Package 'groupICA'

October 13, 2022

Title Independent Component Analysis for Grouped Data

Version 0.1.1

Author Niklas Pfister and Sebastian Weichwald

Maintainer Niklas Pfister <pfister@stat.math.ethz.ch>

Description Contains an implementation of an independent component analysis (ICA) for grouped data. The main function groupICA() performs a blind source separation, by maximizing an independence across sources and allows to adjust for varying confounding for user-specified groups. Additionally, the package contains the function uwedge() which can be used to approximately jointly diagonalize a list of matrices. For more details see the project website <https://sweichwald.de/groupICA/>.

URL https://github.com/sweichwald/groupICA-R

BugReports https://github.com/sweichwald/groupICA-R/issues

Depends R (>= 3.2.3) License AGPL-3 Encoding UTF-8 LazyData true Imports stats, MASS RoxygenNote 6.0.1 NeedsCompilation no Repository CRAN Date/Publication 2018-06-19 08:55:29 UTC

R topics documented:

	groupICA	Α.		 					 •																	2
	uwedge		 •	 		 •	•	•		•	•	•	 •	•	•	•	 •	•	 •	•	•		•	•	•	4
Index																										7

groupICA

Description

Estimates the unmixing and confounded sources of the groupICA model X=A(S+H).

Usage

```
groupICA(X, group_index = NA, partition_index = NA, n_components = NA,
n_components_uwedge = NA, rank_components = FALSE,
pairing = "complement", groupsize = 1, partitionsize = NA,
max_iter = 1000, tol = 1e-12, silent = TRUE)
```

Arguments

Х	data matrix. Each column corresponds to one predictor variable.						
group_index	vector coding to which group each sample belongs, with length(group_index)=nrow(X). If no group index is provided a rigid grid with groupsize samples per group is used (which defaults to all samples if groupsize was not set).						
partition_inde	x						
	vector coding to which partition each sample belongs, with length(partition_index)=nrow(X). If no partition index is provided a rigid grid with partitionsize samples per partition is used.						
n_components	number of components to extract. If NA is passed, the same number of compo- nents as the input has dimensions is used.						
n_components_u	wedge						
	number of components to extract during uwedge approximate joint diagonaliza- tion of the matrices. If NA is passed, the same number of components as the input has dimensions is used.						
rank_component	rank_components						
	boolean, optional. When TRUE, the components will be ordered in decreasing stability.						
pairing	either 'complement' or 'allpairs'. If 'allpairs' the difference matrices are com- puted for all pairs of partition covariance matrices, while if 'complement' a one-vs-complement scheme is used.						
groupsize	int, optional. Approximate number of samples in each group when using a rigid grid as groups. If NA is passed, all samples will be in one group unless group_index is passed during fitting in which case the provided group index is used (the latter is the advised and preferred way).						
partitionsize	int, optional. Approxiate number of samples in each partition when using a rigid grid as partition. If NA is passed, a (hopefully sane) default is used, again, unless partition_index is passed during fitting in which case the provided partition index is used.						

groupICA

max_iter	int, optional. Maximum number of iterations for the uwedge approximate joint diagonalisation during fitting.
tol	float, optional. Tolerance for terminating the uwedge approximate joint diagonalisation during fitting.
silent	boolean whether to supress status outputs.

Details

For further details see the references.

Value

object of class 'GroupICA' consisting of the following elements

V	the unmixing matrix.
coverged	boolean indicating whether the approximate joint diagonalisation converged due to tol.
n_iter	number of iterations of the approximate joint diagonalisation.
meanoffdiag	mean absolute value of the off-diagonal values of the to be jointly diagonalised matrices, i.e., a proxy of the approximate joint diagonalisation objective function.

Author(s)

Niklas Pfister and Sebastian Weichwald

References

Pfister, N., S. Weichwald, P. Bühlmann and B. Schölkopf (2017). GroupICA: Independent Component Analysis for grouped data. ArXiv e-prints (arXiv:1806.01094). Project website (https://sweichwald.de/groupICA/)

See Also

The function uwedge allows to perform to perform an approximate joint matrix diagonalization.

Examples

```
## Example
set.seed(1)
# Generate data from a block-wise variance model
d <- 2
m <- 10
n <- 5000
group_index <- rep(c(1,2), each=n)
partition_index <- rep(rep(1:m, each=n/m), 2)
S <- matrix(NA, 2*n, d)
H <- matrix(NA, 2*n, d)</pre>
```

```
uwedge
```

```
for(i in unique(group_index)){
  varH <- abs(rnorm(d))/4</pre>
  H[group_index==i, ] <- matrix(rnorm(d*n)*rep(varH, each=n), n, d)</pre>
  for(j in unique(partition_index[group_index==i])){
    varS <- abs(rnorm(d))</pre>
    index <- partition_index==j & group_index==i</pre>
    S[index,] <- matrix(rnorm(d*n/m)*rep(varS, each=n/m),</pre>
                                                        n/m, d)
  }
}
A <- matrix(rnorm(d^2), d, d)</pre>
A <- A%*%t(A)
X <- t(A%*%t(S+H))
# Apply groupICA
res <- groupICA(X, group_index, partition_index, rank_components=TRUE)</pre>
# Compare results
par(mfrow=c(2,2))
plot((S+H)[,1], type="1", main="true source 1", ylab="S+H")
plot(res$Shat[,1], type="1", main="estimated source 1", ylab="Shat")
plot((S+H)[,2], type="1", main="true source 2", ylab="S+H")
plot(res$Shat[,2], type="1", main="estimated source 2", ylab="Shat")
cor(res$Shat, S+H)
```

uwedge

uwedge

Description

Performs an approximate joint matrix diagonalization on a list of matrices. More precisely, for a list of matrices Rx the algorithm finds a matrix V such that for all i V Rx[i] t(V) is approximately diagonal.

Usage

```
uwedge(Rx, init = NA, rm_x0 = TRUE, return_diag = FALSE, tol = 1e-10,
max_iter = 1000, n_components = NA, silent = TRUE)
```

Arguments

Rx	list of matrices to be diagaonlized.
init	matrix used in first step of initialization. If NA a default based on PCA is used
rm_x0	boolean whether to also diagonalize first matrix in Rx or only use it for scaling.
return_diag	boolean. Specifies whether to return the list of diagonalized matrices.
tol	float, optional. Tolerance for terminating the iteration.
<pre>max_iter</pre>	int, optional. Maximum number of iterations.
n_components	number of components to extract. If NA is passed, all components are used.
silent	boolean whether to supress status outputs.

4

uwedge

Details

For further details see the references.

Value

object of class 'uwedge' consisting of the following elements

V	joint diagonalizing matrix.
Rxdiag	list of diagonalized matrices.
converged	boolean specifying whether the algorithm converged for the given tol.
iterations	number of iterations of the approximate joint diagonalisation.
meanoffdiag	mean absolute value of the off-diagonal values of the to be jointly diagonalised matrices, i.e., a proxy of the approximate joint diagonalisation objective function.

Author(s)

Niklas Pfister and Sebastian Weichwald

References

Pfister, N., S. Weichwald, P. Bühlmann and B. Schölkopf (2017). GroupICA: Independent Component Analysis for grouped data. ArXiv e-prints (arXiv:1806.01094).

Tichavsky, P. and Yeredor, A. (2009). Fast Approximate Joint Diagonalization Incorporating Weight Matrices. IEEE Transactions on Signal Processing.

See Also

The function groupICA uses uwedge.

Examples

uwedge

Average value of offdiagonal elements: print(res\$meanoffdiag)

Index

groupICA, 2, 5

uwedge, 3, 4