Package 'kmodR'

October 13, 2022

Type Package

Title K-Means with Simultaneous Outlier Detection

Version 0.2.0

Date 2022-04-11

Maintainer David Charles Howe <kmodR@edgecondition.com>

Description An implementation of the 'k-means--' algorithm proposed by Chawla and Gionis, 2013 in their paper,
``k-means-- : A unified approach to clustering and outlier detection. SIAM International Conference on Data Mining (SDM13)",
<doi:10.1137/1.9781611972832.21> and using 'ordering' described by Howe, 2013 in the thesis, Clustering and anomaly detection in tropical cyclones". Useful for creating (potentially) tighter clusters than

standard k-means and simultaneously finding outliers inexpensively in multidimensional space.

License GPL-3

Suggests testthat

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation no

Author David Charles Howe [aut, cre] (https://orcid.org/0000-0003-4942-1300)

Repository CRAN

Date/Publication 2022-05-12 11:40:02 UTC

R topics documented:

	kmod	••	 •	• •	•	 •	 •	•	•	•	•••	•	•	 •	•	•	•••	•	•	• •	•	•	•	 •	•	 •	•	•	2
x																													4

Index

kmod

Description

An implementation of the 'k-means-' algorithm proposed by Chawla and Gionis, 2013 in their paper, "k-means-: A unified approach to clustering and outlier detection. SIAM International Conference on Data Mining (SDM13)", doi: 10.1137/1.9781611972832.21 and using 'ordering' described by Howe, 2013 in the thesis, "Clustering and anomaly detection in tropical cyclones".

Useful for creating (potentially) tighter clusters than standard k-means and simultaneously finding outliers inexpensively in multidimensional space.

Usage

```
kmod(
    X,
    k = 5,
    1 = 0,
    i_max = 100,
    conv_method = "delta_C",
    conv_error = 0,
    allow_empty_c = FALSE
)
```

Arguments

Х	matrix of numeric data or an object that can be coerced to such a matrix (such as a data frame with numeric columns only).
k	the number of clusters (default = 5)
1	the number of outliers (default = 0)
i_max	the maximum number of iterations permissible (default = 100)
$conv_method$	character: the method used to assess if kmod has converged (default = "delta_C")
conv_error	numeric: the tolerance permissible when assessing convergence (default = 0)
allow_empty_c	logical: set whether empty clusters are permissible (default = FALSE)

Value

kmod returns a list comprising the following components

k the number of clusters specified

1 the number of outliers specified

C the set of cluster centroids

C_sizes cluster sizes

C_ss the sum of squares for each cluster

kmod

L the set of outliers

L_dist_sqr the distance squares for each outlier to C

L_index the index of each outlier in the supplied dataset

XC_dist_sqr_assign the distance square and cluster assignment of each point in the supplied dataset

within_ss the within cluster sum of squares (excludes outliers)

between_ss the between cluster sum of squares

tot_ss the total sum of squares

iterations the number of iterations taken to converge

Examples

```
# cluster a dataset with 8 clusters and 0 outliers
x <- kmod(x, 8)</pre>
```

Index

kmod, 2