
Package ‘icmstate’
July 4, 2025

Type Package

Title Interval Censored Multi-State Models

Version 0.2.0

Maintainer Daniel Gomon <dgstatsoft@gmail.com>

Description Allows for the non-parametric estimation of transition intensities in interval-censored
multi-state models using the approach of Gomon and Put-
ter (2024) <doi:10.48550/arXiv.2409.07176> or
Gu et al. (2023) <doi:10.1093/biomet/asad073>.

License GPL (>= 2)

Imports Rcpp, mstate, prodlim, igraph (>= 1.3.0), checkmate, ggplot2,
deSolve, msm, survival, JOPS

LinkingTo Rcpp

Suggests testthat (>= 3.0.0), icenReg, profvis, knitr, rmarkdown,
bookdown, latex2exp

Config/testthat/edition 3

RoxygenNote 7.3.2

Encoding UTF-8

VignetteBuilder knitr

NeedsCompilation yes

Author Daniel Gomon [aut, cre] (ORCID:
<https://orcid.org/0000-0001-9011-3743>),

Hein Putter [aut] (ORCID: <https://orcid.org/0000-0001-5395-1422>)

Repository CRAN

Date/Publication 2025-07-04 10:00:02 UTC

Contents
icmstate-package . 2
ageqb . 3
agreaterb . 4

1

https://doi.org/10.48550/arXiv.2409.07176
https://doi.org/10.1093/biomet/asad073
https://orcid.org/0000-0001-9011-3743
https://orcid.org/0000-0001-5395-1422

2 icmstate-package

ainB . 4
Aintersectb . 5
Alargerb . 5
AsubsetB . 6
direct_from_observed_intervals . 6
estimate_support_msm . 7
evalstep . 8
extend_msfit . 9
get_trans_intervals . 9
graphfromIntervals . 10
interpol_msfit . 11
msm_frydman . 12
npmsm . 13
plot.npmsm . 18
plot.probtrans.subjects . 18
plot.smoothmsm . 19
plot_probtrans . 20
plot_surv . 22
predict_tp . 23
print.npmsm . 25
print.summary.probtrans.subjects . 25
probtrans_coxph . 26
probtrans_weib . 29
prod_lambda_G_base . 30
remove_redundant_observations . 30
sim_id_weib . 31
sim_weibmsm . 33
smoothmsm . 35
summary.probtrans.subjects . 37
supportHudgens . 39
support_from_direct_intervals . 40
support_npmsm . 40
transprob.msm . 41
visualise_data . 42
visualise_msm . 43

Index 45

icmstate-package icmstate

Description

Non-parametric estimation of transition intensities in interval-censored multi-state models

ageqb 3

Details

Allows for the estimation of transition intensities in interval-censored multi-state models using the
approach of Gomon and Putter (2024) (Multinomial likelihood) or Gu et al. (2023) (Poisson likeli-
hood).

Author(s)

Maintainer: Daniel Gomon <dgstatsoft@gmail.com> [aut, cre]
Hein Putter [aut]

References

Y. Gu, D. Zeng, G. Heiss, and D. Y. Lin, Maximum likelihood estimation for semiparametric regres-
sion models with interval-censored multistate data, Biometrika, Nov. 2023, doi:10.1093/biomet/asad073

D. Gomon and H. Putter, Non-parametric estimation of transition intensities in interval censored
Markov multi-state models without loops, arXiv, 2024, doi:10.48550/arXiv.2409.07176

ageqb Check if event time is larger/equal than other event time

Description

Function which takes as input a vector a with event times and a vector b with event times and checks
whether each entry in a is larger or equal than the entries in b.

Usage

ageqb(a, b)

Arguments

a Vector of event times

b Vector of event times

Value

Matrix of size (length(a) * length(b)) with binary values indicating whether the event times in a are
larger than the event times in b

4 ainB

agreaterb Check if event time is larger than other event time

Description

Function which takes as input a vector a with event times and a vector b with event times and checks
whether each entry in a is larger than the entries in b.

Usage

agreaterb(a, b)

Arguments

a Vector of event times

b Vector of event times

Value

Matrix of size (length(a) * length(b)) with binary values indicating whether the event times in a are
larger than the event times in b

ainB Check if event time is contained within half-open interval

Description

Function which takes as input a vector a with event times and a 2 column matrix B representing half-
open intervals (l, R] and checks whether each event time is contained in each half-open interval.

Usage

ainB(a, B)

Arguments

a Vector of event times

B Two column matrix containing intervals

Value

Matrix of size (length(a) * nrow(B)) with binary values indicating whether the event times in a are
contained in the intervals of B

Aintersectb 5

Aintersectb Check if half-open intervals intersect with event times

Description

Function which takes as input a 2 column matrix of half-open intervals and a vector of event times
and returns the event times that intersect with the half-open intervals.

Usage

Aintersectb(A, b, A.left.open = FALSE)

Arguments

A Two column matrix containing intervals

b Vector of event times

A.left.open Are the intervals in A open on the left side? Default = FALSE.

Value

Numeric vector of event times from b that intersect with A.

Alargerb Check if closed interval is contained in half-open infinite interval

Description

Function which takes as input a matrix with 2 columns and a vector indicating left points of intervals
[b, Infinity) and checks whether each interval in the matrix is contained within the corresponding
interval derived from b.

Usage

Alargerb(A, b)

Arguments

A Two column matrix containing intervals to be checked for being contained in b

b Vector indicating left point in corresponding [b, Infinity) interval

Value

Matrix of size (nrow(A) * length(b)) with binary values indicating whether the intervals in A are
contained in the ones induced by b

6 direct_from_observed_intervals

AsubsetB Check if closed interval is contained in other closed interval

Description

Function which takes as input two matrices with 2 columns each and checks whether each interval
in the first matrix is contained within each interval in the second matrix.

Usage

AsubsetB(A, B, B.left.open = FALSE, B.right.open = FALSE)

Arguments

A Two column matrix containing intervals to be checked for being contained in B

B Two column matrix containing intervals possibly overlapping the intervals in A

B.left.open Are the intervals in B left-open?

B.right.open Are the intervals in B right-open?

Value

Matrix of size (nrow(A) * nrow(B)) with binary values indicating whether the intervals in A are
contained in B

direct_from_observed_intervals

Translate observed transition intervals into direct transition intervals

Description

Given observed transition intervals, determine the "worst" (least informative) possible direct transi-
tion intervals that could have occurred to form this sample.

Usage

direct_from_observed_intervals(observed_intervals, tmat, gd)

Arguments

observed_intervals

Output from get_trans_intervals.

tmat A transition matrix as created by transMat

gd A data.frame with the following named columns

id: Subject idenitifier;

estimate_support_msm 7

state: State at which the subject is observed at time;
time: Time at which the subject is observed;

The true transition time between states is then interval censored between the
times.

Value

A data.frame with the following named columns

entry_time: Time of entry into "from" state;

time_from: Last time subject(id) was seen in state "from";

time_to: First time subject(id) was seen in state "to";

from: State from which a transition was observed;

to: State to which the transition was observed;

id: Subject identifier;

For right-censored observations, entry_time denotes the first time seen in the censored state, time_from
the last time seen in the censored state, time_to is Inf, from the censored state and to is NA.

estimate_support_msm Estimate the support of a general Markov interval-censored Multi-
state model without loops.

Description

Given a realisation of a multi-state model, estimate the support of the different transitions possible in
that MSM. The estimation is performed by viewing each possible state in a competing risks setting
and applying the result of Hudgens (2001) to determine the support and left-truncation intervals and
Hudgens (2005) to check whether a solution is possible.

Usage

estimate_support_msm(gd, tmat)

Arguments

gd A data.frame with the following named columns

id: Subject idenitifier;
state: State at which the subject is observed at time;
time: Time at which the subject is observed;

The true transition time between states is then interval censored between the
times.

tmat A transition matrix as created by transMat

8 evalstep

Value

TODO

References

Michael G. Hudgens, On Nonparametric Maximum Likelihood Estimation with Interval Censoring
and Left Truncation, Journal of the Royal Statistical Society Series B: Statistical Methodology,
Volume 67, Issue 4, September 2005, Pages 573-587, doi:10.1111/j.14679868.2005.00516.x

M. G. Hudgens, G. A. Satten, and I. M. Longini, Nonparametric Maximum Likelihood Estimation
for Competing Risks Survival Data Subject to Interval Censoring and Truncation, Biometrics, vol.
57, no. 1, Pages 74-80, March 2001, doi:10.1111/j.0006341x.2001.00074.x

evalstep Sample from a markov chain multi state model with exactly observed
transition times

Description

Given a markov chain multi state model with exactly observed transition times, sample from this
chain at the observation times, giving interval censored observations (panel data).

Usage

evalstep(time, stepf, newtime, subst = -Inf, to.data.frame = FALSE)

Arguments

time Times at which a transition occurs
stepf States at which the chain is in at times
newtime Observation times of the chain, to create observed states
subst State to return if observation time is before first transition time. Default = -Inf.
to.data.frame Should the result be returned as a data.frame?

Value

A numeric vector or data.frame (if to.data.frame = TRUE) containing either the observed states
or the named columns newtime and res, representing the observation times and observed states.

Author(s)

Hein Putter

Examples

obs_states <- evalstep(time = seq(0, 20, 2), stepf = sample(1:9, 11, replace = TRUE),
newtime = c(-1, 1, 7, 9, 19))

obs_states

https://doi.org/10.1111/j.1467-9868.2005.00516.x
https://doi.org/10.1111/j.0006-341x.2001.00074.x

extend_msfit 9

extend_msfit Given a msfit object, extend the times considered in the object

Description

After using this function, use probtrans to get interpolated transition probabilities. This function
is useful when you want to obtain transition probabilities at more than just the minimal number of
times that strictly have to be considered. The inserted hazard values are simply the hazards at the
nearest time that is smaller or equal.

Usage

extend_msfit(msfit, times)

Arguments

msfit A msfit object.

times Times at which to extend the msfit object.

Value

An msfit object containing the extended hazards

Examples

library(mstate)
tmat <- trans.illdeath()
times <- seq(0, 5, 0.1)
ms_fit <- list(Haz = data.frame(time = rep(times, 3),

Haz = c(replicate(3, cumsum(runif(length(times), 0, 0.02)))),
trans = rep(1:3, each = length(times))),

trans = tmat)
class(ms_fit) <- "msfit"

ms_fit_interpolated <- extend_msfit(ms_fit, seq(0, 5, 0.01))

get_trans_intervals Get transition intervals from specified data

Description

Given a sample from a multi-state model, summarize the transitions that have been observed.

Usage

get_trans_intervals(gd, tmat)

10 graphfromIntervals

Arguments

gd A data.frame with the following named columns
id: Subject idenitifier;
state: State at which the subject is observed at time;
time: Time at which the subject is observed;
The true transition time between states is then interval censored between the
times.

tmat A transition matrix as created by transMat

Value

A data.frame with the following named columns

entry_time: Time of entry into "from" state;
time_from: Last time subject(id) was seen in state "from";
time_to: First time subject(id) was seen in state "to";
from: State from which a transition was observed;
to: State to which the transition was observed;
id: Subject identifier;

For right-censored observations, entry_time denotes the first time seen in the censored state, time_from
the last time seen in the censored state, time_to is Inf, from the censored state and to is NA.

graphfromIntervals Construct Graph from censoring/truncation intervals

Description

Given intervals, construct a graph containing vertices representing these intervals and edges be-
tween the vertices if the intervals intersect. See Hudgens (2005).

Usage

graphfromIntervals(intervals)

Arguments

intervals A data.frame with 3 columns containing half-open intervals (left open, right
closed) and an indicator whether the interval results from a censored transition
or truncation: #’
L: Left side of interval;
R: Right side of interval;
cens: Indicator whether interval resulted from censoring or truncation (1 = cen-

soring, 0 = truncation);
Note that the truncation intervals need to be in the form (N, Inf] with N a numeric
value.

interpol_msfit 11

Value

Returns an 'igraph' object containing the graph with vertices representing the intervals and edges
between the vertices if the intervals intersect. The vertices will be named accordingly, starting with
a ’T’ when representing a truncation interval and ’C’ when representing a censoring interval.

References

Michael G. Hudgens, On Nonparametric Maximum Likelihood Estimation with Interval Censoring
and Left Truncation, Journal of the Royal Statistical Society Series B: Statistical Methodology,
Volume 67, Issue 4, September 2005, Pages 573-587, doi:10.1111/j.14679868.2005.00516.x

interpol_msfit Given a msfit object, linearly interpolate the cumulative hazard tak-
ing into account the support sets for msfit objects.

Description

After using this function, use probtrans to get interpolated transition probabilities.

Usage

interpol_msfit(msfit, times)

Arguments

msfit A msfit object.

times Times at which to interpolate the msfit object.

Value

An msfit object containing the interpolated hazards

Examples

library(mstate)
tmat <- trans.illdeath()
times <- seq(0, 5, 0.1)
ms_fit <- list(Haz = data.frame(time = rep(times, 3),

Haz = c(replicate(3, cumsum(runif(length(times), 0, 0.02)))),
trans = rep(1:3, each = length(times))),

trans = tmat)
class(ms_fit) <- "msfit"

ms_fit_interpolated <- interpol_msfit(ms_fit, seq(0, 5, 0.01))

https://doi.org/10.1111/j.1467-9868.2005.00516.x

12 msm_frydman

msm_frydman Determine NPMLE for Multi State illness death Markov model using
Frydman (1995)

Description

Determine NPMLE for Multi State illness death Markov model using Frydman (1995)

Usage

msm_frydman(data, tol = 1e-08)

Arguments

data A data.frame containing the columns named:
delta: Did a transition from 1 -> 2 occur? (binary: 0 = no, 1 = yes); In the

left-truncated case, delta = 2 indicates initially observed in state 2.
Delta: Was the transition to state 3 observed? (binary: 0 = no, 1 = yes);
L: Left timepoint of interval censored transition to state 2 (numeric);
R: Right timepoint of interval censored transition to state 2 (numeric);
time: Time of event (transition to 3) or right-censoring in state 2 (numeric);
trunc: (optional) Left-truncation time (numeric); Only used for entries with

delta = 2.
tol Tolerance of the EM algorithm. Algorithm will stop when the absolute dif-

ference between current mass estimates and new estimates is smaller than the
tolerance

Details

For an illness death model (1 = healthy, 2 = ill, 3 = dead) estimate the NPMLE in the following
form:

F12: Cumulative distribution function of 1->2 transition;
F13: Cumulative distribution function of 1->3 transition;
Lambda23: Cumulative intensity of 2->3 transition;

Value

A list with the following entries:

data_idx: A list containing the data used for the fit (matdata), the indices for which group a sub-
ject belongs to (GroupX_idx), some computational parameters (see Frydman(1995)) and the
unique failure times of the 2->3 and 1->3 transitions respectively in t_n_star and e_k_star;

supportMSM: A list containing all transition intervals in A and the theoretical support intervals in
Q_mat;

z_lambda: Computational quantities, see Frydman(1995);
cdf: A list of functions that allow to recover the cdf for the 1->3 (F13) and 1->2 (F12) transition

and the cumulative hazard for the 2->3 (Lambda23) transition.;

npmsm 13

References

Frydman, H. (1995). Nonparametric Estimation of a Markov ’Illness-Death’ Process from Interval-
Censored Observations, with Application to Diabetes Survival Data. Biometrika, 82(4), 773-789.
doi:10.2307/2337344

Examples

data <- data.frame(delta = c(0, 0, 1, 1), Delta = c(0, 1, 0, 1),
L = c(NA, NA, 1, 1.5), R = c(NA, 3, 2, 3),
time = c(4, 5, 6, 7))

mod_frydman <- msm_frydman(data)
visualise_data(data, mod_frydman)

npmsm NPMLE for general multi-state model with interval censored transi-
tions

Description

For a general Markov chain multi-state model with interval censored transitions calculate the NPMLE
of the transition intensities. The estimates are returned as an msfit object.

Usage

npmsm(
gd,
tmat,
method = c("multinomial", "poisson"),
inits = c("equalprob", "homogeneous", "unif", "beta"),
beta_params,
support_manual,
exact,
maxit = 100,
tol = 1e-04,
conv_crit = c("haz", "prob", "lik"),
verbose = FALSE,
manual = FALSE,
newmet = FALSE,
include_inf = FALSE,
checkMLE = TRUE,
checkMLE_tol = 1e-04,
prob_tol = tol/10,
remove_redundant = TRUE,
remove_bins = FALSE,

https://doi.org/10.2307/2337344

14 npmsm

estimateSupport = FALSE,
init_int = c(0, 0),
...

)

Arguments

gd A data.frame with the following named columns

id: Subject idenitifier;
state: State at which the subject is observed at time;
time: Time at which the subject is observed;

The true transition time between states is then interval censored between the
times.

tmat A transition matrix as created by transMat

method Which method should be used for the EM algorithm. Choices are c("multinomial",
"poisson"), with multinomial the default. Multinomial will use the EM al-
gorithm described in Gomon and Putter (2024) and Poisson will use the EM
algorithm described in Gu et al. (2023).

inits Which distribution should be used to generate the initial estimates of the inten-
sities in the EM algorithm. One of c("equalprob", "unif", "beta"), with "equal-
prob" assigning 1/K to each intensity, with K the number of distinct observation
times (length(unique(gd[, "time"]))). For "unif", each intensity is sampled
from the Unif[0,1] distribution and for "beta" each intensity is sampled from the
Beta(a, b) distribution. If "beta" is chosen, the argument beta_params must be
specified as a vector of length 2 containing the parameters of the beta distribu-
tion. Default = "equalprob".

beta_params A vector of length 2 specifying the beta distribution parameters for initial dis-
tribution generation. First entry will be used as shape1 and second entry as
shape2. See help(rbeta). Only used if inits = "beta".

support_manual Used for specifying a manual support region for the transitions. A list of length
the number of transitions in tmat, each list element containing a data frame with
2 named columns L and R indicating the left and right values of the support
intervals. When specified, all intensities outside of these intervals will be set to
zero for the corresponding transitions. Intensities set to zero cannot be changed
by the EM algorithm. Will use inits = "equalprob".

exact Numeric vector indicating to which states transitions are observed at exact times.
Must coincide with the column number in tmat.

maxit Maximum number of iterations. Default = 100.

tol Tolerance of the convergence procedure. A change in the value of conv_crit in
an iteration of less than tol will make the procedure stop.

conv_crit Convergence criterion. Stops procedure when the difference in the chosen quan-
tity between two consecutive iterations is smaller than the tolerance level tol.
One of the following:

"haz" Stop when change in maximum estimated intensities (hazards) < tol.
"prob" Stop when change in estimated probabilities < tol.

npmsm 15

"lik" Stop when change in observed-data likelihood < tol.

Default is "haz". The options "haz" and "lik" can be compared across different
methods, but "prob" is dependent on the chosen method. Most conservative
(requiring most iterations) is "prob", followed by "haz" and finally "lik".

verbose Should iteration messages be printed? Default is FALSE

manual Manually specify starting transition intensities? If TRUE, the transition intensity
for each bin for each transition must be entered manually. DO NOT USE for
large data sets, and in general it is not adviced to use this.

newmet Should contributions after last observation time also be used in the likelihood?
Default is FALSE.

include_inf Should an additional bin from the largest observed time to infinity be included
in the algorithm? Default is FALSE.

checkMLE Should a check be performed whether the estimate has converged towards a
local maximum? This is done by comparing the reduced gradient to the value of
checkMLE_tol. Default is TRUE.

checkMLE_tol Tolerance for checking whether the estimate has converged to local maximum.
Whenever an estimated transition intensity is smaller than prob_tol, it is as-
sumed to be zero and its reduced gradient is not considered for determining
whether the maximum has been reached. Default = 1e-4.

prob_tol If an estimated probability is smaller than prob_tol, it will be set to zero during
estimation. Default value is tol/10.

remove_redundant

Should redundant observations be removed before running the algorithm? An
observation is redundant when the same state has been observed more than 3
times consecutively, or if it is a repeat observation of an absorbing state. Default
is TRUE.

remove_bins Should a bin be removed during the algorithm if all estimated intensities are
zero for a single bin? Can improve computation speed for large data sets. Note
that zero means the estimated intensities are smaller than prob_tol. Default is
FALSE.

estimateSupport

Should the support of the transitions be estimated using the result of Hudgens
(2005)? Currently produces incorrect support sets - DO NOT USE. Default =
FALSE

init_int A vector of length 2, with the first entry indicating what percentage of mass
should be distributed over (second entry) what percentage of all first bins. De-
fault is c(0, 0), in which case the argument is ignored. This argument has no
practical uses and only exists for demonstration purposes in the related article.

... Further arguments to estimate_support_msm

Details

Denote the unique observation times in the data as 0 = τ0, τ1, . . . , τK Let g, h ∈ H denote the
possible states in the model and X(t) the state of the process at time t.

Then this function can be used to estimate the transition intensities αk
gh = αgh(τk).

16 npmsm

Having obtained these estimated, it is possible to recover the transition probabilities P(X(t) =
h|X(s) = g) for t > s using the transprob functions.

Value

A list with the following entries:

A: A list of class msfit containing the cumulative intensities for each transition
and the transition matrix used;

Ainit: Initial intensities, in an object of class msfit;

gd: Data used for the estimation procedure;

ll: Log-likelihood value of the procedure at the last iteration;

delta: Change in log-likelihood value at the last iteration;

it: Number of iterations of the procedure;

taus: Unique time points of the data, the cumulative intensity only makes jumps at
these time points.;

tmat: The transition matrix used, see transMat;

tmat2: A summary of the transitions in the model, see to.trans2;

ll_history: The log-likelihood value at every iteration of the procedure;

KKT_violated: How often were KKT conditions violated during maximisation of the likeli-
hood? In other words, how often did we hit the optimization boundary during
the procedure?;

min_time: The smallest time of an observation in the used data. Note that the smallest time
in the data is used as zero reference;

reduced_gradient:

The reduced gradient at the last iteration. Rows indicate the transitions and
columns the unique observation times;

isMLE: Has the procedure converged to the NPMLE? Checked using checkMLE_tol;
langrangemultiplier:

The lagrange multipliers at the last iteration;

aghmat: A matrix representation of the transition intensities in A. Rows represent transi-
tions and columns unique observation times;

Ygk: The summed at-risk indicator for all subjects in the data at the last iteration.
Rows represent transitions and columns unique observation times;

Dmk: The summed probability of making a transition for all subjects at the last itera-
tion. Rows represent transitions and columns unique observation times;

method: Method used for the optimization procedure;

maxit: Maximum number of allowed iterations;

tol: Tolerance of the convergence procedure;

conv_crit: Convergence criterion of the procedure;

checkMLE: Was the reduced gradient checked at the last iteration to determine conver-
gence?;

npmsm 17

checkMLE_tol: The tolerance of the checkMLE procedure;

prob_tol: Tolerance for probabilities to be set to zero;
remove_redundant:

Were redundant observations removed before performing the procedure?;

References

D. Gomon and H. Putter, Non-parametric estimation of transition intensities in interval censored
Markov multi-state models without loops, arXiv, 2024, doi:10.48550/arXiv.2409.07176

Y. Gu, D. Zeng, G. Heiss, and D. Y. Lin, Maximum likelihood estimation for semiparametric regres-
sion models with interval-censored multistate data, Biometrika, Nov. 2023, doi:10.1093/biomet/
asad073

Michael G. Hudgens, On Nonparametric Maximum Likelihood Estimation with Interval Censoring
and Left Truncation, Journal of the Royal Statistical Society Series B: Statistical Methodology,
Volume 67, Issue 4, September 2005, Pages 573-587, doi:10.1111/j.14679868.2005.00516.x

See Also

transprob for calculating transition probabilities, plot.npmsm for plotting the cumulative intensi-
ties, print.npmsm for printing some output summaries, visualise_msm for visualising data, msfit
for details on the output object.

Examples

#Create transition matrix using mstate functionality: illness-death
if(require(mstate)){

tmat <- mstate::trans.illdeath()
}

#Write a function for evaluation times: observe at 0 and uniform inter-observation times.
eval_times <- function(n_obs, stop_time){

cumsum(c(0, runif(n_obs-1, 0, 2*(stop_time-4)/(n_obs-1))))
}

#Use built_in function to simulate illness-death data
#from Weibull distributions for each transition
sim_dat <- sim_id_weib(n = 50, n_obs = 6, stop_time = 15, eval_times = eval_times,
start_state = "stable", shape = c(0.5, 0.5, 2), scale = c(5, 10, 10/gamma(1.5)))

tmat <- mstate::trans.illdeath()

#Fit the model using method = "multinomial"
mod_fit <- npmsm(gd = sim_dat, tmat = tmat, tol = 1e-2)

#Plot the cumulative intensities for each transition
plot(mod_fit)

https://doi.org/10.48550/arXiv.2409.07176
https://doi.org/10.1093/biomet/asad073
https://doi.org/10.1093/biomet/asad073
https://doi.org/10.1111/j.1467-9868.2005.00516.x

18 plot.probtrans.subjects

plot.npmsm Plot a "npmsm" object

Description

Plot the cumulative intensities of a 'npmsm' objects. A wrapper for plot.msfit from the mstate
package.

Usage

S3 method for class 'npmsm'
plot(x, ...)

Arguments

x An object of class "npmsm"

... Additional arguments to msfit

Value

A plot will be produced in the plotting window

plot.probtrans.subjects

Plot an object of class "probtrans.subjects"

Description

Plots the transition probabilities for a specific subject. Wrapper for plot.probtrans

Usage

S3 method for class 'probtrans.subjects'
plot(x, id, ...)

Arguments

x An object of class "probtrans.subjects"

id Subject identifier

... Further arguments to plot.probtrans

Details

Note that

plot.smoothmsm 19

Author(s)

Hein Putter and Daniel Gomon

Examples

if(require("mstate")){
data(ebmt3)
n <- nrow(ebmt3)
tmat <- transMat(x = list(c(2, 3), c(3), c()), names = c("Tx",

"PR", "RelDeath"))
ebmt3$prtime <- ebmt3$prtime/365.25
ebmt3$rfstime <- ebmt3$rfstime/365.25
covs <- c("dissub", "age", "drmatch", "tcd", "prtime")
msbmt <- msprep(time = c(NA, "prtime", "rfstime"), status = c(NA,

"prstat", "rfsstat"), data = ebmt3, trans = tmat, keep = covs)
#Expand covariates so that we can have transition specific covariates
msbmt <- expand.covs(msbmt, covs, append = TRUE, longnames = FALSE)

#Simple model, transition specific covariates, each transition own baseline hazard
c1 <- coxph(Surv(Tstart, Tstop, status) ~ dissub1.1 + dissub2.1 +

age1.1 + age2.1 + drmatch.1 + tcd.1 + dissub1.2 + dissub2.2 +
age1.2 + age2.2 + drmatch.2 + tcd.2 + dissub1.3 + dissub2.3 +
age1.3 + age2.3 + drmatch.3 + tcd.3 + strata(trans), data = msbmt,
method = "breslow")

#We need to make a data.frame containing all subjects of interest
ttmat <- to.trans2(tmat)[, c(2, 3, 1)]
names(ttmat)[3] <- "trans"
nd_n <- NULL
for (j in 1:30) {
Select global covariates of subject j
cllj <- ebmt3[j, covs]
nd2 <- cbind(ttmat, rep(j, 3), rbind(cllj, cllj, cllj))
colnames(nd2)[4] <- "id"
Make nd2 of class msdata to use expand.covs
attr(nd2, "trans") <- tmat
class(nd2) <- c("msdata", "data.frame")
nd2 <- expand.covs(nd2, covs=covs, longnames = FALSE)
nd_n <- rbind(nd_n, nd2)
}

icmstate_pt <- probtrans_coxph(c1, predt = 0, direction = "forward",
newdata = nd_n, trans = tmat)

#plot transition probabilities for subject 2
plot(icmstate_pt, id = 2)

}

plot.smoothmsm Plot a "smoothmsm" object

20 plot_probtrans

Description

Plot the cumulative intensities of a 'npmsm' objects. A wrapper for plot.msfit from the mstate
package.

Usage

S3 method for class 'smoothmsm'
plot(x, ...)

Arguments

x An object of class "smoothmsm"

... Additional arguments to plot

Value

A plot will be produced in the plotting window

plot_probtrans Plot the transition probabilities for a fitted npmsm model

Description

For a fitted npmsm model plot the transition probabilities from a certain state for all possible (direct
and indirect) transitions.

Usage

plot_probtrans(
npmsmlist,
from = NULL,
to = NULL,
transitions = NULL,
landmark,
interpolate = TRUE,
facet = TRUE,
times_interpol = NULL,
c.legend = TRUE,
c.names = NULL

)

plot_probtrans 21

Arguments

npmsmlist An "npmsm" object or a list containing multiple "npmsm" objects

from A numeric value indicating the state from which we consider the transition prob-
abilities. Default is NULL, meaning we consider transition probabilities from
all states from which a direct transition is possible.

to A numeric vector indicating to which states we consider the transition probabil-
ities. Only states that can be reached from the "from" state are considered.

transitions A numeric vector indicating which transitions to consider (plot). Can only be
used if "from" is not specified, as it only works for direct transitions.

landmark A landmark time indicating from which time on survival should be determined.
If missing, the smallest between the time in the first "npmsm" object or 0 will
be used.

interpolate Should the cumulative hazard be linearly interpolated before determining tran-
sition probabilities? Default is TRUE.

facet Should the resulting plot be faceted (one panel per transition)? Default is TRUE.

times_interpol At which times should the cumulative hazard be interpolated? Only necessary
to specify if interpolate = TRUE.

c.legend Should legend be displayed for colour (different entries in npmsmlist)? Default
is TRUE.

c.names A character vector indicating the names to display in the legend. These names
should represent the entries in npmsmlist.. Default = NULL.

Value

A plot will be produced in the plotting window. When assigning the output to an object, the under-
lying data frame used for plotting and a 'ggplot' object will be returned in a list.

Examples

require(mstate)
require(ggplot2)
#Generate from an illness-death model with exponential transitions with
#rates 1/2, 1/10 and 1 for 10 subjects over a time grid.
gd <- sim_weibmsm(tmat = trans.illdeath(), shape = c(1,1,1),

scale = c(2, 10, 1), n_subj = 10, obs_pars = c(2, 0.5, 20),
startprobs = c(0.9, 0.1, 0))

#Fit 2 models: 1 with at most 4 iterations and 1 with at most 20
mod1 <- npmsm(gd, trans.illdeath(), maxit = 4)
mod2 <- npmsm(gd, trans.illdeath(), maxit = 20)

#Plot the transition probabilities from state 1, without interpolating
#the cumulative hazard for the npmsm runs with max 4 and 20 iterations.
plot_probtrans(list(mod1, mod2), from = 1, interpolate = FALSE,

c.names = c("4 iterations", "20 iterations"))

22 plot_surv

plot_surv Plot the transition specific survival probabilities for a fitted npmsm
model

Description

For a fitted npmsm model plot the transition specific survival probabilities. These are given by the
product integral of the hazard increments estimated for a single transition. This is equivalent to a
Kaplan-Meier estimator ignoring the existence of all other transitions.

Usage

plot_surv(npmsmlist, landmark, support = FALSE, sup_cutoff = 1e-08)

Arguments

npmsmlist An "npmsm" object or a list containing multiple "npmsm" objects

landmark A landmark time indicating from which time on survival should be determined.
If missing, the smallest time in the first "npmsm" object will be used.

support Should the support regions be displayed as rectangles?

sup_cutoff Cutoff to be used for determining the support intervals.

Value

A plot will be produced in the plotting window. When assigning the output to an object, the under-
lying data frame used for plotting and a 'ggplot' object will be returned in a list.

Examples

require(mstate)
require(ggplot2)
#Generate from an illness-death model with exponential transitions with
#rates 1/2, 1/10 and 1 for 10 subjects over a time grid.
gd <- sim_weibmsm(tmat = trans.illdeath(), shape = c(1,1,1),

scale = c(2, 10, 1), n_subj = 10, obs_pars = c(2, 0.5, 20),
startprobs = c(0.9, 0.1, 0))

mod1 <- npmsm(gd, trans.illdeath(), maxit = 4)
mod2 <- npmsm(gd, trans.illdeath(), maxit = 20)

#Plot the transition specific Kaplan-Meier estimators and their numerically
#determined support sets.
plot_surv(list(mod1, mod2), support = TRUE)

predict_tp 23

predict_tp Calculate subject specific transition probabilities from a multi-state
proportional hazards model.

Description

Given a coxph model fit on multi-state data (prepared with msprep), determine transition probabil-
ities for subjects in newdata.

Usage

predict_tp(
object,
predt,
direction = c("forward", "fixedhorizon"),
newdata,
trans

)

Arguments

object A coxph object fit on multi-state data. Must contain a strata(X) term. Data
used for the coxph() fit preferably prepared using msprep.

predt A positive number indicating the prediction time. This is either the time at
which the prediction is made (if direction = "forward") or the time for which
the prediction is to be made (if direction = "backward").

direction One of "forward" (default) or "fixedhorizon", indicating whether prediction
is forward or for a fixed horizon

newdata A data.frame containing a single row per subject in the data. It must contain
the following named columns:
id: (optional) Unique identifier of the subject, can be numeric or character;
"variables": The variables and their values for the subject(s) (optionally iden-

tified by "id"). After using expand.covs, the names of the new data must
match the names of the variables in the coxph object.

Note that newdata must contain a column containing the variable which was
used to determine the stratum of a transition in object. Usually the stratum is
determined from a column that is generated automatically in the pre-processing
steps of this function.

trans A transition matrix as created by transMat.

Details

When using this function for newdata with many subjects, consider running the function multi-
ple times for parts of newdata to negate the risk of running our of memory. Using this func-
tion, it is only possible to consider models with transition specific covariates. If you would like
to have covariates shared over transitions or proportional hazards assumptions between transitions,
see probtrans_coxph.

24 predict_tp

Value

An object of class "probtrans.subjects". This is a list of length n (number of subjects in new-
data), with each list element an object of class probtrans for the associated subject. List elements
can be accessed using [[x]], with x ranging from 1 to n. Additionally, each list element has an
element $id, representing the subject id and the output object also has an element $subject_ids
representing the subject ids in order.

See Also

probtrans_coxph, plot.probtrans.subjects, summary.probtrans.subjects

Examples

#Example from the mstate vignette
#We determine the subject specific transition probabilities for subjects
#in the ebmt3 data-set
if(require("mstate")){

data(ebmt3)
n <- nrow(ebmt3)
tmat <- transMat(x = list(c(2, 3), c(3), c()), names = c("Tx",

"PR", "RelDeath"))
#From days to years
ebmt3$prtime <- ebmt3$prtime/365.25
ebmt3$rfstime <- ebmt3$rfstime/365.25
#Covariates we will use
covs <- c("dissub", "age", "drmatch", "tcd", "prtime")
msbmt <- msprep(time = c(NA, "prtime", "rfstime"), status = c(NA,

"prstat", "rfsstat"), data = ebmt3, trans = tmat, keep = covs)
#Expand covariates so that we can have transition specific covariates
msbmt2 <- expand.covs(msbmt, covs, append = TRUE, longnames = FALSE)

#-------------Model---------------------#

#Simple model, transition specific covariates, each transition own baseline hazard
c1 <- coxph(Surv(Tstart, Tstop, status) ~ dissub1.1 + dissub2.1 +

age1.1 + age2.1 + drmatch.1 + tcd.1 + dissub1.2 + dissub2.2 +
age1.2 + age2.2 + drmatch.2 + tcd.2 + dissub1.3 + dissub2.3 +
age1.3 + age2.3 + drmatch.3 + tcd.3 + strata(trans), data = msbmt2,
method = "breslow")

#Predict transition probabilities for first 30 subjects.
tp_subjects <- predict_tp(c1, predt = 0, direction = "forward",

newdata = ebmt3[1:30,], trans = tmat)

#Now we can plot the transition probabilities for each subject separately:
plot(tp_subjects, id = 1)
#tp_subjects has length number of subjects in newdata + 1
#And tp_subjects[[i]] is an object of class "probtrans", so you can
#use all probtrans functions: summary, plot etc.

}

print.npmsm 25

print.npmsm Print a "npmsm" object

Description

Print some details of a npmsm fit

Usage

S3 method for class 'npmsm'
print(x, ...)

Arguments

x An object of class "npmsm"

... Additional arguments to print

Value

A summary of the fitted model will be displayed in the console

print.summary.probtrans.subjects

Print method for a summary.probtrans.subjects object

Description

Print method for a summary.probtrans.subjects object

Usage

S3 method for class 'summary.probtrans.subjects'
print(x, complete = FALSE, ...)

Arguments

x Object of class ’summary.probtrans.subjects’, to be printed

complete Whether or not the complete estimated transition probabilities should be printed
(TRUE) or not (FALSE); default is FALSE, in which case the estimated transition
probilities will be printed for the first and last 6 time points of each starting state
or of the selected times (or all when there are at most 12 of these time points

... Further arguments to print

26 probtrans_coxph

Examples

Not run:
If all time points should be printed, specify complete=TRUE in the print statement
print(x, complete=TRUE)

End(Not run)

probtrans_coxph Calculate subject specific transition probabilities from a multi-state
coxph model.

Description

Given a coxph model fit on multi-state data (prepared with msprep), determine transition probabil-
ities for subjects in newdata.

Usage

probtrans_coxph(
object,
predt,
direction = c("forward", "fixedhorizon"),
newdata,
trans

)

Arguments

object A coxph object fit on multi-state data. Must contain a strata(X) term. Data
used for the coxph() fit preferably prepared using msprep.

predt A positive number indicating the prediction time. This is either the time at
which the prediction is made (if direction = "forward") or the time for which
the prediction is to be made (if direction = "backward").

direction One of "forward" (default) or "fixedhorizon", indicating whether prediction
is forward or for a fixed horizon

newdata A data.frame containing a single row for each transition per subject in the data.
For a model with m possible transitions, and n subjects newdata must have m*n
rows. It must contain the following named columns:

id: Unique identifier of the subject, can be numeric or character;
from: State from which the transition takes place;
to: State to which the transition takes place;
trans: Transition number in the 'transMat' trans this transition relates to;
"variables": The variables and their values for the subject identified by "id"

for the transition this entry relates to. Names must match the names of the
variables in coxph object.

probtrans_coxph 27

Note that newdata must contain a column containing the variable which was
used to determine the stratum of a transition in object. Usually the stratum
is determined from one of the required columns. The "variables" columns can
usually be obtained using expand.covs.

trans A transition matrix as created by transMat.

Details

When using this function for newdata with many subjects, consider running the function multiple
times for parts of newdata to negate the risk of running our of memory.

Value

An object of class "probtrans.subjects". This is a list of length n (number of subjects in new-
data), with each list element an object of class probtrans for the associated subject. List elements
can be accessed using [[x]], with x ranging from 1 to n. Additionally, each list element has an
element $id, representing the subject id and the output object also has an element $subject_ids
representing the subject ids in order.

Examples

#Example from the mstate vignette
#We determine the subject specific transition probabilities for subjects
#in the ebmt3 data-set
if(require("mstate")){

data(ebmt3)
n <- nrow(ebmt3)
tmat <- transMat(x = list(c(2, 3), c(3), c()), names = c("Tx",

"PR", "RelDeath"))
ebmt3$prtime <- ebmt3$prtime/365.25
ebmt3$rfstime <- ebmt3$rfstime/365.25
covs <- c("dissub", "age", "drmatch", "tcd", "prtime")
msbmt <- msprep(time = c(NA, "prtime", "rfstime"), status = c(NA,

"prstat", "rfsstat"), data = ebmt3, trans = tmat, keep = covs)
#Expand covariates so that we can have transition specific covariates
msbmt <- expand.covs(msbmt, covs, append = TRUE, longnames = FALSE)

#Create extra variable to allow gender mismatch to have the same effect
#for transitions 2 and 3.
msbmt$drmatch.2.3 <- msbmt$drmatch.2 + msbmt$drmatch.3

#Introduce pr covariate for proportionality assumption of transitions 2 and 3
#(only used in models 2 and 4)
msbmt$pr <- 0
msbmt$pr[msbmt$trans == 3] <- 1

#-------------Models---------------------#

#Simple model, transition specific covariates, each transition own baseline hazard

28 probtrans_coxph

c1 <- coxph(Surv(Tstart, Tstop, status) ~ dissub1.1 + dissub2.1 +
age1.1 + age2.1 + drmatch.1 + tcd.1 + dissub1.2 + dissub2.2 +
age1.2 + age2.2 + drmatch.2 + tcd.2 + dissub1.3 + dissub2.3 +
age1.3 + age2.3 + drmatch.3 + tcd.3 + strata(trans), data = msbmt,
method = "breslow")

#Model with same baseline hazards for transitions 2 (1->3) and 3(2->3)
#pr then gives the ratio of the 2 hazards for these transitions
c2 <- coxph(Surv(Tstart, Tstop, status) ~ dissub1.1 + dissub2.1 +

age1.1 + age2.1 + drmatch.1 + tcd.1 + dissub1.2 + dissub2.2 +
age1.2 + age2.2 + drmatch.2 + tcd.2 + dissub1.3 + dissub2.3 +
age1.3 + age2.3 + drmatch.3 + tcd.3 + pr + strata(to), data = msbmt,
method = "breslow")

#Same as c2, but now Gender mismatch has the same effect for both
c3 <- coxph(Surv(Tstart, Tstop, status) ~ dissub1.1 + dissub2.1 +

age1.1 + age2.1 + drmatch.1 + tcd.1 + dissub1.2 + dissub2.2 +
age1.2 + age2.2 + drmatch.2.3 + tcd.2 + dissub1.3 + dissub2.3 +
age1.3 + age2.3 + tcd.3 + pr + strata(to), data = msbmt,

method = "breslow")

#Predict for first 30 people in ebmt data
tmat2 <- to.trans2(tmat)[, c(2,3,1)]
names(tmat2)[3] <- "trans"
n_transitions <- nrow(tmat2)

newdata <- ebmt3[rep(seq_len(30), each = nrow(tmat2)),]
newdata <- cbind(tmat2[rep(seq_len(nrow(tmat2)), times = 30),], newdata)
#Make of class "msdata"
attr(newdata, "trans") <- tmat
class(newdata) <- c("msdata", "data.frame")
#Covariate names to expand
covs <- names(newdata)[5:ncol(newdata)]
newdata <- expand.covs(newdata, covs, append = TRUE, longnames = FALSE)

newdata$drmatch.2.3 <- newdata$drmatch.2 + newdata$drmatch.3

newdata$pr <- 0
newdata$pr[newdata$trans == 3] <- 1

#Calculate transition probabilities for the Cox fits
icmstate_pt1 <- probtrans_coxph(c1, predt = 0, direction = "forward",

newdata = newdata, trans = tmat)
icmstate_pt2 <- probtrans_coxph(c2, predt = 0, direction = "forward",

newdata = newdata, trans = tmat)
icmstate_pt3 <- probtrans_coxph(c3, predt = 0, direction = "forward",

newdata = newdata, trans = tmat)

#Now we can plot the transition probabilities for each subject separately:
plot(icmstate_pt1[[1]])
#icmstate_pt has length number of subjects in newdata
#And icmstate_pt1[[i]] is an object of class "probtrans", so you can

probtrans_weib 29

#use all probtrans functions: summary, plot etc.

#Alternatively, use the plotting function directly:
plot(icmstate_pt2, id = 2)

}

probtrans_weib Determine transition probabilities for a multi-state model with Weibull
hazards for the transitions.

Description

Determine transition probabilities for a multi-state model with Weibull hazards for the transitions.

Usage

probtrans_weib(transMat, times, shapes, scales, type = c("prodint", "ODE"))

Arguments

transMat A transition matrix as generated by mstate::transMat describing the possible
transitions for the multi-state model.

times The times at which the transition probabilities should be determined. Will al-
ways determine the probabilities forward in time starting from min(times).

shapes The Weibull shapes corresponding to the numbered transitions in transMat. See
?pweibull for more info.

scales The Weibull scales corresponding to the numbered transitions in transMat. See
?pweibull for more info.

type Should the transition probabilities be determined using product integration "prodint"
or by solving the Kolmogorov forward ordinary differential equation "ODE".

Value

An object containing the "true" transition probabilities for the specified Weibull hazards.

Examples

#Illness-death model
tmat <- mstate::trans.illdeath()
IDM <- probtrans_weib(tmat, seq(0, 15, 0.01), shapes = c(0.5, 0.5, 2),

scales = c(5, 10, 10/gamma(1.5)), type = "prodint")
IDM2 <- probtrans_weib(tmat, seq(0, 15, 0.01), shapes = c(0.5, 0.5, 2),

scales = c(5, 10, 10/gamma(1.5)), type = "ODE")
plot(IDM)
plot(IDM2)

30 remove_redundant_observations

#Extended illness-death model
tmat <- mstate::transMat(list(c(2, 3), c(4), c(), c()))
IDM <- probtrans_weib(tmat, seq(0, 15, 0.01), shapes = c(0.5, 0.5, 2),

scales = c(5, 10, 10/gamma(1.5)), type = "prodint")
IDM2 <- probtrans_weib(tmat, seq(0, 15, 0.01), shapes = c(0.5, 0.5, 2),

scales = c(5, 10, 10/gamma(1.5)), type = "ODE")
plot(IDM)
plot(IDM2)

prod_lambda_G_base Calculate the product of intensities over interval decided by failure
times

Description

This function calculates
∏

λ G as defined in Frydman (1995), with tn the failure times. Note that
length(t_n) must be equal to length(lambda)

Usage

prod_lambda_G_base(lambda, t_n, Q, A)

Arguments

lambda Intensities of the 2->3 transition

t_n Unique failure times, same length as lambda

Q Matrix (2 column) containing support intervals as rows

A Matrix (2 column) containing censoring intervals as rows

remove_redundant_observations

Remove redundant observations from supplied data frame

Description

Remove redundant observed states from a supplied data frame. Observations are redundant either
when we observe an absorbing state multiple times (as we cannot leave an absorbing state), or when
a transient state is observed multiple times between transitions (as we cannot have loops, therefore
no extra information is provided when we observe a transient state multiple times).

Usage

remove_redundant_observations(gd, tmat)

sim_id_weib 31

Arguments

gd A data.frame with the following named columns

id: Subject idenitifier;
state: State at which the subject is observed at time;
time: Time at which the subject is observed;

The true transition time between states is then interval censored between the
times.

tmat A transition matrix as created by transMat

Value

A data.frame containing the information contained in the input data.frame gd, but without re-
dundant observations. Depending on whether tmat was specified the function may remove more
observations.

Examples

#We simulate some data
#Function to generate evaluation times: at 0 and uniform inter-observation
eval_times <- function(n_obs, stop_time){
cumsum(c(0, runif(n_obs-1, 0, 2*(stop_time-4)/(n_obs-1))))

}

#Simulate illness-death model data with Weibull transitions
sim_dat <- sim_id_weib(n = 20, n_obs = 6, stop_time = 15, eval_times = eval_times,

start_state = "stable", shape = c(0.5, 0.5, 2),
scale = c(5, 10, 10/gamma(1.5)))

visualise_msm(sim_dat)
require(mstate)
sim_dat_clean <- remove_redundant_observations(sim_dat, trans.illdeath())
visualise_msm(sim_dat_clean)

sim_id_weib Simulate panel data from an illness-death model with Weibull transi-
tion hazards

Description

An illness-death model has 3 transitions:

1: State 1 (Healthy) to State 2 (Illness);

2: State 1 (Healthy) to State 3 (Death);

3: State 2 (Illness) to State 3 (Death);

Using this function, it is possible to simulate data from an illness-death model with Weibull tran-
sition intensities. Requires the use of an external (self-written) function to generate observation
times.

32 sim_id_weib

Usage

sim_id_weib(
n,
n_obs,
stop_time,
eval_times,
start_state = c("stable", "equalprob"),
shape,
scale,
...

)

Arguments

n Number of subjects to generate paths for.

n_obs Number of observations in time period for each subject.

stop_time Largest time at which the model is considered.

eval_times A function which returns the evaluation times for a subject. Must have as argu-
ments at least n_obs and stop_time.

start_state In which states can subjects start? Either everyone starts in state 1 ("stable") or
equal probability to start in state 1 or 2 ("equalprob").

shape Vector of shape parameters for the 3 transitions. See rweibull. The first entry
will be used for the first transition and so on.

scale Vector of scale parameters for the 3 transitions. See rweibull The first entry
will be used for the first transition and so on.

... Further parameters to eval_times function.

Details

Taking shape = 1 we get an exponential distribution with rate 1/scale

Value

Panel data in the form of a data.frame with 3 named columns id, time and state. These represent
the subject identifier, the observation time and the state at the observation time.

Examples

#Function to generate evaluation times: at 0 and uniform inter-observation
eval_times <- function(n_obs, stop_time){

cumsum(c(0, runif(n_obs-1, 0, 2*(stop_time-4)/(n_obs-1))))
}

#Simulate illness-death model data with Weibull transitions
sim_dat <- sim_id_weib(n = 20, n_obs = 6, stop_time = 15, eval_times = eval_times,
start_state = "stable", shape = c(0.5, 0.5, 2), scale = c(5, 10, 10/gamma(1.5)))

sim_weibmsm 33

visualise_msm(sim_dat)

sim_weibmsm Simulate multiple trajectories from an interval-censored multi-state
model with Weibull transition intensities

Description

Simulate multiple trajectories from a multi-state model quantified by a transition matrix, with
interval-censored transitions and Weibull distributed transition intensities. Allows for Weibull cen-
soring in each of the states.

Usage

sim_weibmsm(
data,
tmat,
startprobs,
exact,
shape,
scale,
censshape,
censscale,
n_subj,
obs_pars,
true_trajec = FALSE

)

Arguments

data A data.frame or matrix with named columns time and id, representing the
observation times and corresponding subject id(entifier).

tmat A transition matrix as created by transMat, with H rows and H columns indi-
cating the states. The total number of possible transitions will be indicated by
M.

startprobs A numeric vector of length H indicating the probability of each subject to start
in any of the possible states. Must sum to 1. By default, all subjects will start in
state 1.

exact A numeric vector indicating which states are exactly observed. The transition
time to exact states will be observed at exact times, regardless of the times in
obstimes. No exact states if missing.

shape A numeric vector of length M indicating the shape of the Weibull transition
intensity for the corresponding transition in tmat. See help(dweibull).

scale A numeric vector of length M indicating the scale of the Weibull transition in-
tensity for the corresponding transition in tmat. See help(dweibull).

34 sim_weibmsm

censshape A numeric vector of length H indicating the Weibull censoring shape in each of
the states. If no censoring is required in some states, set corresponding entries
to NA. If left missing, no censoring is applied. See details.

censscale A numeric vector of length H indicating the Weibull censoring scale in each of
the states. If no censoring is required in some states, set corresponding entries
to NA. If left missing, no censoring is applied. See details.

n_subj (Optional) Instead of specifying data, specify the number of subjects to generate
trajectories for. Requires obs_pars to also be specified.

obs_pars (Optional) A numeric vector of length 3 specifying what the time is between
planned assessments, what the uniform deviation from this time is at the visits
and the maximum visit time. Specifying obs_pars = c(2, 0.5, 20) will gener-
ate a grid of observation times (0, 2, 4, ..., 20) with a uniform[-0.5, 0.5] random
variable added to each observation time, and cut-off at the end-points 0 and 20.
The observation times may not overlap, so the first argument must be at least
twice as large as the second.

true_trajec Should the true (right-censored) trajectory be returned for the subjects as well?
Default = FALSE.

Details

Taking (cens)shape to be 1 for all transitions, we obtain exponential (censoring)/transitions with
rate 1/(cens)scale.

If right-censoring parameters are specified, a right-censoring time is generated in each of the vis-
ited states. If the subject is right-censored, we assume the subject is no longer observed at later
obstimes. Due to the interval-censored nature of the generation process, it may therefore appear as
if the subject was right-censored in an earlier state.

Suppose a subject arrives in state g at time s. If we wish to generate a survival time from that state
according to a Weibull intensity in a clock forward model, we can use the inverse transform of the
conditional Weibull intensity. More specifically, letting a denote the shape and σ denote the scale,
the conditional survival function for t > s is given by

S(t|s) = P(T ≥ t|T ≥ s) = exp(
(s

σ

)a

−
(
t

σ

)a

)

The corresponding cumulative intensity is then given by:

A(t|s) = − log(S(t|s)) =
(
t

σ

)a

−
(s

σ

)a

And the inverse cumulative intensity is then:

A−1(t|s) = σ a

√
t+

(s

σ

)a

A conditional survival time is then generated by:

T |s = A−1(− log(U)|s)

with U a sample from the standard uniform distribution. If we additionally have covariates (or
frailties), the − log(U) above should be replaced by − log(U)

exp(βX) with β and X the coefficients and
covariates respectively.

smoothmsm 35

Value

A matrix with 3 columns time, state and id, indicating the observation time, the corresponding
state and subject identifier. If true_trajec = TRUE, a list with the matrix described above and a
matrix representing the underlying right-censored trajectory.

Examples

require(mstate)
require(ggplot2)
#Generate from an illness-death model with exponential transitions with
#rates 1/2, 1/10 and 1 for 10 subjects over a time grid.
gd <- sim_weibmsm(tmat = trans.illdeath(), shape = c(1,1,1),

scale = c(2, 10, 1), n_subj = 10, obs_pars = c(2, 0.5, 20),
startprobs = c(0.9, 0.1, 0), true_trajec = TRUE)

#Observed trajectories
visualise_msm(gd$observed)
#True trajectories
visualise_msm(gd$true)

#Can supply data-frame with specified observation times
obs_df <- data.frame(time = c(0, 1, 3, 5, 0.5, 6, 9),

id = c(1, 1, 1, 1, 2, 2, 2))
gd <- sim_weibmsm(data = obs_df, tmat = trans.illdeath(), shape = c(1, 1, 1),

scale = c(2, 10, 1))
visualise_msm(gd)

smoothmsm Smooth hazard estimation for general multi-state model with interval
censored transitions

Description

For a general Markov chain multi-state model with interval censored transitions calculate the NPMLE
of the transition intensities. The estimates are returned as an msfit object. The smallest time in the
data will be set to zero.

Usage

smoothmsm(
gd,
tmat,
exact,
formula,
data,
deg_splines = 3,
n_segments = 20,

36 smoothmsm

ord_penalty = 2,
maxit = 100,
tol = 1e-04,
Mtol = 1e-04,
conv_crit = c("haz", "prob", "lik"),
verbose = FALSE,
prob_tol = tol/10,
ode_solver = "lsoda",
ridge_penalty = 1e-06

)

Arguments

gd A data.frame with the following named columns

id: Subject idenitifier;
state: State at which the subject is observed at time;
time: Time at which the subject is observed;

The true transition time between states is then interval censored between the
times.

tmat A transition matrix as created by transMat

exact Numeric vector indicating to which states transitions are observed at exact times.
Must coincide with the column number in tmat.

formula Formula to interpret in data for covariates.

data A data.frame containing a column called 'id' (identifying the subjects in gd)
and variables which to interpret in formula.

deg_splines Degree to use for the B-spline basis functions. Defaults to 3 (cubic B-splines).

n_segments Number of segments to use for the P-splines. The segments will space the do-
main evenly. According to Eilers & Marx (2021), it it OK to choose this number
very large. Default = 20.

ord_penalty Order of the P-spline penalty (penalty on the difference between d-order differ-
ences of spline coefficients). See Eilers & Marx Section 2.3. Defaults to 2.

maxit Maximum number of iterations. Default = 100.

tol Tolerance of the convergence procedure in the E-step. A change in the value of
conv_crit in an iteration of less than tol will make the procedure stop.

Mtol Tolerance of the convergence procedure of the M-step. The M-step consists of
an Iteratively Reweighted Least Squares (IRLS) procedure, where the (unob-
served) complete-data likelihood is maximized. Default is 1e-4.

conv_crit Convergence criterion. Stops procedure when the difference in the chosen quan-
tity between two consecutive iterations is smaller than the tolerance level tol.
One of the following:

"haz" Stop when change in maximum estimated intensities (hazards) < tol.
"prob" Stop when change in estimated probabilities < tol.
"lik" Stop when change in observed-data likelihood < tol.

summary.probtrans.subjects 37

Default is "haz". The options "haz" and "lik" can be compared across different
methods, but "prob" is dependent on the chosen method. Most conservative
(requiring most iterations) is "prob", followed by "haz" and finally "lik".

verbose Should iteration messages be printed? Default is FALSE
prob_tol If an estimated probability is smaller than prob_tol, it will be set to zero during

estimation. Default value is tol/10.
ode_solver The integrator to use for solving the ODE’s. See ode(). By default, the "lsoda"

solver will be used.
ridge_penalty The ridge penalty to use for estimating risk-adjustment coefficients. Default =

1e-06.

References

Eilers, P.H.C. and Marx, B.D., Practical Smoothing: The Joys of P-splines, Cambridge University
Press (2021)

summary.probtrans.subjects

Summary method for a probtrans.subjects object

Description

Summary method for an object of class ’probtrans.subjects’. It prints a selection of the estimated
transition probabilities. Wrapper for summary.probtrans.

Usage

S3 method for class 'probtrans.subjects'
summary(object, id, times, from = 1, to = 0, extend = FALSE, ...)

Arguments

object Object of class ’probtrans.subjects’, containing estimated transition probabilities
from and to all states in a multi-state model

id Subject identifier
times Time points at which to evaluate the transition probabilites
from Specifies from which state the transition probabilities are to be printed. Should

be subset of 1:S, with S the number of states in the multi-state model. Default is
print from state 1 only. User can specify from=0 to print transition probabilities
from all states

to Specifies the transition probabilities to which state are to be printed. User can
specify to=0 to print transition probabilities to all states. This is also the default

extend logical value: if TRUE, prints information for all specified times, even if there are
no subjects left at the end of the specified times. This is only valid if the times
argument is present

... Further arguments to summary.probtrans

38 summary.probtrans.subjects

Value

Function summary.probtrans returns an object of class "summary.probtrans.subjects", which is a
list (for each from state) of transition probabilities at the specified (or all) time points. The print
method of a summary.probtrans.subjects doesn’t return a value.

Author(s)

Hein Putter and Daniel Gomon

See Also

summary.probtrans, predict_tp

Examples

if(require("mstate")){
data(ebmt3)
n <- nrow(ebmt3)
tmat <- transMat(x = list(c(2, 3), c(3), c()), names = c("Tx",

"PR", "RelDeath"))
ebmt3$prtime <- ebmt3$prtime/365.25
ebmt3$rfstime <- ebmt3$rfstime/365.25
covs <- c("dissub", "age", "drmatch", "tcd", "prtime")
msbmt <- msprep(time = c(NA, "prtime", "rfstime"), status = c(NA,

"prstat", "rfsstat"), data = ebmt3, trans = tmat, keep = covs)
#Expand covariates so that we can have transition specific covariates
msbmt <- expand.covs(msbmt, covs, append = TRUE, longnames = FALSE)

#Simple model, transition specific covariates, each transition own baseline hazard
c1 <- coxph(Surv(Tstart, Tstop, status) ~ dissub1.1 + dissub2.1 +

age1.1 + age2.1 + drmatch.1 + tcd.1 + dissub1.2 + dissub2.2 +
age1.2 + age2.2 + drmatch.2 + tcd.2 + dissub1.3 + dissub2.3 +
age1.3 + age2.3 + drmatch.3 + tcd.3 + strata(trans), data = msbmt,
method = "breslow")

#We need to make a data.frame containing all subjects of interest
ttmat <- to.trans2(tmat)[, c(2, 3, 1)]
names(ttmat)[3] <- "trans"
nd_n <- NULL
for (j in 1:30) {
Select global covariates of subject j
cllj <- ebmt3[j, covs]
nd2 <- cbind(ttmat, rep(j, 3), rbind(cllj, cllj, cllj))
colnames(nd2)[4] <- "id"
Make nd2 of class msdata to use expand.covs
attr(nd2, "trans") <- tmat
class(nd2) <- c("msdata", "data.frame")
nd2 <- expand.covs(nd2, covs=covs, longnames = FALSE)
nd_n <- rbind(nd_n, nd2)
}

icmstate_pt <- probtrans_coxph(c1, predt = 0, direction = "forward",
newdata = nd_n, trans = tmat)

supportHudgens 39

#Obtain summary of probtrans.subjects object
plot(icmstate_pt, id = 2)

}

supportHudgens Determine the support of the NPMLE for interval censored data.

Description

Given censoring/truncation intervals, find the maxcliques and determine the support of the interval
censored problem.

Usage

supportHudgens(intervals, reduction = TRUE, existence = FALSE)

Arguments

intervals A data.frame with 3 columns containing half-open intervals (left open, right
closed) and an indicator whether the interval results from a censored transition
or truncation:

L: Left side of interval;
R: Right side of interval;
cens: Indicator whether interval resulted from interval censoring or left trunca-

tion (1 = censoring, 0 = truncation);
id: (optional) Identifier for the observation this interval belongs to (numeric/integer).

Only required if existence = TRUE;

Note that the truncation intervals need to be in the form (N, Inf] with N a numeric
value.

reduction Should the support be reduced using Lemma 3 from Hudgens (2005)? This
requires checking an extra condition. Default is TRUE.

existence Should the existence of the NPMLE be checked using Theorem 1/Lemma 4 from
Hudgens (2005)? Requires id to be present in intervals. Default is FALSE.

Value

• graph: An igraph object representing the censoring/truncation intervals

• support: Support estimated from the censoring intervals

• dir_graph: A directed igraph object used to determine whether the NPMLE exists in the
presence of left-truncation.

• exist_mle: Logical output indicating whether the NPMLE exists.

40 support_npmsm

References

Michael G. Hudgens, On Nonparametric Maximum Likelihood Estimation with Interval Censoring
and Left Truncation, Journal of the Royal Statistical Society Series B: Statistical Methodology,
Volume 67, Issue 4, September 2005, Pages 573-587, doi:10.1111/j.14679868.2005.00516.x

support_from_direct_intervals

Estimate support of multiple transitions given direct transition inter-
vals

Description

Given only direct transition intervals, determine the support for each transition separately using
Hudgens(2001) result. Each state is considered from a competing-risks viewpoint. Hudgens(2005)
result is applied to see if the NPMLE for any of the transitions does not exist.

Usage

support_from_direct_intervals(direct_intervals, tmat)

Arguments

direct_intervals

Output from direct_from_observed_intervals.

tmat A transition matrix as created by transMat

Value

A list containing the estimated support sets for each possible transition in tmat.

support_npmsm Numerically find the support of the transitions from a converged
npmsm algorithm

Description

For each transition in tmat, determine all consecutive bins with non-zero (higher than cutoff)
transition intensities. These then determine the numerical support of the transition.

Usage

support_npmsm(npmsm, cutoff = 1e-08)

https://doi.org/10.1111/j.1467-9868.2005.00516.x

transprob.msm 41

Arguments

npmsm Output from npmsm function or an msfit object.

cutoff Above which value is a mass in a bin considered to be non-zero? Default = 1e-8.
Note that this is independent of bin size, so can be tricky!!

Value

A list containing a list for each transition. Each transition specific list contains the support intervals
for that transition in a matrix with 3 named columns L, R and dA, indicating the left/right-endpoints
of the support intervals and the change in the estimated intensities over this support interval.

Examples

require(mstate)
require(ggplot2)
#Generate from an illness-death model with exponential transitions with
#rates 1/2, 1/10 and 1 for 10 subjects over a time grid.
gd <- sim_weibmsm(tmat = trans.illdeath(), shape = c(1,1,1),

scale = c(2, 10, 1), n_subj = 10, obs_pars = c(2, 0.5, 20),
startprobs = c(0.9, 0.1, 0))

#Fit 2 models: 1 with at most 4 iterations and 1 with at most 20
mod1 <- npmsm(gd, trans.illdeath(), maxit = 4)

#Determine support numerically:
mod1_supp <- support_npmsm(mod1)
mod1_supp[[1]]

transprob.msm Wrapper for the probtrans function

Description

For 'msm' objects: determine transition probabilities (as in probtrans) from an msm object. Cur-
rently only direction = "forward" is supported.

For 'npmsm' objects: Determine transition probabilities for an 'npmsm' object using the probtrans
function.

For 'msfit' objects: Wrapper for probtrans

Usage

S3 method for class 'msm'
transprob(object, predt, times, ...)

S3 method for class 'npmsm'
transprob(object, ...)

S3 method for class 'msfit'

42 visualise_data

transprob(object, ...)

transprob(object, ...)

Arguments

object Object of compatible class

predt A positive number indicating the prediction time. This is the time at which the
prediction is made. If missing, smallest time of times is chosen.

times A vector of times at which the transition probabilities should be determined.

... Further arguments to probtrans

Details

Can be used for objects of class ’npmsm’, ’msm’ and ’msfit’

Value

A probtrans object containing the estimated transition probabilities.

visualise_data Visualise data for illness-death model, only applicable to Fryd-
man(1995) setting.

Description

Visualise data for illness-death model, only applicable to Frydman(1995) setting.

Usage

visualise_data(data, msmFrydman)

Arguments

data A data.frame containing the columns named:

delta: Did a transition from 1 -> 2 occur? (binary: 0 = no, 1 = yes); In the
left-truncated case, delta = 2 indicates initially observed in state 2.

Delta: Was the transition to state 3 observed? (binary: 0 = no, 1 = yes);
L: Left timepoint of interval censored transition to state 2 (numeric);
R: Right timepoint of interval censored transition to state 2 (numeric);
time: Time of event (transition to 3) or right-censoring in state 2 (numeric);
trunc: (optional) Left-truncation time (numeric); Only used for entries with

delta = 2.

msmFrydman A fitted model from msm_frydman

visualise_msm 43

Value

Returns a visualisation of illness-death data, with the transition from healthy to illness interval-
censored and the other two transitions observed exactly or right-censored. If msmFrydman is speci-
fied, the support intervals from the fit are additionally plotted at the top of the data visualisation.

References

Frydman, H. (1995). Nonparametric Estimation of a Markov ’Illness-Death’ Process from Interval-
Censored Observations, with Application to Diabetes Survival Data. Biometrika, 82(4), 773-789.
doi:10.2307/2337344

See Also

See msm_frydman for fitting a model.

Examples

data <- data.frame(delta = c(0, 0, 1, 1), Delta = c(0, 1, 0, 1),
L = c(NA, NA, 1, 1.5), R = c(NA, 3, 2, 3),
time = c(4, 5, 6, 7))

mod_frydman <- msm_frydman(data)
visualise_data(data, mod_frydman)

visualise_msm Visualise multi-state data

Description

Produce a plot with the y-axis representing subjects in the data and the x-axis representing the time
at which states have been observed.

Usage

visualise_msm(gd, npmsm, tmat, neat = TRUE, cutoff)

Arguments

gd A data.frame containing the following named columns:
id: Identifier of subject;
state: state of subject at time;
time: time at which subject is observed;

npmsm Output from npmsm function
tmat A transition matrix as created by transMat

neat Boolean indicating whether redundant observations should be removed in the
plot. Default is TRUE

cutoff cutoff value for numerically determining the support using support_npmsm

https://doi.org/10.2307/2337344

44 visualise_msm

Value

A plot will be produced in the plotting window.

Examples

#Write a function for evaluation times: observe at 0 and uniform inter-observation times.
eval_times <- function(n_obs, stop_time){

cumsum(c(runif(1, 0, 0.5), runif(n_obs-1, 0, 2*(stop_time-4)/(n_obs-1))))
}
#Use built_in function to simulate illness-death data
#from Weibull distributions for each transition
sim_dat <- sim_id_weib(n = 50, n_obs = 6, stop_time = 15, eval_times = eval_times,

start_state = "stable", shape = c(0.5, 0.5, 2),
scale = c(5, 10, 10/gamma(1.5)))

#Visualise the data
visualise_msm(sim_dat)

Index

∗ print
summary.probtrans.subjects, 37

ageqb, 3
agreaterb, 4
ainB, 4
Aintersectb, 5
Alargerb, 5
AsubsetB, 6

coxph, 23, 26

direct_from_observed_intervals, 6, 40

estimate_support_msm, 7, 15
evalstep, 8
expand.covs, 23, 27
extend_msfit, 9

get_trans_intervals, 6, 9
graphfromIntervals, 10

icmstate (icmstate-package), 2
icmstate-package, 2
interpol_msfit, 11

msfit, 13, 16–18, 35, 41
msm, 41
msm_frydman, 12, 42, 43
msprep, 23, 26
mstate, 18, 20

npmsm, 13, 25, 41, 43

ode(), 37

plot, 20
plot.msfit, 18, 20
plot.npmsm, 17, 18
plot.probtrans, 18
plot.probtrans.subjects, 18, 24

plot.smoothmsm, 19
plot_probtrans, 20
plot_surv, 22
predict_tp, 23, 38
print.npmsm, 17, 25
print.summary.probtrans.subjects, 25
probtrans, 24, 27, 41, 42
probtrans_coxph, 23, 24, 26
probtrans_weib, 29
prod_lambda_G_base, 30

remove_redundant_observations, 30
rweibull, 32

sim_id_weib, 31
sim_weibmsm, 33
smoothmsm, 35
summary.probtrans, 37, 38
summary.probtrans.subjects, 24, 37
support_from_direct_intervals, 40
support_npmsm, 40, 43
supportHudgens, 39

to.trans2, 16
transMat, 14, 16, 23, 27, 33, 36
transprob, 16, 17
transprob (transprob.msm), 41
transprob.msm, 41

visualise_data, 42
visualise_msm, 17, 43

45

	icmstate-package
	ageqb
	agreaterb
	ainB
	Aintersectb
	Alargerb
	AsubsetB
	direct_from_observed_intervals
	estimate_support_msm
	evalstep
	extend_msfit
	get_trans_intervals
	graphfromIntervals
	interpol_msfit
	msm_frydman
	npmsm
	plot.npmsm
	plot.probtrans.subjects
	plot.smoothmsm
	plot_probtrans
	plot_surv
	predict_tp
	print.npmsm
	print.summary.probtrans.subjects
	probtrans_coxph
	probtrans_weib
	prod_lambda_G_base
	remove_redundant_observations
	sim_id_weib
	sim_weibmsm
	smoothmsm
	summary.probtrans.subjects
	supportHudgens
	support_from_direct_intervals
	support_npmsm
	transprob.msm
	visualise_data
	visualise_msm
	Index

