Package 'lancor'

May 2, 2024

Type Package

Title Statistical Inference via Lancaster Correlation

Version 0.1.2

Description Implementation of the methods described in Holzmann, Klar (2024) <doi:10.48550/arXiv.2303.17872>. Lancaster correlation is a correlation coefficient which equals the absolute value of the Pearson correlation for the bivariate normal distribution, and is equal to or slightly less than the maximum correlation coefficient for a variety of bivariate distributions. Rank and moment-based estimators and corresponding confidence intervals are implemented, as well as independence tests based on these statistics.

Imports acepack, arrangements, boot, graphics, sn, stats

License GPL-2 Encoding UTF-8 RoxygenNote 7.3.1 Suggests testthat (>= 3.0.0) Config/testthat/edition 3 NeedsCompilation no Author Bernhard Klar [aut, cre] (<https://orcid.org/0000-0002-1419-5473>), Hajo Holzmann [aut] Maintainer Bernhard Klar <bernhard.klar@kit.edu> Repository CRAN

Date/Publication 2024-05-02 15:22:42 UTC

R topics documented:

Index		9
	Sigma.est	7
	lcor.test	
	lcor.comp	5
	lcor.ci	4
	lcor	3
	ace.test	2

1

ace.test

Description

Performs a permutation test of independence using ace in package acepack. ace stands for alternating conditional expectations.

Usage

ace.test(x, y = NULL, nperm = 999)

Arguments

Х	a numeric vector, or a matrix or data frame with two columns.
У	NULL (default) or a vector with same length as x.
nperm	number of permutations.

Value

A list containing the following components:

ace	the value of the test statistic.
pval	the p-value of the test.

Author(s)

Hajo Holzmann, Bernhard Klar

References

Holzmann, Klar (2024) Lancester correlation - a new dependence measure linked to maximum correlation. arXiv:2303.17872

See Also

lcor.test

Examples

```
n <- 200
x <- matrix(rnorm(n*2), n)
nu <- 2
y <- x / sqrt(rchisq(n, nu)/nu) #multivariate t
cor.test(y[,1], y[,2], method = "spearman")
ace.test(y)</pre>
```

lcor

Description

Computes the Lancaster correlation coefficient.

Usage

lcor(x, y = NULL, type = c("rank", "linear"))

Arguments

х	a numeric vector, or a matrix or data frame with two columns.
У	NULL (default) or a vector with same length as x.
type	a character string indicating which lancaster correlation is to be computed. One of "rank" (default), or "linear": can be abbreviated.

Value

lcor returns the sample Lancaster correlation.

Author(s)

Hajo Holzmann, Bernhard Klar

References

Holzmann, Klar (2024) Lancester correlation - a new dependence measure linked to maximum correlation. arXiv:2303.17872

See Also

lcor.comp, lcor.ci, lcor.test

Examples

```
Sigma <- matrix(c(1,0.1,0.1,1), ncol=2)
R <- chol(Sigma)
n <- 1000
x <- matrix(rnorm(n*2), n)
lcor(x, type = "rank")
lcor(x, type = "linear")
x <- matrix(rnorm(n*2), n)
nu <- 2
y <- x / sqrt(rchisq(n, nu)/nu)
cor(y[,1], y[,2], method = "spearman")
lcor(y, type = "rank")</pre>
```

lcor.ci

Description

Computes confidence intervals for the Lancaster correlation coefficient. Lancaster correlation is a bivariate measures of dependence.

Usage

Arguments

x	a numeric vector, or a matrix or data frame with two columns.
У	NULL (default) or a vector with same length as x.
conf.level	confidence level of the interval.
type	a character string indicating which lancaster correlation is to be computed. One of "rank" (default), or "linear": can be abbreviated.
con	logical; if TRUE (default), conservative asymptotic confidence intervals are computed.
R	number of bootstrap replications.
method	a character string indicating how the asymptotic covariance matrix is computed if type ="linear". One of "plugin" (default), "boot" or "symmetric": can be abbreviated.

Value

lcor.ci returns a vector containing the lower and upper limits of the confidence interval.

Author(s)

Hajo Holzmann, Bernhard Klar

References

Holzmann, Klar (2024) Lancester correlation - a new dependence measure linked to maximum correlation. arXiv:2303.17872

See Also

lcor, lcor.comp, lcor.test

lcor.comp

Examples

```
n <- 1000
x <- matrix(rnorm(n*2), n)
nu <- 2
y <- x / sqrt(rchisq(n, nu)/nu) # multivariate t
lcor(y, type = "rank")
lcor.ci(y, type = "rank")</pre>
```

lcor.comp

Lancaster correlation and its components

Description

Computes the Lancaster correlation coefficient and its components.

Usage

```
lcor.comp(x, y = NULL, type = c("rank", "linear"), plot = FALSE)
```

Arguments

х	a numeric vector, or a matrix or data frame with two columns.
У	NULL (default) or a vector with same length as x.
type	a character string indicating which lancaster correlation is to be computed. One of "rank" (default), or "linear": can be abbreviated.
plot	logical; if TRUE, scatterplots of the transformed x and y values and of their squares are drawn.

Value

lcor.comp returns a vector containing the two components rho1 and rho2 and the sample Lancaster correlation.

Author(s)

Hajo Holzmann, Bernhard Klar

References

Holzmann, Klar (2024) Lancester correlation - a new dependence measure linked to maximum correlation. arXiv:2303.17872

See Also

lcor, lcor.ci, lcor.test

lcor.test

Examples

```
Sigma <- matrix(c(1,0.1,0.1,1), ncol=2)
R <- chol(Sigma)
n <- 1000
x <- matrix(rnorm(n*2), n)
nu <- 8
y <- x / sqrt(rchisq(n, nu)/nu) #multivariate t
cor(y[,1], y[,2])
lcor.comp(y, type = "linear")
x <- matrix(rnorm(n*2), n)
nu <- 2
y <- x / sqrt(rchisq(n, nu)/nu) #multivariate t
cor(y[,1], y[,2], method = "spearman")
lcor.comp(y, type = "rank", plot = TRUE)</pre>
```

```
lcor.test
```

Lancaster correlation test

Description

Lancaster correlation test of bivariate independence. Lancaster correlation is a bivariate measures of dependence.

Usage

Arguments

x	a numeric vector, or a matrix or data frame with two columns.
У	NULL (default) or a vector with same length as x.
type	a character string indicating which lancaster correlation is to be computed. One of "rank" (default), or "linear": can be abbreviated.
nperm	number of permutations.
method	a character string indicating how the p-value is computed if type ="linear". One of "permutation" (default), "asymptotic" or "symmetric": can be abbreviated.

Value

A list containing the following components:

- 1cor the value of the test statistic.
- pval the p-value of the test.

6

Sigma.est

Author(s)

Hajo Holzmann, Bernhard Klar

References

Holzmann, Klar (2024) Lancester correlation - a new dependence measure linked to maximum correlation. arXiv:2303.17872

See Also

lcor, lcor.comp, lcor.ci

Examples

```
n <- 200
x <- matrix(rnorm(n*2), n)
nu <- 2
y <- x / sqrt(rchisq(n, nu)/nu)
cor.test(y[,1], y[,2], method = "spearman")
lcor.test(y, type = "rank")</pre>
```

Sigma.est

Covariance matrix of components of Lancaster correlation coefficient.

Description

Estimate of covariance matrix of the two components of Lancaster correlation. Lancaster correlation is a bivariate measures of dependence.

Usage

Sigma.est(xx)

Arguments

xx a matrix or data frame with two columns.

Value

Sigma.est returns the estimated covariance matrix.

Author(s)

Hajo Holzmann, Bernhard Klar

References

Holzmann, Klar (2024) Lancester correlation - a new dependence measure linked to maximum correlation. arXiv:2303.17872

Sigma.est

See Also

lcor.ci

Examples

```
Sigma <- matrix(c(1,0.1,0.1,1), ncol=2)
R <- chol(Sigma)
n <- 1000
x <- matrix(rnorm(n*2), n)
nu <- 8
y <- x / sqrt(rchisq(n, nu)/nu) #multivariate t
Sigma.est(y)</pre>
```

8

Index

ace.test, 2

lcor, 3, 4, 5, 7 lcor.ci, 3, 4, 5, 7, 8 lcor.comp, 3, 4, 5, 7 lcor.test, 2–5, 6

Sigma.est,7