(2)$n()
#and then remove it
ds$remove(2)
#or we could add them when we construct object
ds <- DesignSpace$new(des,des2)
#we can specify weights
ds <- DesignSpace$new(des,des2,weights=c(0.1,0.9))
#and add experimental conditions
ds <- DesignSpace$new(des,des2,experimental_condition = df$cl)

## ------------------------------------------------
## Method `DesignSpace$add`
## ------------------------------------------------

#See examples for constructing the class

## ------------------------------------------------
## Method `DesignSpace$remove`
## ------------------------------------------------

#See examples for constructing the class

## ------------------------------------------------
## Method `DesignSpace$print`
## ------------------------------------------------

#See examples for constructing the class

## ------------------------------------------------
## Method `DesignSpace$n`
## ------------------------------------------------

#See examples for constructing the class

## ------------------------------------------------
## Method `DesignSpace$optimal`
## ------------------------------------------------

df <- nelder(~(cl(6)*t(5)) > ind(5))
df$int <- 0
df[df$t >= df$cl, 'int'] <- 1
des <- Model$new(

formula = ~ factor(t) + int - 1 + (1|gr(cl)),
covariance = c(0.05),
mean = c(rep(0,5),0.6),
data=df,
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family=gaussian(),
var_par = 1

)
ds <- DesignSpace$new(des)

#find the optimal design of size 30 individuals using reverse greedy search
# change algo=1 for local search, and algo = 2 for greedy search
opt2 <- ds$optimal(30,C=list(c(rep(0,5),1)),algo=3)

#let the experimental condition be the cluster
# these experimental conditions are independent of one another
ds <- DesignSpace$new(des,experimental_condition = df$cl)
# now find the optimal 4 clusters to include
# approximately, finding the weights for each condition
opt <- ds$optimal(4,C=list(c(rep(0,5),1)))
# or use the local search algorithm
opt <- ds$optimal(4,C=list(c(rep(0,5),1)),use_combin = TRUE,algo=1)

#robust optimisation using two designs
des2 <- Model$new(

formula = ~ factor(t) + int - 1 + (1|gr(cl)*ar1(t)),
covariance = c(0.05,0.8),
mean = c(rep(0,5),0.6),
data=df,
family=gaussian(),
var_par = 1

)
ds <- DesignSpace$new(des,des2)
#weighted average assuming equal weights using local search

opt <- ds$optimal(30,C=list(c(rep(0,5),1),c(rep(0,5),1)),algo=1)

## ------------------------------------------------
## Method `DesignSpace$show`
## ------------------------------------------------

#See examples for constructing the class

setParallelOptim Disable or enable parallelised computing

Description

By default, the package will use multithreading for many calculations if OpenMP is available on
the system. For multi-user systems this may not be desired, so parallel execution can be disabled
with this function.

Usage

setParallelOptim(parallel_, cores_ = 2L)
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Arguments

parallel_ Logical indicating whether to use parallel computation (TRUE) or disable it
(FALSE)

cores_ Number of cores for parallel execution

Value

None, called for effects
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