Package ‘gripp’

October 13, 2022
Type Package
Title General Inverse Problem Platform
Version 0.2.20
Author Jader Lugon Junior, Antonio Jose da Silva Neto
Maintainer Jader Lugon Junior <jlugonjr@gmail.com>

Description Set of functions designed to solve inverse problems. The direct problem is used to calcu-
late a cost function to be minimized.
Here are listed some papers using Inverse Problems solvers and sensitivity analysis:
(Jader Lugon Jr.; Antonio J. Silva Neto 2011) <doi:10.1590/S1678-58782011000400003>.
(Jader Lugon Jr.; Antonio J. Silva Neto; Pedro P.G.W. Ro-
drigues 2008) <doi:10.1080/17415970802082864>.
(Jader Lugon Jr.; Antonio J. Silva Neto; Cesar C. San-
tana 2008) <doi:10.1080/17415970802082922>.

Depends R (>=2.10)

Imports utils, usethis, GenSA, GA

License GPL-3

Encoding UTF-8

LazyData true

Repository CRAN

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Date/Publication 2019-08-24 05:30:02 UTC

R topics documented:

COSL o o v e e e e e 2
INVPIOD . . . o L 3
SENSILVILY o o e e e 5
synthetic e e e e e 7
Index 10

https://doi.org/10.1590/S1678-58782011000400003
https://doi.org/10.1080/17415970802082864
https://doi.org/10.1080/17415970802082922

2 cost

cost Cost function

Description

This cost function is the one to be minimized using the Inverse Problem solver. It will need some
information about the target and the direct problem.

Usage

cost(parm)

Arguments

parm Set of values to be considered as parameters for the Direct Problem solution

Value

Squared Difference between the target and the result that is calculated with the informed set of
parameters 'parm’.

Examples

#

Configure the name of the folder where each file with the parameter to be changed.
If the folder is 'wd' then it will not be changed.

You can change it to another location where your parameter files are.

auxi <- system.file(package = "gripp")

folder_name <- c(auxi,auxi)

#

Configure the name of each file to be changed in the Direct Problem Solver.
file_name <- c('f1.R",'f1.R")

#

Configure the name of each parameter to be changed.

parm_name <- c('A','B")

#

Configure alternative method using line number to enter each parameter

When line_number is zero, then the input method uses keywords.

line_number <-c(90,0)

#

Configure each parameter type, where:

1 means a numeric variable informed as a string, such as parm <- "1.38"

2 means a numeric vector informed as a string of numbers separated with a space character.
For example, parm <- "1.25 3.4". You must tell which one will be the variable considered.
parm_type <- c(1,1)

#

Informe the position of the variable to be considered in the problem in the vector.
If the parameter is a numeric variable, then its position is zero.

parm_vector <- c(0,0)

#

invprob 3

Configure the name of the folder where the command must be called.

If the folder is 'wd' then it will not be changed.

You can change it to another location where your parameter files are.
command_folder <- auxi

#

This variable means that the Direct Problem is solved using R or outside

if this is FALSE, the results are to be read from a file.

When it is TRUE, results will be passed inside R using the variable "results”
isitR <- TRUE

#

Configure the command to be used to call the Direct Problem Solver.

command <- 'f1.R'

#

Configure the name of the file to be used as a target by the cost function.
The file was built using parm <- c(1,3).

It is also a single column of values.

target <- 'alvo.dat'

#

Configure the name of the folder where the target file can be found.

If the folder is 'wd' then it will not be changed.

You can change it to another location where your target file is.
target_folder <- auxi

#

Configure a string to be used to attrib values in the Direct Problem file.
attrib_str <- '<-'

#

Configure the name of the file with the results obtained by the Direct Problem.
It must be a single column of values.

The results are changed at each run by the Direct Problem Solver.

result <- 'result.dat’

#

Configure the name of the folder where the results can be found after each run.
If the folder is 'wd' then it will not be changed.

You can change it to another location where your result file is.
result_folder <- tempdir()

#

parm<- c(1,3)

cost(parm)

parm<- c(1.5,4)

cost(parm)

invprob Inverse Problem Solver!

Description

This sotfware will minimize a cost function and estimate a set of parameters using a Inverse Problem
Solver.

4 invprob

Usage

invprob(parm_init)

Arguments
parm_init Set of values to be considered as initial parameters for the Inverse Problem so-
lution
Value

A vector with the quadratic residue calculated, the parameters estimated and the number of function
call needed to solve the inverse problem.

Examples

#

Configure the name of the folder where each file with the parameter to be changed.
If the folder is 'wd' then it will not be changed.

You can change it to another location where your parameter files are.

auxi <- system.file(package = "gripp")

folder_name <- c(auxi,auxi)

#

Configure the name of each file to be changed in the Direct Problem Solver.
file_name <- c('f1.R','f1.R")

#

Configure the name of each parameter to be changed.

parm_name <- c('A','B")

#

Configure alternative method using line number to enter each parameter

When line_number is zero, then the input method uses keywords.

line_number <-c(9,0)

#

Configure each parameter type, where:

1 means a numeric variable informed as a string, such as parm <- "1.38"

2 means a numeric vector informed as a string of numbers separated with a space character.
For example, parm <- "1.25 3.4". You must tell which one will be the variable considered.
parm_type <- c(1,1)

#

Informe the position of the variable to be considered in the problem in the vector.
If the parameter is a numeric variable, then its position is zero.

parm_vector <- c(0,0)

#

Configure the smallest value for each parameter

parm_min <- c(0,0)

#

Configure the larger value for each parameter

parm_max <- c(2,5)

#

Configure the name of the folder where the command must be called.

If the folder is 'wd' then it will not be changed.

You can change it to another location where your parameter files are.
command_folder <- system.file(package = "gripp")

sensitivity 5

#

This variable means that the Direct Problem is solved using R or outside

if this is FALSE, the results are to be read from a file.

When it is TRUE, results will be passed inside R using the variable "result”
isitR <- TRUE

#

Configure the command to be used to call the Direct Problem Solver.

command <- 'f1.R'

#

Configure a string to be used to attrib values in the Direct Problem file.
attrib_str <- '<-'

#

Configure the name of the file with the results obtained by the Direct Problem.
It must be a single column of values.

The results are changed at each run by the Direct Problem Solver.

result <- 'result.dat'

#

Configure the name of the folder where the results can be found after each run.
If the folder is 'wd' then it will not be changed.

You can change it to another location where your result file is.
result_folder <- tempdir()

#

Configure the name of the file to be used as a target by the cost function.
The file was built using parm <- c(1,3).

It is also a single column of values.

target <- 'alvo.dat'

#

Configure the name of the folder where the target file can be found.

If the folder is 'wd' then it will not be changed.

You can change it to another location where your target file is.
target_folder <- auxi

#

Configure the Inverse Problem Solver to be used:

1) GRIPP can use the solver 'GenSA'.

Then configure the maximum number of function evaluation for the Inverse Problem Solution
using control <- list(max.time=60)

#

2) GRIPP can use the solver 'GA'

The configure the maximum number of function evaluation for the Inverse Problem Solution
control <- list(popSize = 50, maxiter = 1000, run = 100)

solver <- 'GenSA'

control <- list(max.time=1)

Configure the initial value for each parameter

parm <- c(1.5,4)

out<-invprob(parm)

out

sensitivity Sensitivity matrix calculator

6 sensitivity

Description

This sotfware will calculate the sensitivity matrix for the Direct Problem. First order derivatives are
calculated using central difference approximation.

Usage

sensitivity(parm_s)

Arguments

parm_s Set of values to be considered as parameters for the Direct Problem solution

Value

A matrix with the derivative of the function that represents the Direct Problem for each parameter.

Examples

#

Configure the name of the folder where each file with the parameter to be changed.
If the folder is 'wd' then it will not be changed.

You can change it to another location where your parameter files are.

auxi <- system.file(package = "gripp")

folder_name <- c(auxi,auxi)

#

Configure the name of each file to be changed in the Direct Problem Solver.
file_name <- c('f1.R','f1.R")

#

Configure the name of each parameter to be changed.

parm_name <- c('A','B")

#

Configure alternative method using line number to enter each parameter

When line_number is zero, then the input method uses keywords.

line_number <-c(9,0)

#

Configure each parameter type, where:

1 means a numeric variable informed as a string, such as parm <- "1.38"

2 means a numeric vector informed as a string of numbers separated with a space character.
For example, parm <- "1.25 3.4". You must tell which one will be the variable considered.
parm_type <- c(1,1)

#

Informe the position of the variable to be considered in the problem in the vector.
If the parameter is a numeric variable, then its position is zero.

parm_vector <- c(0,0)

#

Configure the smallest value for each parameter

parm_min <- c(0,0)

#

Configure the larger value for each parameter

parm_max <- c(2,5)

#

Configure the name of the folder where the command must be called.

synthetic 7

If the folder is 'wd' then it will not be changed.

You can change it to another location where your parameter files are.
command_folder <- auxi

#

This variable means that the Direct Problem is solved using R or outside

if this is FALSE, the results are to be read from a file.

When it is TRUE, results will be passed inside R using the variable "results”
isitR <- TRUE

#

Configure the command to be used to call the Direct Problem Solver.

if this is FALSE, the results are to be read from a file.

When it is TRUE, results will be passed inside R using the variable "result”
command <- 'f1.R'

#

Parameter positive and negative percentual difference to be used to calculate the derivative
ppdif must me a number between @ and 100

parameter_pos <- parm + (ppdif/100)*(parm_max-parm_min)

parameter_neg <- parm - (ppdif/100)*(parm_max-parm_min)

ppdif <- 1

#

Configure a string to be used to attrib values in the Direct Problem file.
attrib_str <- '<-'

#

Configure the name of the file with the results obtained by the Direct Problem.
It must be a single column of values.

The results are changed at each run by the Direct Problem Solver.

result <- 'result.dat’

#

Configure the name of the folder where the results can be found after each run.
If the folder is 'wd' then it will not be changed.

You can change it to another location where your result file is.
result_folder <- tempdir()

#

sensitivity(c(1,3))

synthetic Synthetic Experimental Data function

Description

The Direct Problem will be solved and the result will be corrupted to simulate experimental error.
The user can inform the Standard Deviation error that will be added to the exact solution. Then, the
synthetic function will return the data obtained using the equation:

Simulated_Results_with_Error <- Direct_Problem_Results * (1 + sigma).

Usage

synthetic(parm, sigma)

8 synthetic

Arguments
parm Values for each parameter needed to solve the Direct Problem.
sigma Standard Deviation of the synthetic data produced using the Direct Problem
solution.
Value

The result will be saved in the result file.

Examples

#

Configure the name of the folder where each file with the parameter to be changed.
If the folder is 'wd' then it will not be changed.

You can change it to another location where your parameter files are.

auxi <- system.file(package = "gripp")

folder_name <- c(auxi,auxi)

#

Configure the name of each file to be changed in the Direct Problem Solver.
file_name <- c('f1.R','f1.R")

#

Configure the name of each parameter to be changed.

parm_name <- c('A','B")

#

Configure alternative method using line number to enter each parameter

When line_number is zero, then the input method uses keywords.

line_number <-c(9,0)

#

Configure each parameter type, where:

1 means a numeric variable informed as a string, such as parm <- "1.38"

2 means a numeric vector informed as a string of numbers separated with a space character.
For example, parm <- "1.25 3.4". You must tell which one will be the variable considered.
parm_type <- c(1,1)

#

Informe the position of the variable to be considered in the problem in the vector.
If the parameter is a numeric variable, then its position is zero.

parm_vector <- c(0,0)

#

Configure the name of the folder where the command must be called.

If the folder is 'wd' then it will not be changed.

You can change it to another location where your parameter files are.
command_folder <- auxi

#

This variable means that the Direct Problem is solved using R or outside

if this is FALSE, the results are to be read from a file.

When it is TRUE, results will be passed inside R using the variable "results”
isitR <- TRUE

#

Configure the command to be used to call the Direct Problem Solver.

command <- 'f1.R'

#

synthetic

Configure a string to be used to attrib values in the Direct Problem file.
attrib_str <- '<-'

#

Configure the name of the file with the results obtained by the Direct Problem.
It must be a single column of values.

The results are changed at each run by the Direct Problem Solver.

result <- 'result.dat'

#

Configure the name of the folder where the results can be found after each run.
If the folder is 'wd' then it will not be changed.

You can change it to another location where your result file is.

result_folder <- tempdir()

#

parm<- rep(5,3)

synthetic(parm,0.03)

Index

cost, 2
invprob, 3

sensitivity, 5
synthetic, 7

10

	cost
	invprob
	sensitivity
	synthetic
	Index

