Package ‘kriens’

October 13, 2022

Type Package

Title Continuation Passing Style Development

Version 0.1

Date 2015-11-30

Author Matteo Provenzano

Maintainer Matteo Provenzano <matteo.provenzano@alephdue.com>
Description Provides basic functions for Continuation-Passing Style development.

License BSD_3_clause + file LICENSE

URL http://www.alephdue.com
LazyData TRUE

Suggests testthat

NeedsCompilation no

Repository CRAN

Date/Publication 2015-12-02 15:10:26

R topics documented:

COMPOSE .« + v v v v v e e e e e e e e e e e e e e e e e
do .
forget . . . e e
identity2 L L
monoid
path . . e

Index

http://www.alephdue.com

2 compose

compose Continuation Passing Style Function Composition

Description

It allows to compose two functions of the form f(x, ret) and g(x, ret) returning a function
h(x, ret) which is the composition f o g. It implements the composition operator of the Continua-
tion category.

The the composition has the following properties:

1. Associativity: ho (fog) = (hog)o f
2. Unity: f oidentity2 = f = identity2 o f

In order for these relations to hold, the function f and g must not deal with global mutable states.

Usage

compose(f, g)

Arguments
f The first function that must be composed
g The first function that must be composed
Value

Rerturns the composite function of f and g

Note

The composition is performed from left to right i.e. such that the first function executed is f.

Author(s)

Matteo Provenzano
http://www.alephdue.com

See Also

forget

http://www.alephdue.com

do 3

Examples

Example 1

define an arrow in the Continuation category.
this function applies the continuation to the
increment of its argument and then decrements it.
one <- function(x, ret) {
return(ret(x+1) - 1)

define another arrow in the Continuation category.
this function doubles its argument.
two <- function(x, ret) {

return(ret(2xx))

create the composition
this is exactly the same as one %.% two
composite <- compose(one, two)

build the function (forget the continuation)
executel <- forget(composite)

executel(1)

returns 3

Example 2

compose the function further to loop over an array of elements

lapply and sapply are already arrow in the Continuation category
loop <- compose(lapply, composite)

build the function
execute2 <- forget(loop)
execute2(1:10)

do Compose and Forget in one go.

Description
do allows to specify the list of function directly as its arguments. It return a function which is the
composition of every argument with the continuation already forgotten.

Usage
do(...)

Arguments

The functions that must be composed together.

4 forget

Value

A function of the type g(x) which can be directly used on the input.

Author(s)

Matteo Provenzano
http://www.alephdue.com

See Also

path, forget

Examples

define a function that doubles its argument
times.two <- function(x, ret) {

ret(x*2)
3

define a function that loops over a list of list and double every element
loop <- do(lapply, lapply, times.two)

#returns list(list(2, 4, 6), list(8,10,12))
loop(list(list(1,2,3),1list(4,5,6)))

forget Forgets the Continuation

Description
This function takes a function of the form f(x, ret) and forgets the ret part returning a function
of the form g(x).

Usage
forget(f)

Arguments

f a function of the form f(x, ret).

Value

a function of the form f(x).

Author(s)

Matteo Provenzano
http://www.alephdue.com

http://www.alephdue.com
http://www.alephdue.com

identity2 5

See Also

compose

Examples

forget the FUN part in lapply
to.list <- forget(lapply)

returns the list of the natural numbers from 1 to 10
to.list(1:10)

identity2 The Identity Arrow

Description

The identity arrow for the Continuation category for which holds: f %.% identity2 = f = identity2
%.% t

Usage

identity2(x, ret)

Arguments
X The value on which the function operates
ret The following computation

Value

This function always returns the original arrow.

Author(s)

Matteo Provenzano
http://www.alephdue.com

http://www.alephdue.com

6 monoid

monoid Creates the monoid binary operator

Description

Creates the monoid binary operator for a monoid in the Continuation category.

Usage

monoid(op)

Arguments

op The binary operator to be be insert in the monoid (multiplication).

Value

It returns a function of the type h(f, g) where f and g must be elements of the monoid and objects
in the Continuation category. The function h will return a function of the type t(x, ret) which can
be used in the Continuation category.

Note
The developer must make sure that the function f and g are elements of a monoid and of the
Continuation category. The developer must also ensure that the operator op is the monoid’s binary
operator.

Author(s)
Matteo Provenzano
http://www.alephdue.com

References

https://en.wikipedia.org/wiki/Monoid_(category_theory)

See Also
do

Examples

A list is a monoid

replicate.10 <- function(x, ret) {
ret(rep(x, 10))

3

concatenation is the binary operator for the list monoid
the empty list is the unit

http://www.alephdue.com
https://en.wikipedia.org/wiki/Monoid_(category_theory)

path 7

‘%et% <- monoid(c)

replicate.20 <- do(replicate.10 %et% replicate.10)

nan

returns a list of 20 "a"s
replicate.20("a")

path Compose all the function in a list

Description

It applies the compose opertor recursively on all the elements of the list provided as argument

Usage
path(fs)

Arguments

fs The list of the functions that must be composed together (e.g: list(fl, £2, 3, ...)).

Value

A function of the type g(x, ret) result of the pairwise composition of each element in the list.

Author(s)

Matteo Provenzano
http://www.alephdue.com

Examples

define a function that doubles its argument
times.two <- function(x, ret) {

ret(x*x2)
3

define a function that loops over a list of list and double every element
loop <- forget(path(list(lapply, lapply, times.two)))

#returns list(list(2, 4, 6), list(8,10,12))
loop(list(list(1,2,3),1ist(4,5,6)))

http://www.alephdue.com

Index

%.% (compose), 2
compose, 2, 5
do, 3,6

forget, 2,4, 4
identity2,5
monoid, 6

path, 4,7

	compose
	do
	forget
	identity2
	monoid
	path
	Index

