Package ‘idefix’

March 14, 2025
Type Package

Title Efficient Designs for Discrete Choice Experiments
Version 1.1.0
Maintainer Michel Meulders <michel.meulders@kuleuven.be>

Description Generates efficient designs for discrete choice experiments based on
the multinomial logit model, and individually adapted designs for the mixed
multinomial logit model. The generated designs can be presented on screen
and choice data can be gathered using a shiny application. Traets F, Sanchez G,
and Vandebroek M (2020) <doi:10.18637/js5.v096.103>.

License GPL-3

Depends R (>=3.1.1), shiny
LazyData TRUE
ByteCompile TRUE

Imports dplyr, MASS, parallel, Repp (>= 0.12.18), Rdpack, stats,
scales, tmvtnorm, utils, dfidx, shinyjs, tableHTML

RoxygenNote 7.3.1

Encoding UTF-8

LinkingTo Rcpp, ReppArmadillo
RdMacros Rdpack

URL https://github.com/traets/idefix
Suggests RSGHB, bayesm, testthat, Rchoice, ChoiceModelR
NeedsCompilation yes

Author Frits Traets [aut],
Daniel Gil [ctb],
Qusai Iwidat [ctb],
Mouhannad Arabi [ctb],
Martina Vandebroek [ctb],
Michel Meulders [cre]

Repository CRAN
Date/Publication 2025-03-13 23:20:01 UTC

https://doi.org/10.18637/jss.v096.i03
https://github.com/traets/idefix

2 idefix-package
Contents
idefix-package L 2
ABerr 3
aggregate_design 4
Blocks 4
CEA . . 6
Datatrans L 11
DBerr e e 13
Decode e 14
EvaluateDesign e 15
example_design 17
example_design2 17
ImpsampMNL e e e 18
LoadData e 20
Modfed e 20
nochoice_design e e 26
Profiles e 26
RespondMNL e 27
SeqCEA e e 28
SegKL . . . e 30
SeqMOD e 32
SUTVEYADD .« o v o o e e e e e e e 35
Index 40
idefix-package idefix: efficient designs for discrete choice experiments.
Description
Generates efficient designs for discrete choice experiments based on the Multinomial Logit (MNL)
model, and individually adapted designs for the Mixed Multinomial Logit model. The (adaptive)
designs can be presented on screen and choice data can be gathered using a shiny application.
Author(s)

Maintainer: Michel Meulders <michel . meulders@kuleuven.be>

Other contributors:

Frits Traets <frits.traets@gmail.com>[author]

Daniel Gil <danielgils@gmail.com> [contributor]

Qusai Iwidat <qusaiu@gmail.com> [contributor]

Mouhannad Arabi <Mouhannadarabi@hotmail.com> [contributor]

Martina Vandebroek <Martina.Vandebroek@kuleuven.be> [contributor]

ABerr 3

References

Traets F, Sanchez G, Vandebroek M (2020). “Generating Optimal Designs for Discrete Choice
Experiments in R: The idefix Package.” Journal of Statistical Software, 96(3).

* To generate efficient designs using the Modified Federov algorithm, please consult the Modfed
documentation.

» To generate efficient designs using the Coordinate Exchange algorithm, please consult the
CEA documentation.

* To generate adaptive designs using the Modified Fedorov algorithm, please consult the Seq-
MOD documentation.

» To generate adaptive designs using the Coordinate Exchange algorithm, please consult the
SeqCEA documentation.

* To generate a discrete choice survey on screen, please consult the SurveyApp documentation.

See Also
Useful links:

* https://github.com/traets/idefix

ABerr AB error

Description

Function to calculate the AB-error given a design, and parameter values.

Usage

ABerr(par.draws, des, n.alts, weights = NULL, mean = TRUE)

Arguments
par.draws Numeric matrix in which each row is a draw from a multivariate parameter dis-
tribution.
des A design matrix in which each row is an alternative.
n.alts Numeric value indicating the number of alternatives per choice set.
weights A numeric vector containing weights of par.draws. The default is NULL.
mean A logical value indicating whether the mean (AB) error should be returned or
not. Default = TRUE.
Value

Numeric value indicating the AB-error of the design given the parameter draws.

https://github.com/traets/idefix

4 Blocks

Examples

des <- example_design

mu = c(-1, -1.5, -1, -1.5, 0.5, 1)

Sigma = diag(length(mu))

par.draws <- MASS::mvrnorm(100, mu = mu, Sigma = Sigma)
n.alts = 2

ABerr(par.draws = par.draws, des = des, n.alts = n.alts)

mu = c(-0.5, -1, -0.5, -1, 0.5, 1)
Sigma = diag(length(mu))

par.draws <- MASS::mvrnorm(100, mu = mu, Sigma = Sigma)
ABerr(par.draws = par.draws, des = des, n.alts = n.alts)

aggregate_design Discrete choice aggregate design.

Description

The dataset contains fictional data for seven participants, each responding to eight choice sets with
two alternatives. Each alternative consists of three attributes, and each attribute contains three levels,
which are dummy coded.

Usage

data(aggregate_design)

Format

A matrix with 112 rows and 9 variables

Blocks Create blocks (sub-designs) from a given design.

Description

This function breaks down a design output from Modfed or CEA into a specified number of blocks
while aiming to maintain balance in levels frequency across the resulting blocks.

Usage

Blocks(
des,
n.blocks,
n.alts,
blocking.iter = 50,
no.choice = FALSE,
alt.cte = NULL

Blocks 5

Arguments
des The design to be distributed into blocks (sub-designs).
n.blocks A numeric value indicating the desired number of blocks to create out of the
provided design.
n.alts The number of alternatives in each choice set.

blocking.iter A numeric value indicating the maximum number of iterations for optimising
the level balance in the blocks. The default value is 50.

no.choice A logical value indicating whether a no choice alternative is added to each choice
set in the provided design. The default is FALSE.

alt.cte A binary vector indicating for each alternative whether an alternative specific
constant is present in the design. The default is NULL.

Details

The argument n. blocks specifies the number of blocks to create. The algorithm strives to distribute
the choice sets of the design evenly among the blocks, while maintaining level balance across them.
The choice sets are assigned sequentially to the blocks, aiming to maintain the closest possible
level balance among them up to that stage in the sequence. Hence, the algorithm runs different
iterations, during each of which the choice sets in the design are shuffled randomly. The argument
blocking.iter specifies the maximum number of these iterations.

If the design has a no.choice alternative then no.choice should be set to TRUE. Additionally,
asc.col should indicate the number of alternative specific constants that are included in the de-
sign, if any.

This functionality is also available as an argument (n.blocks) when creating an efficient design
using Modfed or CEA.

Note: To make sure the code works well, the names of the variables in the provided design should
be aligned with variable names that the function Profiles produces. For example, if attribute 1 is
a dummy variable of 3 levels then its corresponding columns should have numbered names such as:
varl1 and varl2, or (if labelled) pricel and price2, for instance.

Value

A list of blocks from the original design is returned. Additionally, the frequency of every level in
each block is returned.

Examples

DB-efficient designs
3 Attributes with 3 levels, all dummy coded. 1 alternative specific constant = 7 parameters
cand.set <- Profiles(lvls = c(3, 3, 3), coding = c("D", "D", "D"))
mu <- c(0.5, 0.8, 0.2, -0.3, -1.2, 1.6, 2.2) # Prior parameter vector
v <- diag(length(mu)) # Prior variance.
set.seed(123)
pd <- MASS::mvrnorm(n = 10, mu = mu, Sigma = v) # 10 draws.
p.d <- list(matrix(pd[,1], ncol = 1), pd[,2:7])
design <- Modfed(cand.set = cand.set, n.sets = 8, n.alts = 2,
alt.cte = c¢(1, @), parallel = FALSE, par.draws = p.d)

6 CEA
Blocks(design$BestDesign$design, n.blocks = 2, n.alts = 2, alt.cte = c(1, 0))
CEA Coordinate Exchange algorithm for MNL models.
Description
The algorithm improves an initial start design by considering changes on an attribute-by-attribute
basis. By doing this, it tries to minimize the chosen error (A(B) or D(B)-error) based on a multino-
mial logit model. This routine is repeated for multiple starting designs.
Usage
CEA(
lvls,
coding,
c.lvls = NULL,
n.sets,
n.alts,
par.draws,
optim = "D",
alt.cte = NULL,
no.choice = FALSE,
start.des = NULL,
parallel = TRUE,
max.iter = Inf,
n.start = 12,
overlap = NULL,
n.blocks = 1,
blocking.iter = 50,
constraints = NULL
)
Arguments
lvls A numeric vector which contains for each attribute the number of levels.
coding Type of coding that needs to be used for each attribute.
c.lvls A list containing numeric vectors with the attribute levels for each continuous
attribute. The default is NULL.
n.sets Numeric value indicating the number of choice sets.
n.alts Numeric value indicating the number of alternatives per choice set.
par.draws A matrix or a list, depending on alt.cte.
optim A character value to choose between "D" and "A" optimality. The defaultis "D".

CEA 7

alt.cte A binary vector indicating for each alternative whether an alternative specific
constant is desired. The default is NULL.

no.choice A logical value indicating whether a no choice alternative should be added to
each choice set. The default is FALSE.

start.des A list containing one or more matrices corresponding to initial start design(s).
The default is NULL.

parallel Logical value indicating whether computations should be done over multiple
cores. The default is TRUE.

max.iter A numeric value indicating the maximum number allowed iterations. The de-
fault is Inf.

n.start A numeric value indicating the number of random start designs to use. The
default is 12.

overlap A numeric value indicating the minimum number of attributes to overlap in ev-

ery choice sets to create partial profiles. The default is NULL.

n.blocks A numeric value indicating the desired number of blocks to create out of the
most efficient design.

blocking.iter A numeric value indicating the maximum number of iterations for optimising
the blocks. The default value is 50.

constraints A list of constraints to enforce on the attributes and alternatives in every choice
set. The default is NULL.

Details

Each iteration will loop through all profiles from the initial design, evaluating the change in A(B)
or D(B)-error (as specified) for every level in each attribute. The algorithm stops when an iteration
occurred without replacing a profile or when max. iter is reached.

By specifying a numeric vector in par.draws, the A- or D-error will be calculated and the design
will be optimised locally. By specifying a matrix, in which each row is a draw from a multivariate
distribution, the AB/DB-error will be calculated, and the design will be optimised globally. When-
ever there are alternative specific constants, par.draws should be a list containing two matrices:
The first matrix containing the parameter draws for the alternative specific constant parameters.
The second matrix containing the draws for the rest of the parameters.

The AB/DB-error is calculated by taking the mean over A- / D-errors, respectively. It could be that
for some draws the design results in an infinite error. The percentage of draws for which this was
true for the final design can be found in the output inf.error.

Alternative specific constants can be specified in alt.cte. The length of this binary vector should
equal n.alts, were @ indicates the absence of an alternative specific constant and 1 the opposite.

start.des is a list with one or several matrices corresponding to initial start design(s). In each
matrix, each row is a profile. The number of rows equals n.sets * n.alts, and the number of
columns equals the number of columns of the design matrix + the number of non-zero elements in
alt.cte. Consider that for a categorical attribute with p levels, there are p - I columns in the design
matrix, whereas for a continuous attribute there is only one column. If start.des = NULL, n.start
random initial designs will be generated. If start designs are provided, n.start is ignored.

Note: To make sure the code works well, the names of the variables in the starting design should be
aligned with variable names that the function Profiles produces. For example, if attribute 1 is a

CEA

dummy variable of 3 levels then its corresponding columns should have numbered names such as:
varl1 and varl2, or (if labelled) pricel and price2, for instance.

If no.choice is TRUE, in each choice set an alternative with one alternative specific constant is
added. The return value of the A(B) or D(B)-error is however based on the design without the no
choice option.

When parallel is TRUE, detectCores will be used to decide upon the number of available cores.
That number minus 1 cores will be used to search for efficient designs. The computation time will
decrease significantly when parallel = TRUE.

Partial profiles/overlapping attributes

If overlap is set to 1 or more, then partial profiles will be used in the resulting efficient designs.
The value of overlap determines the minimum number of attributes to overlap in each choice set.
The optimising algorithm will enforce this constraint across all choice sets. Note that the running
time may increase significantly, as the algorithm searches through all possible (combinations of)
attributes to achieve optimisation.

Blocking

If the value of n.blocks is more than 1, a new list with the specified number of blocks of the best
design (one with the least A(B)- or D(B)-error) will be added to the output. The algorithm strives
to distribute the choice sets of the best design evenly among the blocks, while maintaining level
balance across them. The choice sets are assigned sequentially to the blocks, aiming to maintain the
closest possible balance among them up to that stage in the sequence. Hence, the algorithm runs
different iterations, during each of which the choice sets in the design are shuffled randomly. The
argument blocking. iter specifies the maximum number of these iterations. This functionality is
also available as a separate function in Blocks that works with a given design.

Adding constraints to the design

The argument constraints can be used to determine a list of constraints to be enforced on the
resulting efficient design. The package offers flexibility in the possible constraints. The basic
syntax for the constraint should determine an attribute Y within an alternative X (A1tX.AttY) and
an operator to be applied on that attribute followed by a list of values or another attribute. In addition
to this basic syntax, conditional If statements can be included in the conditions as will be shown in
the examples below. The following operators can be used:

o 1=

e <or<=
e >or>=
* AND

* OR

* +, -, * [operations for continuous attributes.
For example, if attributes 1, 2 and 3 are continuous attributes, then possible constraints include:

e "Alt2.Att1 =1ist (100, 200)": restrict values of attribute 1 in alternative 2 to 100 and 200.

o "ALt1.Att1>Alt2.Att1": enforce that attribute 1 in alternative 1 to be higher than the at-
tribute’s value in alternative 2.

CEA 9

e "ALt1.Att1 + Alt1.Att2 <Alt1.Att3": enforce that the sum of attributes 1 and 2 to be less
than the value of attribute 3 in alternative 1.

o "ALt1.Att1 >Alt1.Att3 ORALtT.Att2>Alt1.Att3": either attribute 1 or attribute 2 should
be higher than attribute 3 in alternative 1.

For dummy and effect coded attributes, the levels are indicated with the number of the attribute
followed by a letter from the alphabet. For example 1A is the first level of attribute 1 and 3D is the
fourth level of attribute 3. Examples on constraints with dummy/effect coded variables:

e "ALt2.Att1 =1ist(1A,1B)": restrict attribute 1 in alternative 2 to the reference level (A)
and the second level (B).

e "ALt1.Att1=1ist(1B,1C) AND A1t2.Att2 !=1ist(2A, 2E)": restrict attribute 1 in alter-
native 1 to the second and third levels, and at the same time, attribute 2 in alternative 2 cannot
be the first and fifth levels of the attribute.

Additionally, and as aforementioned, conditional If statements can be included in the conditions.
Examples:

o "if ALt1.Att1 !=Alt2.Att] then ALt2.Att2 = 1ist(100,200)"
o "if ALt1.Att1=Alt2.Att1 ORALt1.Att1 =0 then Alt2.Att1 > 3"

Lastly, more than one constraint can be specified at the same time. For example: constraints =
list("if ALt1.Att] = ALt2.Att1 then Alt2.Att2 =1ist(100,200)", "Alt1.Att3 = 1list (3A,
30)0").

To ensure the best use of constraints in optimising designs, please keep in mind the following:

* Proper spacing should be respected between the terms, to make sure the syntax translates
properly into an R code. To clarify, spaces should be placed before and after the operators
listed above. Otherwise, the console will return an error.

* Lists should be used for constrained values as shown in the examples above.

* Constraints should not be imposed on the no. choice alternative because it is fixed with zeros
for all attributes. The no.choice alternative, if included, will be the last alternative in every
choice set in the design. Therefore, if no. choice is TRUE and the no.choice alternative number
(=n.alts) is included in the constraints, the console will return an Error.

 Attention should be given when a starting design that does not satisfy the constraint is pro-
vided. It is possible that the algorithm might not find a design that is more efficient and, at the
same time, that satisfies the constraints.

» With tight constraints, the algorithm might fail to find a design that satisfies all the specified
constraints.

Value

Two lists of designs and statistics are returned: First, the list BestDesign contains the design with
the lowest A(B)- or D(B)- error. The method print can be used to return this list. Second, the list
AllDesigns contains the results of all (provided) start designs. The method summary can be used
to return this list.

design A numeric matrix wich contains an efficient design.

10

optimality

inf.error

probs

AB.error

DB.error

SD

level.count
level.overlap

Orthogonality

Blocks

Examples

CEA

"A" or "D", depending on the chosen optimality criteria.

Numeric value indicating the percentage of draws for which the D-error was
Inf.

Numeric matrix containing the probabilities of each alternative in each choice
set. If a sample matrix was provided in par.draws, this is the average over all
draws.

Numeric value indicating the A(B)-error of the design.
Numeric value indicating the D(B)-error of the design.

The standard deviations of the parameters. Calculated by taking the diagonal of
the varcov matrix, averaged over all draws if a sample matrix was provided in
par.draws.

The count of all levels of each attribute in the design.

The count of overlapping levels accross alternatives in every choice set in the
design.

Numeric value indicating the degree of orthogonality of the design. The closer
the value to 1, the more orthogonal the design is.

A list showing the created blocks of the best design, along with the level counts
in each block. For more details, see function Blocks.

DB-efficient designs

3 Attributes, all dummy coded. 1 alternative specific constant = 7 parameters
mu <- c(1.2, 0.8, 0.2, -0.3, -1.2, 1.6, 2.2) # Prior parameter vector

v <- diag(length(mu)) # Prior variance.

set.seed(123)

pd <- MASS::mvrnorm(n = 10, mu = mu, Sigma = v) # 10 draws.

p.d <- list(matrix(pd[,1], ncol = 1), pd[,2:7])

CEA(lvls = c¢(3, 3, 3), coding = c("D", "D", "D"), par.draws = p.d,
n.alts = 2, n.sets = 8, parallel = FALSE, alt.cte = c(@, 1))

Or AB-efficient design

set.seed(123)

CEA(1lvls = c(3, 3, 3), coding = c("D", "D", "D"), par.draws = p.d,
n.alts = 2, n.sets = 8, parallel = FALSE, alt.cte = c(@, 1), optim = "A")

DB-efficient design with categorical and continuous factors

2 categorical attributes with 4 and 2 levels (effect coded) and 1
continuous attribute (= 5 parameters)

mu <- c(@.5, 0.8, 0.2, 0.4, 0.3)

v <- diag(length(mu)) # Prior variance.

set.seed(123)

pd <- MASS::mvrnorm(n = 3, mu = mu, Sigma = v) # 10 draws.
CEA(lvls = c(4, 2, 3), coding = c("E", "E", "C"), par.draws = pd,

c.lvls = list(c(2, 4, 6)), n.alts = 2, n.sets = 6, parallel = FALSE)
The same can be done if A-optimality is chosen

set.seed(123)

CEA(1lvls = c(4, 2, 3), coding = c("E", "E", "C"), par.draws = pd,

c.lvls = list(c(2, 4, 6)), n.alts = 2, n.sets = 6, parallel = FALSE, optim = "A")

Datatrans 11

DB-efficient design with start design provided.

3 Attributes with 3 levels, all dummy coded (= 6 parameters).
mu <- c(0.8, 0.2, -0.3, -0.2, 0.7, 0.4)

v <- diag(length(mu)) # Prior variance.

sd <- list(example_design)

set.seed(123)

ps <- MASS::mvrnorm(n = 10, mu = mu, Sigma = v) # 10 draws.
CEA(1lvls = c(3, 3, 3), coding = c("D", "D", "D"), par.draws = ps,
n.alts = 2, n.sets = 8, parallel = FALSE, start.des = sd)

DB-efficient design with partial profiles

3 Attributes, all dummy coded. = 6 parameters

mu <- c(1.2, 0.8, 0.2, -0.3, -1.2, 1.6) # Prior parameter vector

v <- diag(length(mu)) # Prior variance.

set.seed(123)

pd <- MASS::mvrnorm(n = 10, mu = mu, Sigma = v) # 10 draws.

CEA(lvls = c(3, 3, 3), coding = c("D", "D", "D"), par.draws = pd,

n.alts = 2, n.sets = 8, parallel = FALSE, alt.cte = c(0, @), overlap = 1)
The same function but asking for blocks (and no overlap)

set.seed(123)

CEA(1lvls = c(3, 3, 3), coding = c("D", "D", "D"), par.draws = pd,

n.alts = 2, n.sets = 8, parallel = FALSE, alt.cte = c(@, 9), n.blocks = 2)

AB-efficient design with constraints
2 dummy coded attributes, 1 continuous attribute and 1 effect coded
attribute (with 4 levels). = 8 parameters
mu <- c(1.2, 0.8, 0.2, 0.5, -0.3, -1.2, 1, 1.6) # Prior parameter vector
v <- diag(length(mu)) # Prior variance.
set.seed(123)
pd <- MASS::mvrnorm(n = 10, mu = mu, Sigma = v) # 10 draws.
constraints <- list("Alt2.Att1 = list(1A,1B)",
"if Alt1.Att3 = list(4) then Alt2.Att4 = list(4C, 4D)")
CEA(1lvls =c(3, 3, 2, 4), coding = c("D", "D", "C", "E"), c.lvls = list(c(4,7)), par.draws = pd,
n.alts = 2, n.sets = 8, parallel = FALSE, alt.cte = c(@, @), optim = "A", constraints = constraints)

Datatrans Data transformation.

Description

Transforms the data into the desired data format required by different estimation packages.

Usage

Datatrans(
pkg,

12 Datatrans

des,

Y,

n.alts,

n.sets,

n.resp,

bin,

alt.names = NULL,
coding = NULL,

lvls = NULL
)
Arguments

pkg Indicates the desired estimation package. Options are RSGHB = doHB, bayesm =
rhierMnlRwMixture, bayesm: : rbprobitGibbs = rbprobitGibbs (previously,
in package Mixed.Probit), mlogit = mlogit, logitr = logitr, Rchoice = Rchoice,
gmnl = gmnl, ChoiceModelR = choicemodelr.

des A design matrix in which each row is a profile.

y A numeric vector containing binary or discrete responses. See bin argument.

n.alts Numeric value indicating the number of alternatives per choice set.

n.sets Numeric value indicating the number of choice sets.

n.resp Numeric value indicating the number of respondents.

bin Logical value indicating whether the response vector contains binary data (TRUE)
or discrete data (FALSE). See y argument.

alt.names A character vector containing the names of the alternatives. The default = NULL.

coding Type of coding that needs to be used for each attribute. To be used only for
package "ChoiceModelR". The default = NULL.

1vls A numeric vector which contains for each attribute the number of levels. To be
used only for package "ChoiceModelR". The default = NULL.

Details

The design (des) specified should be the full aggregated design. Thus, if all participants responded
to the same design, des will be a repetition of that design matrix.

The responses in y should be successive when there are multiple respondents. There can be n. sets
elements for each respondent with discrete values indicating the chosen alternative for each set. Or
there can be n.sets x n.alts elements for each respondent with binary values indicating for each
alternative whether it was chosen or not. In the latter case the bin argument should be TRUE.

n.sets indicates the number of sets each respondent responded to. It is assumed that every re-
sponded responded to the same number of choice sets.

Value

The data ready to be used by the specified package.

DBerr 13

Examples

idefix.data <- aggregate_design
des <- as.matrix(idefix.datal, 3:8], ncol = 6)
y <- idefix.data[, 9]
bayesm.data <- Datatrans(pkg = "bayesm”, des = des, y =y,
n.alts = 2, n.sets = 8, n.resp = 7, bin = TRUE)
rbprobit.data <- Datatrans(pkg = "bayesm::rbprobitGibbs”, des = des, y =y,
n.alts = 2, n.sets = 8, n.resp = 7, bin = TRUE)
mlogit.data <- Datatrans(pkg = "mlogit”, des = des, y = vy,
n.alts = 2, n.sets = 8, n.resp = 7, bin = TRUE)
ChoiceM.data <- Datatrans(pkg = "ChoiceModelR", des
n.alts =2, n.sets =8, n.resp =7, bin = TRUE, coding

des, y = y,
c("D", "D", "D"), 1lvls =c(3, 3, 3))

DBerr DB error

Description

Function to calculate the DB-error given a design, and parameter values.

Usage

DBerr(par.draws, des, n.alts, weights = NULL, mean = TRUE)

Arguments
par.draws Numeric matrix in which each row is a draw from a multivariate parameter dis-
tribution.
des A design matrix in which each row is an alternative.
n.alts Numeric value indicating the number of alternatives per choice set.
weights A numeric vector containing weights of par.draws. The default is NULL.
mean A logical value indicating whether the mean (DB) error should be returned or
not. Default = TRUE.
Value

Numeric value indicating the DB-error of the design given the parameter draws.

Examples

des <- example_design

mu = c(-1, -1.5, -1, -1.5, 0.5, 1)

Sigma = diag(length(mu))

par.draws <- MASS::mvrnorm(100, mu = mu, Sigma = Sigma)
n.alts = 2

DBerr(par.draws = par.draws, des = des, n.alts = n.alts)

14 Decode
mu = c(-0.5, -1, -0.5, -1, 0.5, 1)
Sigma = diag(length(mu))
par.draws <- MASS::mvrnorm(100, mu = mu, Sigma = Sigma)
DBerr(par.draws = par.draws, des = des, n.alts = n.alts)

Decode

Coded design to readable design.

Description

Transforms a coded design matrix into a design containing character attribute levels, ready to be
used in a survey. The frequency of each attribute level in the design is also included in the output.

Usage

Decode(
des,
n.alts,
1lvl.names,
coding,
alt.cte

NULL,

c.lvls = NULL,

no.choice

Arguments

des
n.alts
1lvl.names

coding

alt.cte

c.lvls

no.choice

Details

NULL

A numeric matrix which represents the design matrix. Each row is a profile.
Numeric value indicating the number of alternatives per choice set.
A list containing character vectors with the values of each level of each attribute.

A character vector denoting the type of coding used for each attribute. See also
Profiles.

A binary vector indicating for each alternative if an alternative specific constant
is present. The default is NULL.

A list containing numeric vectors with the attribute levels for each continuous
attribute. The default is NULL.

An integer indicating the no choice alternative. The default is NULL.

des A design matrix, this can also be a single choice set. See for example the output of Modfed or

CEA.

In 1vl.names, the number of character vectors in the list should equal the number of attributes in
de choice set. The number of elements in each character vector should equal the number of levels

for that attribute.

EvaluateDesign 15

Valid arguments for coding are C, D and E. When using C the attribute will be treated as continuous
and no coding will be applied. All possible levels of that attribute should then be specified in
c.1lvls. If D (dummy coding) is used contr.treatment will be applied to that attribute. The first
attribute wil be used as reference level. For E (effect coding) contr. sum is applied, in this case the
last attribute level is used as reference level.

If des contains columns for alternative specific constants, alt.cte should be specified. In this case,
the first column(s) (equal to the number of nonzero elements in alt. cte) will be removed from des
before decoding the alternatives.

Value
design A character matrix which represents the design.
level.count A list containing the frequency of appearance of each attribute level in the de-
sign.
Examples
Not run:

Example without continuous attributes.

design <- example_design

coded <- c("D", "D", "D") # Coding.

Levels as they should appear in survey.

al <- list(
c("$50", "$75", "$100"), # Levels attribute 1.
c("2 min”, "15 min", "30 min"), # Levels attribute 2.
c("bad”, "moderate”, "good") # Levels attribute 3.

)

Decode

Decode(des = design, n.alts = 2, lvl.names = al, coding = coded)

Example with alternative specific constants

design <- example_design2

coded <- c("D", "D", "D") # Coding.

Levels as they should appear in survey.

al <- list(
c("$50", "$75", "$100"), # Levels attribute 1.
c("2 min”, "15 min", "30 min"), # Levels attribute 2.
c("bad”, "moderate”, "good") # Levels attribute 3.

)

Decode

Decode(des = design, n.alts = 3, lvl.names = al, coding = coded, alt.cte = c(1, 1, @))

End(Not run)

EvaluateDesign Calculate efficiency measures for a given design

16

Description

EvaluateDesign

This function calculates the following measures for a given design: AB-error, DB-error, standard
deviations of the parameters, level frequency, level overlaps, and orthogonality.

Usage

EvaluateDesign(des, par.draws, n.alts, alt.cte = NULL, no.choice = FALSE)

Arguments

des
par.draws
n.alts

alt.cte

no.choice

Details

A design matrix in which each row is an alternative.
A matrix or a list, depending on alt.cte.
Numeric value indicating the number of alternatives per choice set.

A binary vector indicating for each alternative whether an alternative specific
constant is present in the design. The default is NULL.

A logical value indicating whether the design has a no choice alternative. The
default is FALSE.

The rules for specifying the function arguments are the same as in Modfed or CEA.

Alternative specific constants can be specified in alt. cte, if the design has any. The length of this
binary vector should equal n.alts, were @ indicates the absence of an alternative specific constant

and 1 the opposite.

par.draws should be a matrix in which each row is a draw from a multivariate distribution. How-
ever, if there are alternative specific constants in the specified design, then par.draws should be
a list containing two matrices: The first matrix containing the parameter draws for the alternative
specific constant parameters. The second matrix containing the draws for the rest of the parameters.

If the design has a no.choice alternative, then no.choice should be set to TRUE.

Value

AB.error
DB.error

SD

level.count

level.overlap

Orthogonality

Numeric value indicating the A(B)-error of the design.
Numeric value indicating the D(B)-error of the design.

The standard deviations of the parameters. Calculated by taking the diagonal of
the varcov matrix, averaged over all draws if a sample matrix was provided in
par.draws.

The count of all levels of each attribute in the design.

The count of overlapping levels accross alternatives in every choice set in the
design.

Numeric value indicating the degree of orthogonality of the design. The closer
the value to 1, the more orthogonal the design is.

example_design 17

Examples

des <- example_design

mu = c(-1, -1.5, -1, -1.5, 0.5, 1)

Sigma = diag(length(mu))

par.draws <- MASS::mvrnorm(100, mu = mu, Sigma = Sigma)

n.alts = 2

EvaluateDesign(des = des, par.draws = par.draws, n.alts = n.alts)

#Example with a no.choice alternative

des.nc <- nochoice_design

mu = c(0.2, -0.5, -1, -0.5, -1, 0.5, 1)

Sigma = diag(length(mu))

par.draws <- MASS::mvrnorm(100, mu = mu, Sigma = Sigma)

par.draws <- list(par.draws[,1], par.draws[,-1])

n.alts = 3

EvaluateDesign(des = des.nc, par.draws = par.draws, n.alts = n.alts,
alt.cte = ¢(0,0,1), no.choice = TRUE)

example_design Discrete choice design.

Description

This discrete choice design is generated using the Modfed function. There are 8 choice sets, each
containig 2 alternatives (rows). The alternatives consist of 3 attributes (time, price, comfort) with 3
levels each, all of which are dummy coded (columns).

Usage

data(example_design)

Format

A matrix with 16 rows and 6 columns.

example_design2 Discrete choice design.

Description

This discrete choice design is generated using the Modfed function. There are 8 choice sets, each
containig 3 alternatives (rows). The alternatives consist of 3 attributes (time, price, comfort) with 3
levels each, all of which are dummy coded (columns). The first two colums are alternative specific
constants for alternative 1 and 2.

18

Usage

ImpsampMNL

data(example_design2)

Format

A matrix with 24 rows and 8 columns.

ImpsampMNL

Importance sampling MNL

Description

This function samples from the posterior distribution using importance sampling, assuming a mul-
tivariate (truncated) normal prior distribution and a MNL likelihood.

Usage

ImpsampMNL (
n.draws,
prior.mean,
prior.covar,
des,
n.alts,

Y,

alt.cte = NULL,

lower = NULL,
upper = NULL

Arguments

n.draws
prior.mean
prior.covar

des

n.alts

alt.cte

lower

upper

Numeric value indicating the number of draws.
Numeric vector indicating the mean of the multivariate normal distribution (prior).
Covariance matrix of the prior distribution.

A design matrix in which each row is a profile. If alternative specific constants
are present, those should be included as the first column(s) of the design. Can
be generated with Modfed or CEA.

Numeric value indicating the number of alternatives per choice set.
A binary response vector. RespondMNL can be used to simulate response data.

A binary vector indicating for each alternative whether an alternative specific
constant is desired. The default is NULL.

Numeric vector of lower truncation points, the default is NULL.

Numeric vector of upper truncation points, the default is NULL.

ImpsampMNL 19

Details

For the proposal distribution a t-distribution with degrees of freedom equal to the number of param-
eters is used. The posterior mode is estimated using optim, and the covariance matrix is calculated
as the negative inverse of the generalized Fisher information matrix. See reference for more infor-
mation.

From this distribution a lattice grid of draws is generated.

If truncation is present, incorrect draws are rejected and new ones are generated untill n.draws is
reached. The covariance matrix is in this case still calculated as if no truncation was present.

Value
sample Numeric vector with the (unweigthted) draws from the posterior distribution.
weights Numeric vector with the associated weights of the draws.
max Numeric vector with the estimated mode of the posterior distribution.
covar Matrix representing the estimated variance covariance matrix.
References

Yu J, Goos P, Vandebroek M (2011). “Individually adapted sequential Bayesian conjoint-choice
designs in the presence of consumer heterogeneity.”

Examples

Example 1: sample from posterior, no constraints, no alternative specific constants

choice design

design <- example_design

Respons.

truePar <- c(0.7, 0.6, 0.5, -0.5, -0.7, 1.7) # some values

set.seed(123)

resp <- RespondMNL(par = truePar, des = design, n.alts = 2)

#prior

pm <- c(1, 1, 1, -1, -1, 1) # mean vector

pc <- diag(1, ncol(design)) # covariance matrix

draws from posterior.

ImpsampMNL(n.draws = 100, prior.mean = pm, prior.covar = pc,
des = design, n.alts = 2, y = resp)

example 2: sample from posterior with constraints

and alternative specific constants

choice design.

design <- example_design2

Respons.

truePar <- c(0.2, 0.8, 0.7, 0.6, 0.5, -0.5, -0.7, 1.7) # some values
set.seed(123)

resp <- RespondMNL(par = truePar, des = design, n.alts = 3)
prior

pm <- c(1, 1, 1, 1, 1, -1, -1, 1) # mean vector

pc <- diag(1, ncol(design)) # covariance matrix

low = c(-Inf, -Inf, @, @, @, -Inf, -Inf, Q)

20 Modfed

up = c(Inf, Inf, Inf, Inf, Inf, @, @, Inf)

draws from posterior.

ImpsampMNL(n.draws = 100, prior.mean = pm, prior.covar = pc, des = design,
n.alts = 3, y = resp, lower = low, upper = up, alt.cte = c(1, 1, 0))

LoadData Load numeric choice data from directory

Description

Reads all individual choice data files, created by SurveyApp function, from a directory and concate-
nates those files into a single data file. Files containing either "num" or "char" will be read, with
num indicating numeric data and char indicating character data. For more information, see output
of SurveyApp.

Usage

LoadData(data.dir, type)

Arguments
data.dir A character string containing the directory to read from.
type Character vector containing either num or char.

Value

A data frame containg the full design and all the responses of the combined data files that were
found. Different files are indicated by an ID variable.

Modfed Modified Fedorov algorithm for MNL models.

Description

The algorithm swaps every profile of an initial start design with candidate profiles. By doing this,
it tries to minimize the D(B)-error, based on a multinomial logit model. This routine is repeated for
multiple starting designs.

Modfed

Usage

Modfed(
cand. set,
n.sets,
n.alts,
par.draws,

optim = "D",

21

alt.cte = NULL,

no.choice =
start.des =

FALSE,
NULL,

parallel = TRUE,

max.iter =

Inf,
n.start = 12,

overlap = NULL,

n.blocks =

blocking.iter = 50,

constraints =

Arguments

cand.set

n.sets
n.alts
par.draws
optim
alt.cte

no.choice

start.des

parallel

max.iter

n.start

overlap

n.blocks

blocking.iter

NULL

A numeric matrix in which each row is a possible profile. The Profiles func-
tion can be used to generate this matrix.

Numeric value indicating the number of choice sets.

Numeric value indicating the number of alternatives per choice set.

A matrix or a list, depending on alt.cte.

A character value to choose between "D" and "A" optimality. The defaultis "D".

A binary vector indicating for each alternative whether an alternative specific
constant is desired. The default is NULL.

A logical value indicating whether a no choice alternative should be added to
each choice set. The default is FALSE.

A list containing one or more matrices corresponding to initial start design(s).
The default is NULL.

Logical value indicating whether computations should be done over multiple
cores. The default is TRUE.

A numeric value indicating the maximum number allowed iterations. The de-
fault is Inf.

A numeric value indicating the number of random start designs to use. The
default is 12.

A numeric value indicating the minimum number of attributes to overlap in ev-
ery choice sets to create partial profiles. The default is NULL.

A numeric value indicating the desired number of blocks to create out of the
most efficient design.

A numeric value indicating the maximum number of iterations for optimising
the blocks. The default value is 50.

22 Modfed

constraints A list of constraints to enforce on the attributes and alternatives in every choice
set. The default is NULL.

Details

Each iteration will loop through all profiles from the initial design, evaluating the change in A(B)
or D(B)-error (as specified) for every profile from cand. set. The algorithm stops when an iteration
occurred without replacing a profile or when max. iter is reached.

By specifying a numeric vector in par.draws, the A- or D-error will be calculated and the design
will be optimised locally. By specifying a matrix, in which each row is a draw from a multivariate
distribution, the AB/DB-error will be calculated, and the design will be optimised globally. When-
ever there are alternative specific constants, par.draws should be a list containing two matrices:
The first matrix containing the parameter draws for the alternative specific constant parameters.
The second matrix containing the draws for the rest of the parameters.

The AB/DB-error is calculated by taking the mean over A/D-errors, respectively. It could be that
for some draws the design results in an infinite error. The percentage of draws for which this was
true for the final design can be found in the output inf.error.

Alternative specific constants can be specified in alt.cte. The length of this binary vector should
equal n.alts, were 0@ indicates the absence of an alternative specific constant and 1 the opposite.

start.des is a list with one or several matrices corresponding to initial start design(s). In each ma-
trix, each row is a profile. The number of rows equals n.sets x n.alts, and the number of columns
equals the number of columns of cand.set + the number of non-zero elements in alt.cte. If
start.des = NULL, n.start random initial designs will be generated. If start designs are provided,
n.start is ignored.

Note: To make sure the code works well, the names of the variables in the starting design should be
aligned with variable names that the function Profiles produces. For example, if attribute 1 is a
dummy variable of 3 levels then its corresponding columns should have numbered names such as:
varll and varl2, or (if labelled) pricel and price2, for instance.

If no.choice is TRUE, in each choice set an alternative with one alternative specific constant is
added. The return value of the A(B) or D(B)-error is however based on the design without the no
choice option.

When parallel is TRUE, detectCores will be used to decide upon the number of available cores.
That number minus 1 cores will be used to search for efficient designs. The computation time will
decrease significantly when parallel = TRUE.

Partial profiles/overlapping attributes

If overlap is set to 1 or more, then partial profiles will be used in the resulting efficient designs.
The value of overlap determines the minimum number of attributes to overlap in each choice set.
The optimising algorithm will enforce this constraint across all choice sets. Note that the running
time may increase significantly, as the algorithm searches through all possible (combinations of)
attributes to achieve optimisation.

Blocking

If the value of n.blocks is more than 1, a new list with the specified number of blocks of the best
design (one with the least A(B)- or D(B)-error) will be added to the output. The algorithm strives
to distribute the choice sets of the best design evenly among the blocks, while maintaining level
balance across them. The choice sets are assigned sequentially to the blocks, aiming to maintain the

Modfed 23

closest possible balance among them up to that stage in the sequence. Hence, the algorithm runs
different iterations, during each of which the choice sets in the design are shuffled randomly. The
argument blocking. iter specifies the maximum number of these iterations. This functionality is
also available as a separate function in Blocks that works with a given design.

Adding constraints to the design

The argument constraints can be used to determine a list of constraints to be enforced on the
resulting efficient design. The package offers flexibility in the possible constraints. The basic
syntax for the constraint should determine an attribute Y within an alternative X (A1tX.AttY) and
an operator to be applied on that attribute followed by a list of values or another attribute. In addition
to this basic syntax, conditional If statements can be included in the conditions as will be shown in
the examples below. The following operators can be used:

e <or<=
* >o0r>=
* AND

* OR

* +, -, * [operations for continuous attributes.

For example, if attributes 1, 2 and 3 are continuous attributes, then possible constraints include:

"Alt2.Att1 =1ist (100, 200)": restrict values of attribute 1 in alternative 2 to 100 and 200.

o "ALt1.Att1>Alt2.Att1": enforce that attribute 1 in alternative 1 to be higher than the at-
tribute’s value in alternative 2.

e "ALt1.Att1 + Alt1.Att2 <Alt1.Att3": enforce that the sum of attributes 1 and 2 to be less
than the value of attribute 3 in alternative 1.

o "ALt1.Att1 >Alt1.Att3 ORALtT.Att2>Alt1.Att3": either attribute 1 or attribute 2 should
be higher than attribute 3 in alternative 1.

For dummy and effect coded attributes, the levels are indicated with the number of the attribute
followed by a letter from the alphabet. For example 1A is the first level of attribute 1 and 3D is the
fourth level of attribute 3. Examples on constraints with dummy/effect coded variables:

e "ALt2.Att1 =1ist(1A,1B)": restrict attribute 1 in alternative 2 to the reference level (A)
and the second level (B).

e "ALt1.Att1=1ist(1B,1C) AND A1t2.Att2 !=1ist(2A, 2E)": restrict attribute 1 in alter-
native 1 to the second and third levels, and at the same time, attribute 2 in alternative 2 cannot
be the first and fifth levels of the attribute.

Additionally, and as aforementioned, conditional If statements can be included in the conditions.
Examples:

o "if ALt1.Att1 I=Alt2.Att1 then ALt2.Att2 = 1ist(100,200)"
o "if ALt1.Att1 =Alt2.Att1 ORALt1.Att1 =0 then Alt2.Att1 > 3"

24 Modfed

Lastly, more than one constraint can be specified at the same time. For example: constraints =
list("if ALt1.Att1 !=ALlt2.Att1 then ALlt2.Att2=1ist(100,200)", "Alt1.Att3 =1list (3A,
300M).

To ensure the best use of constraints in optimising designs, please keep in mind the following:

* Proper spacing should be respected between the terms, to make sure the syntax translates
properly into an R code. To clarify, spaces should be placed before and after the operators
listed above. Otherwise, the console will return an error.

* Lists should be used for constrained values as shown in the examples above.

* Constraints should not be imposed on the no. choice alternative because it is fixed with zeros
for all attributes. The no.choice alternative, if included, will be the last alternative in every
choice set in the design. Therefore, if no. choice is TRUE and the no.choice alternative number
(=n.alts) is included in the constraints, the console will return an Error.

 Attention should be given when a starting design that does not satisfy the constraint is pro-
vided. It is possible that the algorithm might not find a design that is more efficient and, at the
same time, that satisfies the constraints.

* With tight constraints, the algorithm might fail to find a design that satisfies all the specified
constraints.

Value

Two lists of designs and statistics are returned: First, the list BestDesign contains the design with
the lowest A(B)- or D(B)- error. The method print can be used to return this list. Second, the list
AllDesigns contains the results of all (provided) start designs. The method summary can be used
to return this list.

design A numeric matrix wich contains an efficient design.

optimality "A" or "D", depending on the chosen optimality criteria.

inf.error Numeric value indicating the percentage of draws for which the D-error was
Inf.

probs Numeric matrix containing the probabilities of each alternative in each choice
set. If a sample matrix was provided in par.draws, this is the average over all
draws.

AB.error Numeric value indicating the A(B)-error of the design.

DB.error Numeric value indicating the D(B)-error of the design.

SD The standrad deviation of the parameters. Calculated by taking the diagonal of

level.count

level.overlap

the varcov matrix, averaged over all draws if a sample matrix was provided in
par.draws.

The count of all levels of each attribute in the design.

The count of overlapping levels accross alternatives in every choice set in the
design.

Orthogonality Numeric value indicating the degree of orthogonality of the design. The closer
the value to 1, the more orthogonal the design is.
Blocks A list showing the created blocks of the best design, along with the level counts

in each block. For more details, see function Blocks.

Modfed 25

References

Traets F, Sanchez G, Vandebroek M (2020). “Generating Optimal Designs for Discrete Choice
Experiments in R: The idefix Package.” Journal of Statistical Software, 96(3).

Examples

Not run:

DB-efficient designs

3 Attributes, all dummy coded. 1 alternative specific constant = 7 parameters

cand.set <- Profiles(lvls = c(3, 3, 3), coding = c("D", "D", "D"))

mu <- c(0.5, 0.8, 0.2, -0.3, -1.2, 1.6, 2.2) # Prior parameter vector

v <- diag(length(mu)) # Prior variance.

set.seed(123)

pd <- MASS::mvrnorm(n = 10, mu = mu, Sigma = v) # 10 draws.

p.d <- list(matrix(pd[,1], ncol = 1), pd[,2:7])

Modfed(cand.set = cand.set, n.sets = 8, n.alts = 2, alt.cte = c(1, 0),
parallel = FALSE, par.draws = p.d)

Or AB-efficient design

set.seed(123)

Modfed(cand.set = cand.set, n.sets = 8, n.alts = 2, alt.cte = c(1, 0),
parallel = FALSE, par.draws = p.d, optim = "A")

DB-efficient design with start design provided.
3 Attributes with 3 levels, all dummy coded (= 6 parameters).
cand.set <- Profiles(lvls = c(3, 3, 3), coding = c("D", "D", "D"))
mu <- c(0.8, 0.2, -0.3, -0.2, 0.7, 0.4) # Prior mean (total = 5 parameters).
v <- diag(length(mu)) # Prior variance.
sd <- list(example_design)
set.seed(123)
ps <- MASS::mvrnorm(n = 10, mu = mu, Sigma = v) # 10 draws.
Modfed(cand.set = cand.set, n.sets = 8, n.alts = 2,
alt.cte = c(@, @), parallel = FALSE, par.draws = ps, start.des = sd)

DB-efficient design with partial profiles

3 Attributes, all dummy coded. = 5 parameters

cand.set <- Profiles(lvls = c(3, 3, 2), coding = c("D", "D", "D"))
mu <- c(1.2, 0.8, 0.2, -0.3, -1.2) # Prior parameter vector
v <- diag(length(mu)) # Prior variance.

set.seed(123)

pd <- MASS::mvrnorm(n = 10, mu = mu, Sigma = v) # 10 draws.
Modfed(cand.set = cand.set, par.draws = pd, n.alts = 2,
n.sets = 8, parallel = TRUE, alt.cte = c(@, @), overlap = 1)
The same function but asking for blocks (and no overlap)
set.seed(123)

Modfed(cand.set = cand.set, par.draws = pd, n.alts = 2,
n.sets = 8, parallel = TRUE, alt.cte = c(@, @), n.blocks = 2)

AB-efficient design with constraints

2 dummy coded attributes, 1 continuous attribute and 1 effect coded

attribute (with 4 levels). = 8 parameters

cand.set <- Profiles(lvls = c(3, 3, 2, 4), coding = c("D", "D", "C", "E"),
c.lvls = list(c(4,7)))

26 Profiles

mu <- c(1.2, 0.8, 0.2, 0.5, -0.3, -1.2, 1, 1.6) # Prior parameter vector
v <- diag(length(mu)) # Prior variance.
set.seed(123)
pd <- MASS::mvrnorm(n = 10, mu = mu, Sigma = v) # 10 draws.
constraints <- list("Alt2.Att1 = list(1A,1B)",
"if Alt1.Att3 = list(4) then Alt2.Att4 = list(4C, 4D)")
Modfed(cand.set = cand.set, par.draws = pd, n.alts = 2, n.sets = 8,
parallel = TRUE, alt.cte = c(@, @), optim = "A", constraints = constraints)

End(Not run)

nochoice_design Discrete choice design with no choice option.

Description

This discrete choice design is generated using the Modfed function. There are 8 choice sets, each
containig 3 alternatives (rows), of which one is a no choice option. The no choice option consist
of an alternative specific constant and zero’s for all other attribute levels. There are three attributes
(time, price, comfort) with 3 levels each, all of which are dummy coded (columns).

Usage

data(nochoice_design)

Format

A matrix with 24 rows and 7 variables

Profiles Profiles generation.

Description

Function to generate all possible combinations of attribute levels (i.e. all possible profiles).

Usage

Profiles(lvls, coding, c.lvls = NULL)

Arguments
1vls A numeric vector which contains for each attribute the number of levels.
coding Type of coding that needs to be used for each attribute.
c.1lvls A list containing numeric vectors with the attribute levels for each continuous

attribute. The default is NULL.

RespondMNL 27

Details

Valid arguments for coding are C, D and E. When using C the attribute will be treated as continuous
and no coding will be applied. All possible levels should then be specified in c. 1vls. If D (dummy
coding) is used contr. treatment will be applied to that attribute. For E (effect coding) contr. sum
will be applied.

Value

A numeric matrix which contains all possible profiles.

Examples

Without continuous attributes

at.lvls <- c(3, 4, 2) # 3 Attributes with respectively 3, 4 and 2 levels.
c.type <- c("E", "E", "E") # All Effect coded.

Profiles(lvls = at.lvls, coding = c.type) # Generate profiles.

With continuous attributes

at.lvls <- c(3, 4, 2) # 3 attributes with respectively 3, 4 and 2 levels.
First attribute is dummy coded, second and third are continuous.

c.type <- c("D", "C", "C")

Levels for continuous attributes, in the same order.

con.lvls <- list(c(4, 6, 8, 10), c(7, 9))

Profiles(lvls = at.lvls, coding = c.type, c.lvls = con.lvls)

RespondMNL Response generation

Description
Function to generate random responses given parameter values and a design matrix, assuming a
MNL model.

Usage

RespondMNL (par, des, n.alts, bin = TRUE)

Arguments
par Numeric vector containing parameter values.
des A design matrix in which each row is a profile. If alternative specific constants
are present, those should be included as the first column(s) of the design. Can
be generated with Modfed or CEA.
n.alts Numeric value indicating the number of alternatives per choice set.
bin A logical value indicating whether the returned value should be a binary vector

or a discrete value which denotes the chosen alternative.

28 SeqCEA

Value

Numeric vector indicating the chosen alternatives.

Examples

design: 3 dummy coded attributes, each 3 levels. There are 8 choice sets.
des <- example_design

set.seed(123)

true_par <- rnorm(6)

RespondMNL (par = true_par, des = des, n.alts = 2)

SeqCEA Sequential Coordinate Exchange algorithm for MNL model.

Description

Selects the choice set that minimizes the DB-error when added to an initial design, given (updated)
parameter values.

Usage

SeqCEA(
des = NULL,
lvls,
coding,
c.lvls = NULL,
n.alts,
par.draws,
prior.covar,
alt.cte = NULL,
no.choice = NULL,
weights = NULL,
parallel = TRUE,
reduce = TRUE,

n.cs = NULL
)
Arguments

des A design matrix in which each row is a profile. If alternative specific constants
are present, those should be included as the first column(s) of the design. Can
be generated with Modfed or CEA

1vls A numeric vector which contains for each attribute the number of levels.

coding Type of coding that needs to be used for each attribute.

c.1lvls A list containing numeric vectors with the attribute levels for each continuous

attribute. The default is NULL.

SeqCEA 29

n.alts Numeric value indicating the number of alternatives per choice set.

par.draws A matrix or a list, depending on alt.cte.

prior.covar Covariance matrix of the prior distribution.

alt.cte A binary vector indicating for each alternative whether an alternative specific
constant is desired. The default is NULL.

no.choice An integer indicating the no choice alternative. The default is NULL.

weights A vector containing the weights of the draws. Defaultis NULL. See also ImpsampMNL.

parallel Logical value indicating whether computations should be done over multiple
cores.

reduce Logical value indicating whether the candidate set should be reduced or not.

n.cs An integer indicating the number of possible random choice sets to consider in

the search for the next best choice set possible. The default is NULL.

Details

This algorithm is ideally used in an adaptive context. The algorithm will select the next DB-efficient
choice set given parameter values and possible previously generated choice sets. In an adaptive
context these parameter values are updated after each observed response.

Previously generated choice sets, which together form an initial design, can be provided in des.
When no design is provided, the algorithm will select the most efficient choice set based on the
fisher information of the prior covariance matrix prior.covar.

Ifalt.cte = NULL, par.draws should be a matrix in which each row is a sample from the multivari-
ate parameter distribution. In case that alt. cte is not NULL, a list containing two matrices should be
provided to par.draws. The first matrix containing the parameter draws for the alternative specific
parameters. The second matrix containing the draws for the rest of the parameters.

The list of potential choice sets is created by selecting randomly a level for each attribute in an alter-
native/profile. n.cs controls the number of potential choice sets to consider. The default is NULL,
which means that the number of possible choice sets is the product of attribute levels considered in
the experiment. For instance, an experiment with 3 attribute and 3 levels each will consider 33 =
27 possible choice sets.

The weights argument can be used when the par.draws have weights. This is for example the
case when parameter values are updated using ImpsampMNL.

When parallel is TRUE, detectCores will be used to decide upon the number of available cores.
That number minus 1 cores will be used to search for the optimal choice set. For small problems
(6 parameters), parallel = TRUE can be slower. For larger problems the computation time will
decrease significantly.

Note: this function is faster than SeqMOD, but the output is not as stable. This happens because this
function makes a random search to get the choice set, whereas SegMOD makes an exhaustive search.

Value

set A matrix representing a DB efficient choice set.

error A numeric value indicating the DB-error of the whole design.

30 SeqgKL

References

Traets F, Sanchez G, Vandebroek M (2020). “Generating Optimal Designs for Discrete Choice
Experiments in R: The idefix Package.” Journal of Statistical Software, 96(3).

Yu J, Goos P, Vandebroek M (2011). “Individually adapted sequential Bayesian conjoint-choice
designs in the presence of consumer heterogeneity.”

Meyer RK, Nachtsheim CJ (1995). “The Coordinate-Exchange Algorithm for Constructing Exact
Optimal Experimental Designs.” Technometrics, 37(1), 60—69. ISSN 00401706, https://www.
jstor.org/stable/1269153.

Kessels R, Jones B, Goos P, Vandebroek M (2009). “An Efficient Algorithm for Constructing
Bayesian Optimal Choice Designs.” Journal of Business & Economic Statistics, 27(2), 279-291.
ISSN 07350015.

Examples

DB efficient choice set, given a design and parameter draws.

3 attributes with 3 levels each

m<- c(0.3, 0.2, -0.3, -0.2, 1.1, 2.4) # mean (total = 6 parameters).

pc <- diag(length(m)) # covariance matrix

set.seed(123)

sample <- MASS::mvrnorm(n = 10, mu = m, Sigma = pc)

Initial design.

des <- example_design

Efficient choice set to add.

SeqCEA(des = des, 1lvls = c(3, 3, 3), coding = c("D", "D", "D"), n.alts = 2,
par.draws = sample, prior.covar = pc, parallel = FALSE)

DB efficient choice set, given parameter draws.

with alternative specific constants

des <- example_design?2

ac <- c(1, 1, @) # Alternative specific constants.

m<-c(0.3, 0.2, -0.3, -0.2, 1.1, 2.4, 1.8, 1.2) # mean

pc <- diag(length(m)) # covariance matrix

pos <- MASS::mvrnorm(n = 10, mu = m, Sigma = pc)

sample <- list(pos[, 1:2]1, pos[, 3:81)

Efficient choice set.

SeqCEA(des = des, 1lvls = c(3, 3, 3), coding = c("D", "D", "D"), n.alts = 3,
par.draws = sample, alt.cte = ac, prior.covar = pc, parallel = FALSE)

SegKL Sequential Kullback-Leibler based algorithm for the MNL model.

Description

Selects the choice set that maximizes the Kullback-Leibler divergence between the prior parameter
values and the expected posterior, assuming a MNL model.

https://www.jstor.org/stable/1269153
https://www.jstor.org/stable/1269153

SeqgKL 31

Usage

SegKL(
des = NULL,
cand.set,
n.alts,
par.draws,
alt.cte = NULL,
no.choice = NULL,
weights = NULL,
allow.rep = FALSE

)
Arguments
des A design matrix in which each row is a profile. If alternative specific constants
are present, those should be included as the first column(s) of the design. Can
be generated with Modfed or CEA.
cand.set A numeric matrix in which each row is a possible profile. The Profiles func-
tion can be used to generate this matrix.
n.alts Numeric value indicating the number of alternatives per choice set.
par.draws A matrix or a list, depending on alt.cte.
alt.cte A binary vector indicating for each alternative if an alternative specific constant
is desired.
no.choice An integer indicating the no choice alternative. The default is NULL.
weights A vector containing the weights of the draws. Defaultis NULL, See also ImpsampMNL.
allow.rep Logical value indicating whether repeated choice sets are allowed in the design.
Details

This algorithm is ideally used in an adaptive context. The algorithm selects the choice set that
maximizes the Kullback-Leibler divergence between prior and expected posterior. Otherwisely
framed the algorithm selects the choice set that maximizes the expected information gain.

Ifalt.cte = NULL, par.draws should be a matrix in which each row is a sample from the multivari-
ate parameter distribution. In case that alt. cte is not NULL, a list containing two matrices should be
provided to par.draws. The first matrix containing the parameter draws for the alternative specific
parameters. The second matrix containing the draws for the rest of the parameters.

The list of potential choice sets are created using combn. The weights argument can be used when
the par . draws have weights. This is for example the case when parameter values are updated using
ImpsampMNL.

Value

set Numeric matrix containing the choice set that maximizes the expected KL di-
vergence.

kl Numeric value which is the Kullback leibler divergence.

32 SegMOD

References

Crabbe M, Akinc D, Vandebroek M (2014). “Fast algorithms to generate individualized designs for
the mixed logit choice model.”

Examples

KL efficient choice set, given parameter draws.

Candidate profiles

cs <- Profiles(lvls = c(3, 3), coding = c("E", "E"))

m<- c(0.3, 0.2, -0.3, -0.2) # Prior mean (4 parameters).

pc <- diag(length(m)) # Prior variance

set.seed(123)

ps <- MASS::mvrnorm(n = 10, mu = m, Sigma = pc) # 10 draws.

Efficient choice set to add.

SegKL(cand.set = c¢cs, n.alts = 2, alt.cte = NULL, par.draws = ps, weights = NULL)

KL efficient choice set, given parameter draws.

Candidate profiles

cs <- Profiles(lvls = c(3, 3), coding = c("C", "E"), c.lvls = list(c(5,3,1)))
m<- c(0.7, 0.3, -0.3, -0.2) # Prior mean (4 parameters).

pc <- diag(length(m)) # Prior variance

set.seed(123)

ps <- MASS::mvrnorm(n = 10, mu = m, Sigma = pc) # 10 draws.

sample <- list(ps[, 11, ps[, 2:4]1)

ac <- c(1, @) # Alternative specific constant.

Efficient choice set to add.

SegKL(cand.set = c¢s, n.alts = 2, alt.cte = ac, par.draws = sample, weights = NULL)

SegMOD Sequential modified federov algorithm for MNL model.

Description

Selects the choice set that minimizes the DB-error when added to an initial design, given (updated)
parameter values.

Usage

SegMOD(
des = NULL,
cand. set,
n.alts,
par.draws,
prior.covar,
alt.cte = NULL,
no.choice = NULL,
weights = NULL,
parallel = TRUE,

SeqgMOD 33

reduce = TRUE,
allow.rep = FALSE

)
Arguments
des A design matrix in which each row is a profile. If alternative specific constants
are present, those should be included as the first column(s) of the design. Can
be generated with Modfed or CEA.
cand.set A numeric matrix in which each row is a possible profile. The Profiles func-
tion can be used to generate this matrix.
n.alts Numeric value indicating the number of alternatives per choice set.
par.draws A matrix or a list, depending on alt.cte.
prior.covar Covariance matrix of the prior distribution.
alt.cte A binary vector indicating for each alternative whether an alternative specific
constant is desired. The default is NULL.
no.choice An integer indicating the no choice alternative. The default is NULL.
weights A vector containing the weights of the draws. Defaultis NULL, See also ImpsampMNL.
parallel Logical value indicating whether computations should be done over multiple
cores.
reduce Logical value indicating whether the candidate set should be reduced or not.
allow.rep Logical value indicating whether repeated choice sets are allowed in the design.
Details

This algorithm is ideally used in an adaptive context. The algorithm will select the next DB-efficient
choice set given parameter values and possible previously generated choice sets. In an adaptive
context these parameter values are updated after each observed response.

Previously generated choice sets, which together form an initial design, can be provided in des.
When no design is provided, the algorithm will select te most efficient choice set based on the fisher
information of the prior covariance matrix prior.covar.

Ifalt.cte = NULL, par.draws should be a matrix in which each row is a sample from the multivari-
ate parameter distribution. In case that alt. cte is not NULL, a list containing two matrices should be
provided to par.draws. The first matrix containing the parameter draws for the alternative specific
parameters. The second matrix containing the draws for the rest of the parameters.

The list of potential choice sets are created using combn. If reduce is TRUE, allow.rep = FALSE
and vice versa. Furthermore, the list of potential choice sets will be screaned in order to select
only those choice sets with a unique information matrix. If no alternative specific constants are
used, reduce should always be TRUE. When alternative specific constants are used reduce can be
TRUE so that the algorithm will be faster, but the combinations of constants and profiles will not be
evaluated exhaustively.

The weights argument can be used when the par.draws have weights. This is for example the
case when parameter values are updated using ImpsampMNL.

When parallel is TRUE, detectCores will be used to decide upon the number of available cores.
That number minus 1 cores will be used to search for the optimal choice set. For small problems

34 SegMOD

(6 parameters), parallel = TRUE can be slower. For larger problems the computation time will
decrease significantly.

Note: this function is more stable than SeqCEA, but it takes more time to get the output. This
happens because this function makes an exhaustive search to get the choice set, whereas SeqCEA
makes a random search.

Value

set A matrix representing a DB efficient choice set.

error A numeric value indicating the DB-error of the whole design.
References

Traets F, Sanchez G, Vandebroek M (2020). “Generating Optimal Designs for Discrete Choice
Experiments in R: The idefix Package.” Journal of Statistical Software, 96(3).

Yu J, Goos P, Vandebroek M (2011). “Individually adapted sequential Bayesian conjoint-choice
designs in the presence of consumer heterogeneity.”

Examples

DB efficient choice set, given a design and parameter draws.

Candidate profiles

cs <- Profiles(lvls = c¢(3, 3, 3), coding = c("D", "D", "D"))

m<- c(0.3, 0.2, -0.3, -0.2, 1.1, 2.4) # mean (total = 6 parameters).

pc <- diag(length(m)) # covariance matrix

set.seed(123)

sample <- MASS::mvrnorm(n = 10, mu = m, Sigma = pc)

Initial design.

des <- example_design

Efficient choice set to add.

SegMOD(des = des, cand.set = cs, n.alts = 2, par.draws = sample,
prior.covar = pc, parallel = FALSE)

DB efficient choice set, given parameter draws.

with alternative specific constants

des <- example_design?2

cs <- Profiles(lvls = c(3, 3, 3), coding = c("D", "D", "D"))

ac <- c¢(1, 1, @) # Alternative specific constants.

m<-c(0.3, 0.2, -0.3, -0.2, 1.1, 2.4, 1.8, 1.2) # mean

pc <- diag(length(m)) # covariance matrix

pos <- MASS::mvrnorm(n = 10, mu = m, Sigma = pc)

sample <- list(pos[, 1:2], pos[, 3:81)

Efficient choice set.

SegMOD(des = des, cand.set = c¢s, n.alts = 3, par.draws = sample, alt.cte = ac,
prior.covar = pc, parallel = FALSE)

SurveyApp 35

SurveyApp Shiny application to generate a discrete choice survey.

Description

This function starts a shiny application which puts choice sets on screen and saves the responses.
The complete choice design can be provided in advance, or can be generated sequentially adaptively,
or can be a combination of both.

Usage

SurveyApp(
des = NULL,
n.total,
alts,
atts,
1vl.names,
coding,
alt.cte = NULL,
no.choice = NULL,
buttons.text,
intro. text,
end. text,
data.dir = NULL,
c.lvls = NULL,
prior.mean = NULL,
prior.covar = NULL,
cand.set = NULL,
n.draws = NULL,
lower = NULL,
upper = NULL,
parallel = TRUE,
reduce = TRUE

)
Arguments
des A numeric matrix which represents the design matrix. Each row is a profile.
n.total A numeric value indicating the total number of choice sets.
alts A character vector containing the names of the alternatives.
atts A character vector containing the names of the attributes.
1vl.names A list containing character vectors with the values of each level of each attribute.
coding A character vector denoting the type of coding used for each attribute. See also
Profiles.
alt.cte A binary vector indicating for each alternative if an alternative specific constant

is present. The default is NULL.

36

no.choice

buttons.text

SurveyApp

An integer indicating which alternative should be a no choice alternative. The
default is NULL.

A string containing the text presented together with the option buttons.

intro.text A string containing the text presented before the choice survey.

end. text A string containing the text presented after the choice survey.

data.dir A character string with the directory denoting where the data needs to be written.
The default is NULL

c.lvls A list containing numeric vectors with the attribute levels for each continuous

prior.mean

prior.covar

attribute. The default is NULL.
Numeric vector indicating the mean of the multivariate normal distribution (prior).

Covariance matrix of the prior distribution.

cand.set A numeric matrix in which each row is a possible profile. The Profiles func-
tion can be used to generate this matrix.

n.draws Numeric value indicating the number of draws.

lower Numeric vector of lower truncation points, the default is NULL.

upper Numeric vector of upper truncation points, the default is NULL.

parallel Logical value indicating whether computations should be done over multiple
cores. The default is TRUE.

reduce Logical value indicating whether the candidate set should be reduced or not.

Details

A pregenerated design can be specified in des. This should be a matrix in which each row is a
profile. This can be generated with Modfed or CEA, but it is not necessary.

If n.total = nrow(des) / length(alts), the specified design will be put on screen, one set after
the other, and the responses will be saved. If n.total > (nrow(des) / length(alts)), first the
specified design will be shown and afterwards the remaining sets will be generated adaptively.
If des = NULL, n.total sets will be generated adaptively. See SeqMOD for more information on
adaptive choice sets.

Whenever adaptive sets will be generated, prior.mean, prior.covar, cand.set and n.draws,
should be specified. These arguments are necessary for the underlying importance sampling algo-
rithm to update the prior preference distribution. lower and upper can be used to specify lower and
upper truncation points. See ImpsampMNL for more details.

The names specified in alts will be used to label the choice alternatives. The names specified in
atts will be used to name the attributes in the choice sets. The values of 1v1.names will be used
to create the values in the choice sets. See Decode for more details.

The text specified in buttons. text will be displayed above the buttons to indicate the preferred
choice (for example: "indicate your preferred choice"). The text specified in intro.text will
be displayed before the choice sets. This will generally be a description of the survey and some
instructions. The text specified in end. text will be displayed after the survey. This will generally
be a thanking note and some further instructions.

A no choice alternative is coded as an alternative with 1 alternative specific constant and zero’s for
all other attribute levels. If a no choice alternative is present in des, or is desired when generating

SurveyApp 37

adaptive choice sets, no. choice should be specified. This should be done with an integer, indicating
which alternative is the no choice option. This alternative will not be presented on screen, but the
option to select "no choice" will be. The alt.cte argument should be specified accordingly, namely
with a 1 on the location of the no.choice option. See examples for illustration.

When parallel is TRUE, detectCores will be used to decide upon the number of available cores.
That number minus 1 cores will be used to search for the optimal adaptive choice set. For small
problems (6 parameters), parallel = TRUE can be slower. For larger problems the computation
time will decrease significantly.

When reduce = TRUE, the set of all potential choice sets will be reduced to choice sets that have a
unique information matrix. If no alternative specific constants are used, reduce should always be
TRUE. When alternative specific constants are used reduce can be TRUE so that the algorithm will
be faster, but the combinations of constants and profiles will not be evaluated exhaustively.

Value

After completing the survey, two text files can be found in data.dir. The file with "num" in the
filename is a matrix with the numeric choice data. The coded design matrix ("par"), presented
during the survey, together with the observed responses ("resp") can be found here. Rownames
indicate the setnumbers. The file with "char" in the filename is a matrix with character choice data.
The labeled design matrix ("par"), presented during the survey, together with the observed responses
("resp") can be found here. See LoadData to load the data.

References

Yu J, Goos P, Vandebroek M (2011). “Individually adapted sequential Bayesian conjoint-choice
designs in the presence of consumer heterogeneity.”

Examples

Not run:

Present choice design without adaptive sets (n.total = sets in des)
example design

data("example_design"”) # pregenerated design

xdes <- example_design

settings of the design

code <- c("D", "D", "D")

n.sets <- 8

settings of the survey

alternatives <- c("Alternative A", "Alternative B")
attributes <- c("Price”, "Time", "Comfort")

labels <- vector(mode="list", length(attributes))

labels[[1]1] <- c("$10", "$5", "$1")

labels[[2]1] <- ¢("20 min"”, "12 min", "3 min")

labels[[3]1] <- c("bad”, "average"”, "good")

i.text <- "Welcome, here are some instructions ... good luck!”
b.text <- "Please choose the alternative you prefer”

e.text <- "Thanks for taking the survey”

dataDir <- getwd()

Display the survey

SurveyApp (des = xdes, n.total = n.sets, alts = alternatives,

38

atts = attributes, lvl.names = labels, coding = code,
buttons.text = b.text, intro.text = i.text, end.text = e.text)

#i### Present choice design with partly adaptive sets (n.total > sets in des)

example design

data("example_design"”) # pregenerated design

xdes <- example_design

settings of the design

code <- c("D", "D", "D")

n.sets <- 12

settings of the survey

alternatives <- c("Alternative A", "Alternative B")

attributes <- c("Price”, "Time", "Comfort")

labels <- vector(mode="list", length(attributes))

labels[[1]1] <- c("$10", "$5", "$1")

labels[[2]] <- ¢("20 min", "12 min", "3 min")

labels[[3]1] <- c("bad”, "average"”, "good")

i.text <- "Welcome, here are some instructions ... good luck!”

b.text <- "Please choose the alternative you prefer”

e.text <- "Thanks for taking the survey”

setting for adaptive sets

levels <- c(3, 3, 3)

cand <- Profiles(lvls = levels, coding = code)

p.mean <- c(0.3, 0.7, 0.3, 0.7, 0.3, 0.7)

p.var <- diag(length(p.mean))

dataDir <- getwd()

Display the survey

SurveyApp(des = xdes, n.total = n.sets, alts = alternatives,
atts = attributes, lvl.names = labels, coding = code,
buttons.text = b.text, intro.text = i.text, end.text = e.text,
prior.mean = p.mean, prior.covar = p.var, cand.set = cand,
n.draws = 50)

Choice design with only adaptive sets (des=NULL)
setting for adaptive sets

levels <- c(3, 3, 3)

p.mean <- c(0.3, 0.7, 0.3, 0.7, 0.3, 0.7)

low = c(-Inf, -Inf, -Inf, @, @, -Inf)

up = rep(Inf, length(p.mean))

p.var <- diag(length(p.mean))

code <- c("D", "D", "D")

cand <- Profiles(lvls = levels, coding = code)

n.sets <- 12

settings of the survey

alternatives <- c("Alternative A", "Alternative B")
attributes <- c("Price”, "Time", "Comfort")

labels <- vector(mode="list"”, length(attributes))
labels[[1]1] <- c("$10", "$5", "$1")

labels[[2]] <- ¢("20 min"”, "12 min", "3 min")
labels[[3]1] <- c("bad”, "average"”, "good")

i.text <- "Welcome, here are some instructions ... good luck!"”
b.text <- "Please choose the alternative you prefer”
e.text <- "Thanks for taking the survey”

SurveyApp

SurveyApp 39

dataDir <- getwd()
Display the survey
SurveyApp(des = NULL, n.total = n.sets, alts = alternatives,
atts = attributes, lvl.names = labels, coding = code,
buttons.text = b.text, intro.text = i.text, end.text = e.text,
prior.mean = p.mean, prior.covar = p.var, cand.set = cand,
lower = low, upper = up, n.draws = 50)
If CEA algorithm is desired, cand.set argument is not needed
SurveyApp(des = NULL, n.total = n.sets, alts = alternatives,
atts = attributes, lvl.names = labels, coding = code,
buttons.text = b.text, intro.text = i.text, end.text = e.text,
prior.mean = p.mean, prior.covar = p.var,
lower = low, upper = up, n.draws = 50)

Present choice design with a no choice alternative.

example design

data("nochoice_design"”) # pregenerated design

xdes <- nochoice_design

settings of the design

code <- c("D", "D", "D")

n.sets <- 8

settings of the survey

alternatives <- c("Alternative A", "Alternative B"”, "None")
attributes <- c("Price”, "Time", "Comfort")

labels <- vector(mode = "list”, length(attributes))
labels[[1]1] <- c("$10", "$5", "$1")

labels[[2]] <- ¢("20 min", "12 min", "3 min")

labels[[3]] <- c("bad"”, "average", "good")

i.text <- "Welcome, here are some instructions ... good luck!"”
b.text <- "Please choose the alternative you prefer”

e.text <- "Thanks for taking the survey”

Display the survey

SurveyApp(des = xdes, n.total = n.sets, alts = alternatives,
atts = attributes, 1lvl.names = labels, coding = code,
buttons.text = b.text, intro.text = i.text, end.text = e.text,
no.choice = 3, alt.cte = c(0, 0, 1))

End(Not run)

Index

+ data
aggregate_design, 4
example_design, 17
example_design2, 17
nochoice_design, 26

ABerr, 3
aggregate_design, 4

Blocks, 4, 8, 10, 23, 24

CEA, 3,5,6, 14, 16, 18, 27, 28, 31, 33, 36
choicemodelr, /2

combn, 31, 33

contr.sum, 15,27
contr.treatment, 15, 27

Datatrans, 11

DBerr, 13

Decode, 14, 36
detectCores, 8, 22, 29, 33, 37
doHB, 12

EvaluateDesign, 15
example_design, 17
example_design2, 17

gmnl, 12

idefix (idefix-package), 2
idefix-package, 2
ImpsampMNL, 18, 29, 31, 33, 36

LoadData, 20, 37
logitr, 12

mlogit, 12
Modfed, 3, 5, 14, 16-18, 20, 26-28, 31, 33, 36

nochoice_design, 26

optim, /19

40

Profiles, 14,21, 26, 31, 33, 35, 36

rbprobitGibbs, 12
Rchoice, 12
RespondMNL, I8, 27
rhierMnlRwMixture, 12

SeqCEA, 3, 28, 34
SeqgKL, 30
SegMOD, 3, 29, 32, 36
SurveyApp, 3, 20, 35

	idefix-package
	ABerr
	aggregate_design
	Blocks
	CEA
	Datatrans
	DBerr
	Decode
	EvaluateDesign
	example_design
	example_design2
	ImpsampMNL
	LoadData
	Modfed
	nochoice_design
	Profiles
	RespondMNL
	SeqCEA
	SeqKL
	SeqMOD
	SurveyApp
	Index

