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Abstract

Maximum likelihood or restricted maximum likelihood (REML) estimates of the pa-
rameters in linear mixed-effects models can be determined using the lmer function in the
lme4 package for R. As for most model-fitting functions in R, the model is described in
an lmer call by a formula, in this case including both fixed- and random-effects terms.
The formula and data together determine a numerical representation of the model from
which the profiled deviance or the profiled REML criterion can be evaluated as a function
of some of the model parameters. The appropriate criterion is optimized, using one of
the constrained optimization functions in R, to provide the parameter estimates. We de-
scribe the structure of the model, the steps in evaluating the profiled deviance or REML
criterion, and the structure of classes or types that represents such a model. Sufficient
detail is included to allow specialization of these structures by users who wish to write
functions to fit specialized linear mixed models, such as models incorporating pedigrees or
smoothing splines, that are not easily expressible in the formula language used by lmer.

Keywords: sparse matrix methods, linear mixed models, penalized least squares, Cholesky
decomposition.
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1. Introduction

The lme4 package (Bates, Maechler, Bolker, and Walker 2014a) for R (R Core Team 2015)
provides functions to fit and analyze linear mixed models, generalized linear mixed models
and nonlinear mixed models. In each of these names, the term “mixed” or, more fully, “mixed
effects”, denotes a model that incorporates both fixed- and random-effects terms in a linear
predictor expression from which the conditional mean of the response can be evaluated. In this
paper we describe the formulation and representation of linear mixed models. The techniques
used for generalized linear and nonlinear mixed models will be described separately, in a
future paper.

At present, the main alternative to lme4 for mixed modeling in R is the nlme package (Pin-
heiro, Bates, DebRoy, Sarkar, and R Core Team 2014). The main features distinguishing
lme4 from nlme are (1) more efficient linear algebra tools, giving improved performance on
large problems; (2) simpler syntax and more efficient implementation for fitting models with
crossed random effects; (3) the implementation of profile likelihood confidence intervals on
random-effects parameters; and (4) the ability to fit generalized linear mixed models (al-

https://www.jstatsoft.org/article/view/v067i01/
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though in this paper we restrict ourselves to linear mixed models). The main advantage of
nlme relative to lme4 is a user interface for fitting models with structure in the residuals (var-
ious forms of heteroscedasticity and autocorrelation) and in the random-effects covariance
matrices (e.g., compound symmetric models). With some extra effort, the computational
machinery of lme4 can be used to fit structured models that the basic lmer function cannot
handle (see Appendix A).

The development of general software for fitting mixed models remains an active area of re-
search with many open problems. Consequently, the lme4 package has evolved since it was
first released, and continues to improve as we learn more about mixed models. However,
we recognize the need to maintain stability and backward compatibility of lme4 so that it
continues to be broadly useful. In order to maintain stability while continuing to advance
mixed-model computation, we have developed several additional frameworks that draw on
the basic ideas of lme4 but modify its structure or implementation in various ways. These
descendants include the MixedModels package (Bates 2015) in Julia (Bezanson, Karpinski,
Shah, and Edelman 2012), the lme4pureR package (Bates and Walker 2013) in R, and the
flexLambda development branch of lme4. The current article is largely restricted to describ-
ing the current stable version of the lme4 package (1.1-7), with Appendix A describing hooks
into the computational machinery that are designed for extension development. The gamm4

(Wood and Scheipl 2014) and blme (Dorie 2015; Chung, Rabe-Hesketh, Dorie, Gelman, and
Liu 2013) packages currently make use of these hooks.

Another goal of this article is to contrast the approach used by lme4 with previous formu-
lations of mixed models. The expressions for the profiled log-likelihood and profiled REML
(restricted maximum likelihood) criteria derived in Section 3.4 are similar to those presented
in Bates and DebRoy (2004) and, indeed, are closely related to “Henderson’s mixed-model
equations” (Henderson Jr. 1982). Nonetheless there are subtle but important changes in
the formulation of the model and in the structure of the resulting penalized least squares
(PLS) problem to be solved (Section 3.6). We derive the current version of the PLS problem
(Section 3.2) and contrast this result with earlier formulations (Section 3.5).

This article is organized into four main sections (Sections 2, 3, 4, and 5), each of which
corresponds to one of the four largely separate modules that comprise lme4. Before describing
the details of each module, we describe the general form of the linear mixed model underlying
lme4 (Section 1.1); introduce the sleepstudy data that will be used as an example throughout
(Section 1.2); and broadly outline lme4’s modular structure (Section 1.3).

1.1. Linear mixed models

Just as a linear model is described by the distribution of a vector-valued random response
variable, Y, whose observed value is yobs, a linear mixed model is described by the distribution
of two vector-valued random variables: Y, the response, and B, the vector of random effects.
In a linear model the distribution of Y is multivariate normal,

Y ∼ N (Xβ + o, σ2W −1), (1)

where n is the dimension of the response vector, W is a diagonal matrix of known prior
weights, β is a p-dimensional coefficient vector, X is an n×p model matrix, and o is a vector
of known prior offset terms. The parameters of the model are the coefficients β and the scale
parameter σ.
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In a linear mixed model it is the conditional distribution of Y given B = b that has such a
form,

(Y♣B = b) ∼ N (Xβ + Zb + o, σ2W −1), (2)

where Z is the n×q model matrix for the q-dimensional vector-valued random-effects variable,
B, whose value we are fixing at b. The unconditional distribution of B is also multivariate
normal with mean zero and a parameterized q × q variance-covariance matrix, Σ,

B ∼ N (0, Σ). (3)

As a variance-covariance matrix, Σ must be positive semidefinite. It is convenient to express
the model in terms of a relative covariance factor, Λθ, which is a q × q matrix, depending on
the variance-component parameter, θ, and generating the symmetric q×q variance-covariance
matrix, Σ, according to

Σθ = σ2
ΛθΛ

⊤
θ , (4)

where σ is the same scale factor as in the conditional distribution (2).

Although Equations 2, 3, and 4 fully describe the class of linear mixed models that lme4 can
fit, this terse description hides many important details. Before moving on to these details,
we make a few observations:

• This formulation of linear mixed models allows for a relatively compact expression for
the profiled log-likelihood of θ (Section 3.4, Equation 35).

• The matrices associated with random effects, Z and Λθ, typically have a sparse structure
with a sparsity pattern that encodes various model assumptions. Sections 2.3 and 3.7
provide details on these structures, and how to represent them efficiently.

• The interface provided by lme4’s lmer function is slightly less general than the model
described by Equations 2, 3, and 4. To take advantage of the entire range of possibili-
ties, one may use the modular functions (Sections 1.3 and Appendix A) or explore the
experimental flexLambda branch of lme4 on Github.

1.2. Example

Throughout our discussion of lme4, we will work with a data set on the average reaction time
per day for subjects in a sleep deprivation study (Belenky et al. 2003). On day 0 the subjects
had their normal amount of sleep. Starting that night they were restricted to 3 hours of sleep
per night. The response variable, Reaction, represents average reaction times in milliseconds
(ms) on a series of tests given each Day to each Subject (Figure 1),

> str(sleepstudy)

'data.frame': 180 obs. of 3 variables:

$ Reaction: num 250 259 251 321 357 ...

$ Days : num 0 1 2 3 4 5 6 7 8 9 ...

$ Subject : Factor w/ 18 levels "308","309","310",..: 1 1 1 1 1 1 1..



4 Linear Mixed Models with lme4

Days of sleep deprivation

A
ve

ra
g
e
 r

e
a
ct

io
n
 t
im

e
 (

m
s)

200

250

300

350

400

450

335

0 2 4 6 8

309 330

0 2 4 6 8

331 310

0 2 4 6 8

351 333

0 2 4 6 8

371 332

0 2 4 6 8

372 369

0 2 4 6 8

334 349

0 2 4 6 8

352 370

0 2 4 6 8

337 350

0 2 4 6 8

200

250

300

350

400

450

308

Figure 1: Average reaction time versus days of sleep deprivation by subject. Subjects ordered
(from left to right starting on the top row) by increasing slope of subject-specific linear
regressions.

Each subject’s reaction time increases approximately linearly with the number of sleep-
deprived days. However, subjects also appear to vary in the slopes and intercepts of these
relationships, which suggests a model with random slopes and intercepts. As we shall see,
such a model may be fitted by minimizing the REML criterion (Equation 40) using

> fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)

The estimates of the standard deviations of the random effects for the intercept and the slope
are 24.74 ms and 5.92 ms/day. The fixed-effects coefficients, β, are 251.4 ms and 10.47 ms/day
for the intercept and slope. In this model, one interpretation of these fixed effects is that they
are the estimated population mean values of the random intercept and slope (Section 2.2).

We have chosen the sleepstudy example because it is a relatively small and simple example
to illustrate the theory and practice underlying lmer. However, lmer is capable of fitting
more complex mixed models to larger data sets. For example, we direct the interested reader
to RShowDoc("lmerperf", package = "lme4") for examples that more thoroughly exercise
the performance capabilities of lmer.

1.3. High-level modular structure

The lmer function is composed of four largely independent modules. In the first module, a
mixed-model formula is parsed and converted into the inputs required to specify a linear mixed
model (Section 2). The second module uses these inputs to construct an R function which
takes the covariance parameters, θ, as arguments and returns negative twice the log profiled
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Module R function Description

Formula module (Section 2) lFormula Accepts a mixed-model formula,
data, and other user inputs, and
returns a list of objects required
to fit a linear mixed model.

Objective function module (Section 3) mkLmerDevfun Accepts the results of lFormula

and returns a function to calcu-
late the deviance (or restricted
deviance) as a function of the
covariance parameters, θ.

Optimization module (Section 4) optimizeLmer Accepts a deviance function re-
turned by mkLmerDevfun and
returns the results of the opti-
mization of that deviance func-
tion.

Output module (Section 5) mkMerMod Accepts an optimized deviance
function and packages the re-
sults into a useful object.

Table 1: The high-level modular structure of lmer.

likelihood or the REML criterion (Section 3). The third module optimizes this objective
function to produce maximum likelihood (ML) or REML estimates of θ (Section 4). Finally,
the fourth module provides utilities for interpreting the optimized model (Section 5).

To illustrate this modularity, we recreate the fm1 object by a series of four modular steps;
the formula module,

> parsedFormula <- lFormula(formula = Reaction ~ Days + (Days | Subject),

data = sleepstudy)

the objective function module,

> devianceFunction <- do.call(mkLmerDevfun, parsedFormula)

the optimization module,

> optimizerOutput <- optimizeLmer(devianceFunction)

and the output module,

> mkMerMod( rho = environment(devianceFunction),

opt = optimizerOutput,

reTrms = parsedFormula$reTrms,

fr = parsedFormula$fr)

2. Formula module
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2.1. Mixed-model formulas

Like most model-fitting functions in R, lmer takes as its first two arguments a formula spec-
ifying the model and the data with which to evaluate the formula. This second argument,
data, is optional but recommended and is usually the name of an R data frame. In the R

lm function for fitting linear models, formulas take the form resp ~ expr, where resp deter-
mines the response variable and expr is an expression that specifies the columns of the model
matrix. Formulas for the lmer function contain special random-effects terms,

> resp ~ FEexpr + (REexpr1 | factor1) + (REexpr2 | factor2) + ...

where FEexpr is an expression determining the columns of the fixed-effects model matrix, X,
and the random-effects terms, (REexpr1 | factor1) and (REexpr2 | factor2), determine
both the random-effects model matrix, Z (Section 2.3.1), and the structure of the relative
covariance factor, Λθ (Section 2.3.2). In principle, a mixed-model formula may contain ar-
bitrarily many random-effects terms, but in practice the number of such terms is typically
low.

2.2. Understanding mixed-model formulas

Before describing the details of how lme4 parses mixed-model formulas (Section 2.3), we
provide an informal explanation and then some examples. Our discussion assumes familiarity
with the standard R modeling paradigm (Chambers 1993).

Each random-effects term is of the form (expr | factor). The expression expr is evaluated
as a linear model formula, producing a model matrix following the same rules used in standard
R modeling functions (e.g., lm or glm). The expression factor is evaluated as an R factor.
One way to think about the vertical bar operator is as a special kind of interaction between
the model matrix and the grouping factor. This interaction ensures that the columns of the
model matrix have different effects for each level of the grouping factor. What makes this a
special kind of interaction is that these effects are modeled as unobserved random variables,
rather than unknown fixed parameters. Much has been written about important practical
and philosophical differences between these two types of interactions (e.g., Henderson Jr.
1982; Gelman 2005). For example, the random-effects implementation of such interactions
can be used to obtain shrinkage estimates of regression coefficients (e.g., Efron and Morris
1977), or account for lack of independence in the residuals due to block structure or repeated
measurements (e.g., Laird and Ware 1982).

Table 2 provides several examples of the right-hand-sides of mixed-model formulas. The
first example, (1 | g), is the simplest possible mixed-model formula, where each level of
the grouping factor, g, has its own random intercept. The mean and standard deviation of
these intercepts are parameters to be estimated. Our description of this model incorporates
any nonzero mean of the random effects as fixed-effects parameters. If one wishes to specify
that a random intercept has a priori known means, one may use the offset function as in
the second model in Table 2. This model contains no fixed effects, or more accurately the
fixed-effects model matrix, X, has zero columns and β has length zero.

We may also construct models with multiple grouping factors. For example, if the observations
are grouped by g2, which is nested within g1, then the third formula in Table 2 can be used
to model variation in the intercept. A common objective in mixed modeling is to account
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Formula Alternative Meaning

(1 | g) 1 + (1 | g) Random intercept
with fixed mean.

0 + offset(o) + (1 | g) -1 + offset(o) + (1 | g) Random intercept
with a priori means.

(1 | g1/g2) (1 | g1)+(1 | g1:g2) Intercept varying
among g1 and g2

within g1.
(1 | g1) + (1 | g2) 1 + (1 | g1) + (1 | g2). Intercept varying

among g1 and g2.
x + (x | g) 1 + x + (1 + x | g) Correlated random

intercept and slope.
x + (x || g) 1 + x + (1 | g) + (0 + x | g) Uncorrelated random

intercept and slope.

Table 2: Examples of the right-hand-sides of mixed-effects model formulas. The names of
grouping factors are denoted g, g1, and g2, and covariates and a priori known offsets as x

and o.

for such nested (or hierarchical) structure. However, one of the most useful aspects of lme4

is that it can be used to fit random effects associated with non-nested grouping factors. For
example, suppose the data are grouped by fully crossing two factors, g1 and g2, then the
fourth formula in Table 2 may be used. Such models are common in item response theory,
where subject and item factors are fully crossed (Doran, Bates, Bliese, and Dowling 2007).
In addition to varying intercepts, we may also have varying slopes (e.g., the sleepstudy data,
Section 1.2). The fifth example in Table 2 gives a model where both the intercept and slope
vary among the levels of the grouping factor.

Specifying uncorrelated random effects

By default, lme4 assumes that all coefficients associated with the same random-effects term
are correlated. To specify an uncorrelated slope and intercept (for example), one may either
use double-bar notation, (x || g), or equivalently use multiple random-effects terms, x +

(1 | g) + (0 + x | g), as in the final example of Table 2. For example, if one examined
the results of model fm1 of the sleepstudy data (Section 1.2) using summary(fm1), one would
see that the estimated correlation between the slope for Days and the intercept is fairly low
(0.066) (See Section 5.2.2 below for more on how to extract the random-effects covariance
matrix.) We may use double-bar notation to fit a model that excludes a correlation parameter:

> fm2 <- lmer(Reaction ~ Days + (Days || Subject), sleepstudy)

Although mixed models where the random slopes and intercepts are assumed independent
are commonly used to reduce the complexity of random-slopes models, they do have one
subtle drawback. Models in which the slopes and intercepts are allowed to have a nonzero
correlation (e.g., fm1) are invariant to additive shifts of the continuous predictor (Days in
this case). This invariance breaks down when the correlation is constrained to zero; any shift
in the predictor will necessarily lead to a change in the estimated correlation, and in the
likelihood and predictions of the model. For example, we can eliminate the correlation in
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Symbol Size

n Length of the response vector, Y
p Number of columns of fixed-effects model matrix, X

q =
∑k

i qi Number of columns of random-effects model matrix, Z

pi Number of columns of the raw model matrix, Xi

ℓi Number of levels of the grouping factor indices, ii

qi = piℓi Number of columns of the term-wise model matrix, Zi

k Number of random-effects terms

mi =
(pi+1

2

)
Number of covariance parameters for term i

m =
∑k

i mi Total number of covariance parameters

Table 3: Dimensions of linear mixed models. The subscript i = 1, . . . , k denotes a specific
random-effects term.

Symbol Size Description

Xi n × pi Raw random-effects model matrix
Ji n × ℓi Indicator matrix of grouping factor indices
Xij pi × 1 Column vector containing jth row of Xi

Jij ℓi × 1 Column vector containing jth row of Ji

ii n Vector of grouping factor indices
Zi n × qi Term-wise random-effects model matrix
θ m Covariance parameters
Ti pi × pi Lower triangular template matrix
Λi qi × qi Term-wise relative covariance factor

Table 4: Symbols used to describe the structure of the random-effects model matrix and the
relative covariance factor. The subscript i = 1, . . . , k denotes a specific random-effects term.

fm1 simply by adding an amount equal to the ratio of the estimated among-subject standard
deviations multiplied by the estimated correlation (i.e., σslope/σintercept · ρslope:intercept) to
the Days variable. The use of models such as fm2 should ideally be restricted to cases where
the predictor is measured on a ratio scale (i.e., the zero point on the scale is meaningful, not
just a location defined by convenience or convention), as is the case here.

2.3. Algebraic and computational account of mixed-model formulas

The fixed-effects terms of a mixed-model formula are parsed to produce the fixed-effects model
matrix, X, in the same way that the R lm function generates model matrices. However, a
mixed-model formula incorporates k ≥ 1 random-effects terms of the form (r | f) as well.
These k terms are used to produce the random-effects model matrix, Z (Equation 2; Sec-
tion 2.3.1), and the structure of the relative covariance factor, Λθ (Equation 4; Section 2.3.2),
which are matrices that typically have a sparse structure. We now describe how one might
construct these matrices from the random-effects terms, considering first a single term, (r

| f), and then generalizing to multiple terms. Tables 3 and 4 summarize the matrices and
vectors that determine the structure of Z and Λθ.

The expression, r, is a linear model formula that evaluates to an R model matrix, Xi, of
size n × pi, called the raw random-effects model matrix for term i. A term is said to be a
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scalar random-effects term when pi = 1, otherwise it is vector-valued. For a simple, scalar
random-effects term of the form (1 | f), Xi is the n × 1 matrix of ones, which implies a
random intercept model.

The expression f evaluates to an R factor, called the grouping factor, for the term. For the
ith term, we represent this factor mathematically with a vector ii of factor indices, which is
an n-vector of values from 1, . . . , ℓi.

1 Let Ji be the n × ℓi matrix of indicator columns for ii.
Using the Matrix package (Bates and Maechler 2015) in R, we may construct the transpose
of Ji from a factor vector, f, by coercing f to a ‘sparseMatrix’ object. For example,

> (f <- gl(3, 2))

[1] 1 1 2 2 3 3

Levels: 1 2 3

> (Ji <- t(as(f, Class = "sparseMatrix")))

6 x 3 sparse Matrix of class "dgCMatrix"

1 2 3

[1,] 1 . .

[2,] 1 . .

[3,] . 1 .

[4,] . 1 .

[5,] . . 1

[6,] . . 1

When k > 1 we order the random-effects terms so that ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓk; in general, this
ordering reduces “fill-in” (i.e., the proportion of elements that are zero in the lower triangle
of Λ

⊤
θ Z⊤W ZΛθ + I but not in the lower triangle of its left Cholesky factor, Lθ, described

below in Equation 18). This reduction in fill-in provides more efficient matrix operations
within the penalized least squares algorithm (Section 3.2).

Constructing the random-effects model matrix

The ith random-effects term contributes qi = ℓipi columns to the model matrix Z. We group
these columns into a matrix, Zi, which we refer to as the term-wise model matrix for the ith
term. Thus q, the number of columns in Z and the dimension of the random variable, B, is

q =
k∑

i=1

qi =
k∑

i=1

ℓi pi. (5)

Creating the matrix Zi from Xi and Ji is a straightforward concept that is, nonetheless,
somewhat awkward to describe. Consider Zi as being further decomposed into ℓi blocks of
pi columns. The rows in the first block are the rows of Xi multiplied by the 0/1 values in

1In practice, fixed-effects model matrices and random-effects terms are evaluated with respect to a model

frame, ensuring that any expressions for grouping factors have been coerced to factors and any unused levels

of these factors have been dropped. That is, ℓi, the number of levels in the grouping factor for the ith

random-effects term, is well-defined.
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the first column of Ji and similarly for the subsequent blocks. With these definitions we
may define the term-wise random-effects model matrix, Zi, for the ith term as a transposed
Khatri-Rao product,

Zi = (J⊤
i ∗ X⊤

i )⊤ =




J⊤
i1 ⊗ X⊤

i1

J⊤
i2 ⊗ X⊤

i2
...

J⊤
in ⊗ X⊤

in




, (6)

where ∗ and ⊗ are the Khatri-Rao2 (Khatri and Rao 1968) and Kronecker products, and J⊤
ij

and X⊤
ij are row vectors of the jth rows of Ji and Xi. These rows correspond to the jth

sample in the response vector, Y, and thus j runs from 1, . . . , n. The Matrix package for R

contains a KhatriRao function, which can be used to form Zi. For example, if we begin with
a raw model matrix,

> (Xi <- cbind(1, rep.int(c(-1, 1), 3L)))

[,1] [,2]

[1,] 1 -1

[2,] 1 1

[3,] 1 -1

[4,] 1 1

[5,] 1 -1

[6,] 1 1

then the term-wise random-effects model matrix is,

> (Zi <- t(KhatriRao(t(Ji), t(Xi))))

6 x 6 sparse Matrix of class "dgCMatrix"

[1,] 1 -1 . . . .

[2,] 1 1 . . . .

[3,] . . 1 -1 . .

[4,] . . 1 1 . .

[5,] . . . . 1 -1

[6,] . . . . 1 1

In particular, for a simple, scalar term, Zi is exactly Ji, the matrix of indicator columns. For
other scalar terms, Zi is formed by element-wise multiplication of the single column of Xi by
each of the columns of Ji.

Because each Zi is generated from indicator columns, its cross-product, Z⊤
i Zi is block-

diagonal consisting of ℓi diagonal blocks each of size pi.
3 Note that this means that when

2Note that the original definition of the Khatri-Rao product is more general than the definition used in the

Matrix package, which is the definition we use here.
3To see this, note that by the properties of Kronecker products we may write the cross-product matrix

Z⊤

i Zi as
∑n

j=1
JijJ⊤

ij ⊗ XijX⊤

ij . Because Jij is a unit vector along a coordinate axis, the cross-product JijJ⊤

ij

is a pi × pi matrix of all zeros except for a single 1 along the diagonal. Therefore, the cross-products, XijX⊤

ij ,

will be added to one of the ℓi blocks of size pi × pi along the diagonal of Z⊤

i Zi.
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k = 1 (i.e., there is only one random-effects term, and Zi = Z), Z⊤Z will be block diag-
onal. These block-diagonal properties allow for more efficient sparse matrix computations
(Section 3.7).

The full random-effects model matrix, Z, is constructed from k ≥ 1 blocks,

Z =
[
Z1 Z2 . . . Zk

]
. (7)

By transposing Equation 7 and substituting in Equation 6, we may represent the structure
of the transposed random-effects model matrix as follows,

Z⊤ =

sample 1 sample 2 . . . sample n





J11 ⊗ X11 J12 ⊗ X12 . . . J1n ⊗ X1n term 1
J21 ⊗ X21 J22 ⊗ X22 . . . J2n ⊗ X2n term 2

...
...

. . .
...

...

. (8)

Note that the proportion of elements of Z⊤ that are structural zeros is

∑k
i=1 pi(ℓi − 1)
∑k

i=1 pi

. (9)

Therefore, the sparsity of Z⊤ increases with the number of grouping factor levels. As the
number of levels is often large in practice, it is essential for speed and efficiency to take
account of this sparsity, for example by using sparse matrix methods, when fitting mixed
models (Section 3.7).

Constructing the relative covariance factor

The q × q covariance factor, Λθ, is a block diagonal matrix whose ith diagonal block, Λi, is of
size qi, i = 1, . . . , k. We refer to Λi as the term-wise relative covariance factor. Furthermore,
Λi is a homogeneous block diagonal matrix with each of the ℓi lower-triangular blocks on
the diagonal being a copy of a pi × pi lower-triangular template matrix, Ti. The covariance
parameter vector, θ, of length mi =

(pi+1
2

)
, consists of the elements in the lower triangle of

Ti, i = 1, . . . , k. To provide a unique representation we require that the diagonal elements of
the Ti, i = 1, . . . , k be non-negative.

The template, Ti, can be constructed from the number pi alone. In R code we denote pi as
nc. For example, if we set nc <- 3, we could create the template for term i as,

> (rowIndices <- rep(1:nc, 1:nc))

[1] 1 2 2 3 3 3

> (colIndices <- sequence(1:nc))

[1] 1 1 2 1 2 3

> (template <- sparseMatrix(rowIndices, colIndices,

x = 1 * (rowIndices == colIndices)))
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3 x 3 sparse Matrix of class "dgCMatrix"

[1,] 1 . .

[2,] 0 1 .

[3,] 0 0 1

Note that the rowIndices and colIndices fill the entire lower triangle, which contains the
initial values of the covariance parameter vector, θ,

> (theta <- template@x)

[1] 1 0 0 1 0 1

(because the @x slot of the sparse matrix template is a numeric vector containing the nonzero
elements). This template contains three types of elements: structural zeros (denoted by .), off-
diagonal covariance parameters (initialized at 0), and diagonal variance parameters (initialized
at 1). The next step in the construction of the relative covariance factor is to repeat the
template once for each level of the grouping factor to construct a sparse block diagonal
matrix. For example, if we set the number of levels, ℓi, to two, nl <- 2, we could create the
transposed term-wise relative covariance factor, Λ

⊤
i , using the .bdiag function in the Matrix

package,

> (Lambdati <- .bdiag(rep(list(t(template)), nl)))

6 x 6 sparse Matrix of class "dgTMatrix"

[1,] 1 0 0 . . .

[2,] . 1 0 . . .

[3,] . . 1 . . .

[4,] . . . 1 0 0

[5,] . . . . 1 0

[6,] . . . . . 1

For a model with a single random-effects term, Λ
⊤ would be the initial transposed relative

covariance factor Λ
⊤
θ itself.

The transposed relative covariance factor, Λ
⊤
θ , that arises from parsing the formula and data

is set at the initial value of the covariance parameters, θ. However, during model fitting, it
needs to be updated to a new θ value at each iteration (see Section 3.6.1). This is achieved
by constructing a vector of indices, Lind, that identifies which elements of theta should be
placed in which elements of Lambdat,

> LindTemplate <- rowIndices + nc * (colIndices - 1) - choose(colIndices, 2)

> (Lind <- rep(LindTemplate, nl))

[1] 1 2 4 3 5 6 1 2 4 3 5 6

For example, if we randomly generate a new value for theta,
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> thetanew <- round(runif(length(theta)), 1)

we may update Lambdat as follows,

> Lambdati@x <- thetanew[Lind]

Section 3.6 describes the process of updating the relative covariance factor in more detail.

3. Objective function module

3.1. Model reformulation for improved computational stability

In our initial formulation of the linear mixed model (Equations 2, 3, and 4), the covari-
ance parameter vector, θ, appears only in the marginal distribution of the random effects
(Equation 3). However, from the perspective of computational stability and efficiency, it is
advantageous to reformulate the model such that θ appears only in the conditional distribu-
tion for the response vector given the random effects. Such a reformulation allows us to work
with singular covariance matrices, which regularly arise in practice (e.g., during intermediate
steps of the nonlinear optimizer, Section 4).

The reformulation is made by defining a spherical4 random-effects variable, U , with distribu-
tion

U ∼ N (0, σ2Iq). (10)

If we set,
B = ΛθU , (11)

then B will have the desired N (0, Σθ) distribution (Equation 3). Although it may seem more
natural to define U in terms of B we must write the relationship as in Equation 11 to allow
for singular Λθ. The conditional distribution (Equation 2) of the response vector given the
random effects may now be reformulated as,

(Y♣U = u) ∼ N (µY♣U=u, σ2W −1), (12)

where
µY♣U=u = Xβ + ZΛθu + o (13)

is a vector of linear predictors, which can be interpreted as a conditional mean (or mode).
Similarly, we also define µU♣Y=yobs

as the conditional mean (or mode) of the spherical random
effects given the observed value of the response vector. Note also that we use the u symbol
throughout to represent a specific value of the random variable, U .

3.2. Penalized least squares

Our computational methods for maximum likelihood fitting of the linear mixed model involve
repeated applications of the PLS method. In particular, the PLS problem is to minimize the
penalized weighted residual sum-of-squares,

r2(θ, β, u) = ρ2(θ, β, u) + ∥u∥2 , (14)

4N (µ, σ2I) distributions are called “spherical” because contours of the probability density are spheres.



14 Linear Mixed Models with lme4

over


u

β

]
, where,

ρ2(θ, β, u) =
∥∥∥W 1/2

[
yobs − µY♣U=u

]∥∥∥
2

, (15)

is the weighted residual sum-of-squares. This notation makes explicit the fact that r2 and ρ2

both depend on θ, β, and u. The reason for the word “penalized” is that the term, ∥u∥2, in
Equation 14 penalizes models with larger magnitude values of u.

In the so-called “pseudo-data” approach we write the penalized weighted residual sum-of-
squares as the squared length of a block matrix equation,

r2(θ, β, u) =

∥∥∥∥∥


W 1/2(yobs − o)

0

]
−


W 1/2ZΛθ W 1/2X

Iq 0

] 
u

β

]∥∥∥∥∥

2

. (16)

This pseudo-data approach shows that the PLS problem may also be thought of as a standard
least squares problem for an extended response vector, which implies that the minimizing

value,


µU♣Y=yobs

β̂θ

]
, satisfies the normal equations,


Λ

⊤
θ Z⊤W (yobs − o)
X⊤W (yobs − o)

]
=


Λ

⊤
θ Z⊤W ZΛθ + I Λ

⊤
θ Z⊤W X

X⊤W ZΛθ X⊤W X

] 
µU♣Y=yobs

β̂θ

]
, (17)

where µU♣Y=yobs
is the conditional mean of U given that Y = yobs. Note that this conditional

mean depends on θ, although we do not make this dependency explicit in order to reduce
notational clutter.

The cross-product matrix in Equation 17 can be Cholesky decomposed,


Λ

⊤
θ Z⊤W ZΛθ + I Λ

⊤
θ Z⊤W X

X⊤W ZΛθ X⊤W X

]
=


Lθ 0

R⊤
ZX R⊤

X

] 
L⊤

θ RZX

0 RX

]
. (18)

We may use this decomposition to rewrite the penalized weighted residual sum-of-squares as,

r2(θ, β, u) = r2(θ) +
∥∥∥L⊤

θ (u − µU♣Y=yobs
) + RZX(β − β̂θ)

∥∥∥
2

+
∥∥∥RX(β − β̂θ)

∥∥∥
2

, (19)

where we have simplified notation by writing r2(θ, β̂θ, µU♣Y=yobs
) as r2(θ). This is an im-

portant expression in the theory underlying lme4. It relates the penalized weighted residual
sum-of-squares, r2(θ, β, u), with its minimum value, r2(θ). This relationship is useful in
the next section where we integrate over the random effects, which is required for maximum
likelihood estimation.

3.3. Probability densities

The residual sums-of-squares discussed in the previous section can be used to express various
probability densities, which are required for maximum likelihood estimation of the linear
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mixed model5,

fY♣U (yobs♣u) =
♣W ♣1/2

(2πσ2)n/2
exp


−ρ2(θ, β, u)

2σ2

]
, (20)

fU (u) =
1

(2πσ2)q/2
exp


− ∥u∥2

2σ2

]
, (21)

fY,U (yobs, u) =
♣W ♣1/2

(2πσ2)(n+q)/2
exp


−r2(θ, β, u)

2σ2

]
, (22)

fU♣Y(u♣yobs) =
fY,U (yobs, u)

fY(yobs)
, (23)

(24)

where

fY(yobs) =

∫
fY,U (yobs, u)du. (25)

The log-likelihood to be maximized can therefore be expressed as,

L(θ, β, σ2♣yobs) = log fY(yobs). (26)

The integral in Equation 25 may be more explicitly written as,

fY(yobs) =
♣W ♣1/2

(2πσ2)(n+q)/2
exp




−r2(θ) −
∥∥∥RX(β − β̂θ)

∥∥∥
2

2σ2




∫
exp




−
∥∥∥L⊤

θ (u − µU♣Y=yobs
) + RZX(β − β̂θ)

∥∥∥
2

2σ2


 du,

(27)

which can be evaluated with the change of variables,

v = L⊤
θ (u − µU♣Y=yobs

) + RZX(β − β̂θ). (28)

The Jacobian determinant of the transformation from u to v is ♣Lθ♣. Therefore we are able
to write the integral as,

fY(yobs) =
♣W ♣1/2

(2πσ2)(n+q)/2
exp




−r2(θ) −
∥∥∥RX(β − β̂θ)

∥∥∥
2

2σ2




∫
exp


− ∥v∥2

2σ2

]
♣Lθ♣−1dv,

(29)

which by the properties of exponential integrands becomes,

exp L(θ, β, σ2♣yobs) = fY(yobs) =
♣W ♣1/2♣Lθ♣−1

(2πσ2)n/2
exp




−r2(θ) −
∥∥∥RX(β − β̂θ)

∥∥∥
2

2σ2


 . (30)

5These expressions only technically hold at the observed value, yobs, of the response vector, Y.
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3.4. Evaluating and profiling the deviance and the REML criterion

We are now in a position to understand why the formulation in Equations 2 and 3 is particu-
larly useful. We are able to explicitly profile β and σ out of the log-likelihood (Equation 26), to
find a compact expression for the profiled deviance (negative twice the profiled log-likelihood)
and the profiled REML criterion as a function of the relative covariance parameters, θ, only.
Furthermore these criteria can be evaluated quickly and accurately.

To estimate the parameters, θ, β, and σ2, we minimize negative twice the log-likelihood,
which can be written as,

−2L(θ, β, σ2♣yobs) = log
♣Lθ♣2

♣W ♣
+ n log(2πσ2) +

r2(θ)

σ2
+

∥∥∥RX(β − β̂θ)
∥∥∥

2

σ2
. (31)

It is very easy to profile out β, because it enters into the ML criterion only through the
final term, which is zero if β = β̂θ, where β̂θ is found by solving the penalized least-squares
problem in Equation 16. Therefore we can write a partially profiled ML criterion as,

−2L(θ, σ2♣yobs) = log
♣Lθ♣2

♣W ♣
+ n log(2πσ2) +

r2(θ)

σ2
. (32)

This criterion is only partially profiled because it still depends on σ2. Differentiating this
criterion with respect to σ2 and setting the result equal to zero yields,

0 =
n

σ̂2
θ

−
r2(θ)

σ̂4
θ

, (33)

which leads to a maximum profiled likelihood estimate,

σ̂2
θ =

r2(θ)

n
. (34)

This estimate can be substituted into the partially profiled criterion to yield the fully profiled
ML criterion,

−2L(θ♣yobs) = log
♣Lθ♣2

♣W ♣
+ n


1 + log


2πr2(θ)

n

]
. (35)

This expression for the profiled deviance depends only on θ. Although q, the number of
columns in Z and the size of Σθ, can be very large indeed, the dimension of θ is small,
frequently less than 10. The lme4 package uses generic nonlinear optimizers (Section 4) to
optimize this expression over θ to find its maximum likelihood estimate.

The REML criterion

The REML criterion can be obtained by integrating the marginal density for Y with respect
to the fixed effects (Laird and Ware 1982),

∫
fY(yobs)dβ =

♣W ♣1/2♣Lθ♣−1

(2πσ2)n/2
exp


−r2(θ)

2σ2

] ∫
exp




−
∥∥∥RX(β − β̂θ)

∥∥∥
2

2σ2


 dβ, (36)
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which can be evaluated with the change of variables,

v = RX(β − β̂θ). (37)

The Jacobian determinant of the transformation from β to v is ♣RX ♣. Therefore we are able
to write the integral as,

∫
fY(yobs)dβ =

♣W ♣1/2♣Lθ♣−1

(2πσ2)n/2
exp


−r2(θ)

2σ2

] ∫
exp


− ∥v∥2

2σ2

]
♣RX ♣−1dv, (38)

which simplifies to,

∫
fY(yobs)dβ =

♣W ♣1/2♣Lθ♣−1♣RX ♣−1

(2πσ2)(n−p)/2
exp


−r2(θ)

2σ2

]
. (39)

Minus twice the log of this integral is the (unprofiled) REML criterion,

−2LR(θ, σ2♣yobs) = log
♣Lθ♣2♣RX ♣2

♣W ♣
+ (n − p) log(2πσ2) +

r2(θ)

σ2
. (40)

Note that because β gets integrated out, the REML criterion cannot be used to find a point
estimate of β. However, we follow others in using the maximum likelihood estimate, β̂

θ̂
, at

the optimum value of θ = θ̂. The REML estimate of σ2 is,

σ̂2
θ =

r2(θ)

n − p
, (41)

which leads to the profiled REML criterion,

−2LR(θ♣yobs) = log
♣Lθ♣2♣RX ♣2

♣W ♣
+ (n − p)


1 + log


2πr2(θ)

n − p

]
. (42)

3.5. Changes relative to previous formulations

We compare the PLS problem as formulated in Section 3.2 with earlier versions and describe
why we use this version. What have become known as “Henderson’s mixed-model equations”
are given as Equation 6 of Henderson Jr. (1982) and would be expressed as,


X⊤X/σ2 X⊤Z/σ2

Z⊤X/σ2 Z⊤Z/σ2 + Σ
−1

] 
β̂θ

µB♣Y=yobs

]
=


X⊤yobs/σ2

Z⊤yobs/σ2

]
, (43)

in our notation (ignoring weights and offsets, without loss of generality). The matrix written
as R in Henderson Jr. (1982) is σ2In in our formulation of the model.

Bates and DebRoy (2004) modified the PLS equations to


Z⊤Z + Ω Z⊤X

X⊤Z X⊤X

] 
µB♣Y=yobs

β̂θ

]
=


Z⊤yobs

X⊤yobs

]
. (44)
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where Ωθ =

Λ

⊤
θ Λθ

)−1
= σ2

Σ
−1 is the relative precision matrix for a given value of θ. They

also showed that the profiled log-likelihood can be expressed (on the deviance scale) as

−2L(θ) = log


♣Z⊤Z + Ω♣

♣Ω♣


+ n


1 + log


2πr2

θ

n

]
. (45)

The primary difference between Equation 43 and Equation 44 is the order of the blocks in the
system matrix. The PLS problem can be solved using a Cholesky factor of the system matrix
with the blocks in either order. The advantage of using the arrangement in Equation 44
is to allow for evaluation of the profiled log-likelihood. To evaluate ♣Z⊤Z + Ω♣ from the
Cholesky factor that block must be in the upper-left corner, not the lower right. Also, Z is
sparse whereas X is usually dense. It is straightforward to exploit the sparsity of Z⊤Z in the
Cholesky factorization when the block containing this matrix is the first block to be factored.
If X⊤X is the first block to be factored, it is much more difficult to preserve sparsity.

The main change from the formulation in Bates and DebRoy (2004) to the current formulation
is the use of a relative covariance factor, Λθ, instead of a relative precision matrix, Ωθ, and
solving for the mean of U♣Y = yobs instead of the mean of B♣Y = yobs. This change improves
stability, because the solution to the PLS problem in Section 3.2 is well-defined when Λθ is
singular whereas the formulation in Equation 44 cannot be used in these cases because Ωθ

does not exist.

It is important to allow for Λθ to be singular because situations where the parameter esti-
mates, θ̂, produce a singular Λ

θ̂
do occur in practice. And even if the parameter estimates

do not correspond to a singular Λθ, it may be desirable to evaluate the estimation criterion
at such values during the course of the numerical optimization of the criterion.

Bates and DebRoy (2004) also provided expressions for the gradient of the profiled log-
likelihood expressed as Equation 45. These expressions can be translated into the current
formulation. From Equation 35 we can see that (again ignoring weights),

∇ (−2L(θ)) = ∇ log(♣Lθ♣2) + ∇

n log(r2(θ))

)

= ∇ log(♣Λ⊤
θ Z⊤ZΛθ + I♣) + n


∇r2(θ)

)
/r2(θ)

= ∇ log(♣Λ⊤
θ Z⊤ZΛθ + I♣) +


∇r2(θ)

)
/(σ̂2).

(46)

The first gradient is easy to express but difficult to evaluate for the general model. The
individual elements of this gradient are

∂ log(♣Λ⊤
θ Z⊤ZΛθ + I♣)

∂θi
= tr




∂

Λ

⊤
θ Z⊤ZΛθ

)

∂θi


Λ

⊤
θ Z⊤ZΛθ + I

)−1




= tr


LθL⊤

θ

)−1


Λ
⊤
θ Z⊤Z

∂Λθ

∂θi
+

∂Λ
⊤
θ

∂θi
Z⊤ZΛθ

]
.

(47)

The second gradient term can be expressed as a linear function of the residual, with individual
elements of the form

∂r2(θ)

∂θi
= −2u⊤ ∂Λ

⊤
θ

∂θi
Z⊤


y − ZΛθu − Xβ̂θ

)
, (48)
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Name/description Pseudocode Math Type

Mapping from covariance
parameters to relative co-
variance factor

mapping function

Response vector y yobs (Section 1.1) double vector
Fixed-effects model matrix X X (Equation 2) double densea matrix
Transposed random-effects
model matrix

Zt Z⊤ (Equation 2) double sparse matrix

Square-root weights matrix sqrtW W 1/2 (Equation 2) double diagonal matrix
Offset offset o (Equation 2) double vector

aIn previous versions of lme4 a sparse X matrix, useful for models with categorical fixed-effect predictors

with many levels, could be specified; this feature is not currently available.

Table 5: Inputs into a linear mixed model.

using the results of Golub and Pereyra (1973). Although we do not use these results in lme4,
they are used for certain model types in the MixedModels package for Julia and do provide
improved performance.

3.6. Penalized least squares algorithm

For efficiency, in lme4 itself, PLS is implemented in compiled C++ code using the Eigen

(Guennebaud, Jacob, and and others 2015) templated C++ package for numerical linear
algebra. Here however, in order to improve readability we describe a version in pure R.
Section 3.7 provides greater detail on the techniques and concepts for computational efficiency,
which is important in cases where the nonlinear optimizer (Section 4) requires many iterations.

The PLS algorithm takes a vector of covariance parameters, θ, as inputs and returns the
profiled deviance (Equation 35) or the REML criterion (Equation 42). This PLS algorithm
consists of four main steps:

1. Update the relative covariance factor (Section 3.6.1).

2. Solve the normal equations (Section 3.6.2).

3. Update the linear predictor and residuals (Section 3.6.3).

4. Compute and return the profiled deviance (Section 3.6.4).

PLS also requires the objects described in Table 5, which define the structure of the model.
These objects do not get updated during the PLS iterations, and so it is useful to store various
matrix products involving them (Table 6). Table 7 lists the objects that do get updated over
the PLS iterations. The symbols in this table correspond to a version of lme4 that is imple-
mented entirely in R (i.e., no compiled code as in lme4 itself). This implementation is called
lme4pureR and is currently available on Github (https://github.com/lme4/lme4pureR/).

PLS step I: Update relative covariance factor

https://github.com/lme4/lme4pureR/
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Pseudocode Math

ZtW Z⊤W 1/2

ZtWy Z⊤W yobs

ZtWX Z⊤W X

XtWX X⊤W X

XtWy X⊤W yobs

Table 6: Constant symbols involved in penalized least squares.

The first step of PLS is to update the relative covariance factor, Λθ, from the current value
of the covariance parameter vector, θ. The updated Λθ is then used to update the random-
effects Cholesky factor, Lθ (Equation 18). The mapping from the covariance parameters to
the relative covariance factor can take many forms, but in general involves a function that
takes θ into the values of the nonzero elements of Λθ.

If Λθ is stored as an object of class ‘dgCMatrix’ from the Matrix package for R, then we may
update Λθ from θ by,

> Lambdat@x[] <- mapping(theta)

where mapping is an R function that both accepts and returns a numeric vector. The nonzero
elements of sparse matrix classes in Matrix are stored in a slot called x.

In the current version of lme4 (v. 1.1-7) the mapping from θ to Λθ is represented as an R

integer vector, Lind, of indices, so that

> mapping <- function(theta) theta[Lind]

The index vector Lind is computed during the model setup and stored in the function’s
environment. Continuing the example from Section 2.3.2, consider a new value for theta,

> thetanew <- c(1, -0.1, 2, 0.1, -0.2, 3)

To put these values in the appropriate elements in Lambdati, we use mapping,

> Lambdati@x[] <- mapping(thetanew)

> Lambdati

6 x 6 sparse Matrix of class "dgTMatrix"

[1,] 1 -0.1 2.0 . . .

[2,] . 0.1 -0.2 . . .

[3,] . . 3.0 . . .

[4,] . . . 1 -0.1 2.0

[5,] . . . . 0.1 -0.2

[6,] . . . . . 3.0

This Lind approach can be useful for extending the capabilities of lme4 by using the modular
approach to fitting mixed models. For example, Appendix A.1 shows how to use Lind to fit
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Name/description Pseudocode Math Type

Relative covariance factor lambda Λθ (Equation 4) double sparse lower-
triangular matrix

Random-effects Cholesky
factor

L Lθ (Equation 18) double sparse triangu-
lar matrix

Intermediate vector in the
solution of the normal
equations

cu cu (Equation 49) double vector

Block in the full Cholesky
factor

RZX RZX (Equation 18) double dense matrix

Cross-product of the
fixed-effects Cholesky
factor

RXtRX R⊤
XRX (Equation 51) double dense matrix

Fixed-effects coefficients beta β (Equation 2) double vector
Spherical conditional
modes

u u (Section 3.1) double vector

Non-spherical conditional
modes

b b (Equation 2) double vector

Linear predictor mu µY♣U=u (Equation 13) double vector

Weighted residuals wtres W 1/2(yobs − µ) double vector
Penalized weighted resid-
ual sum-of-squares

pwrss r2(θ) (Equation 19) double

Twice the log determinant
random-effects Cholesky
factor

logDet log ♣Lθ♣2 double

Table 7: Quantities updated during an evaluation of the linear mixed model objective function.

a model where two random slopes are uncorrelated, but both slopes are correlated with an
intercept.

The mapping from the covariance parameters to the relative covariance factor is treated
differently in other implementations of the lme4 approach to linear mixed models. At the other
extreme, the flexLambda branch of lme4 and the lme4pureR package provide the capabilities
for a completely general mapping. This added flexibility has the advantage of allowing a
much wider variety of models (e.g., compound symmetry, auto-regression). However, the
disadvantage of this approach is that it becomes possible to fit a much wider variety of ill-
posed models. Finally, if one would like such added flexibility with the current stable version
of lme4, it is always possible to use the modular approach to wrap the Lind-based deviance
function in a general mapping function taking a parameter to be optimized, say ϕ, into θ.
However, this approach is likely to be inefficient in many cases.

The update method from the Matrix package efficiently updates the random-effects Cholesky
factor, Lθ, from a new value of θ and the updated Λθ.

> L <- update(L, Lambdat %*% ZtW, mult = 1)

The mult = 1 argument corresponds to the addition of the identity matrix to the upper-left
block on the left-hand-side of Equation 18.
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PLS step II: solve normal equations

With the new covariance parameters installed in Λθ, the next step is to solve the normal
equations (Equation 17) for the current estimate of the fixed-effects coefficients, β̂θ, and the
conditional mode, µU♣Y=yobs

. We solve these equations using a sparse Cholesky factorization
(Equation 18). In a complex model fit to a large data set, the dominant calculation in the
evaluation of the profiled deviance (Equation 35) or REML criterion (Equation 42) is this
sparse Cholesky factorization (Equation 18). The factorization is performed in two phases; a
symbolic phase and a numeric phase. The symbolic phase, in which the fill-reducing permu-
tation P is determined along with the positions of the nonzeros in Lθ, does not depend on
the value of θ. It only depends on the positions of the nonzeros in ZΛθ. The numeric phase
uses θ to determine the numeric values of the nonzeros in Lθ. Using this factorization, the
solution proceeds by the following steps,

Lθcu = P Λ
⊤
θ Z⊤W y (49)

LθRZX = P Λ
⊤
θ Z⊤W X (50)

R⊤
XRX = X⊤W X − R⊤

ZXRZX (51)

R⊤

XRX

)
β̂θ = X⊤W y − RZXcu (52)

L⊤
θ P u = cu − RZX β̂θ (53)

which can be solved using the Matrix package with,

> cu[] <- as.vector(solve(L, solve(L, Lambdat %*% ZtWy,

system = "P"), system = "L"))

> RZX[] <- as.vector(solve(L, solve(L, Lambdat %*% ZtWX,

system = "P"), system = "L"))

> RXtRX <- as(XtWX - crossprod(RZX), "dpoMatrix")

> beta[] <- as.vector(solve(RXtRX, XtWy - crossprod(RZX, cu)))

> u[] <- as.vector(solve(L, solve(L, cu - RZX %*% beta,

system = "Lt"), system = "Pt"))

Notice the nested calls to solve. The inner calls of the first two assignments determine
and apply the permutation matrix (system = "P"), whereas the outer calls actually solve
the equation (system = "L"). In the assignment to u[], the nesting is reversed in order to
return to the original permutation.

PLS step III: Update linear predictor and residuals

The next step is to compute the linear predictor, µY♣U (Equation 13), and the weighted resid-

uals with new values for β̂θ and µB♣Y=yobs
. In lme4pureR these quantities can be computed

as,

> b[] <- as.vector(crossprod(Lambdat, u))

> mu[] <- as.vector(crossprod(Zt, b) + X %*% beta + offset)

> wtres <- sqrtW * (y - mu)

where b represents the current estimate of µB♣Y=yobs
.
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PLS step IV: Compute profiled deviance

Finally, the updated linear predictor and weighted residuals can be used to compute the
profiled deviance (or REML criterion), which in lme4pureR proceeds as,

> pwrss <- sum(wtres^2) + sum(u^2)

> logDet <- 2*determinant(L, logarithm = TRUE)$modulus

> if (REML) logDet <- logDet + determinant(RXtRX,

logarithm = TRUE)$modulus

> attributes(logDet) <- NULL

> profDev <- logDet + degFree * (1 + log(2 * pi * pwrss) - log(degFree))

The profiled deviance consists of three components: (1) log-determinant(s) of Cholesky factor-
ization (logDet), (2) the degrees of freedom (degFree), and the penalized weighted residual
sum-of-squares (pwrss).

3.7. Sparse matrix methods

In fitting linear mixed models, an instance of the PLS problem (17) must be solved at each
evaluation of the objective function during the optimization (Section 4) with respect to θ.
Because this operation must be performed many times it is worthwhile considering how to
provide effective evaluation methods for objects and calculations involving the sparse matrices
associated with random-effects terms (Sections 2.3).

The CHOLMOD library of C functions (Chen, Davis, Hager, and Rajamanickam 2008), on
which the sparse matrix capabilities of the Matrix package for R and the sparse Cholesky
factorization in Julia are based, allows for separation of the symbolic and numeric phases.
Thus we perform the symbolic phase as part of establishing the structure representing the
model (Section 2). Furthermore, because CHOLMOD functions allow for updating Lθ directly
from the matrix Λ

⊤
θ Z⊤ without actually forming Λ

⊤
θ Z⊤ZΛθ + I we generate and store Z⊤

instead of Z (note that we have ignored the weights matrix, W , for simplicity). We can
update Λ

⊤
θ Z⊤ directly from θ without forming Λθ and multiplying two sparse matrices.

Although such a direct approach is used in the MixedModels package for Julia, in lme4 we
first update Λ

⊤
θ then form the sparse product Λ

⊤
θ Z⊤. A third alternative, which we employ

in lme4pureR, is to compute and save the cross-products of the model matrices, X and Z,
and the response, y, before starting the iterations. To allow for case weights, we save the
products X⊤W X, X⊤W y, Z⊤W X, Z⊤W y and Z⊤W Z (see Table 6).

We wish to use structures and algorithms that allow us to take a new value of θ and evaluate
the Lθ (Equation 18) efficiently. The key to doing so is the special structure of Λ

⊤
θ Z⊤W 1/2.

To understand why this matrix, and not its transpose, is of interest we describe the sparse
matrix structures used in Julia and in the Matrix package for R.

Dense matrices are stored in R and in Julia as a one-dimensional array of contiguous storage
locations addressed in column-major order. This means that elements in the same column
are in adjacent storage locations whereas elements in the same row can be widely separated
in memory. For this reason, algorithms that work column-wise are preferred to those that
work row-wise.

Although a sparse matrix can be stored in a triplet format, where the row position, column
position and element value of the nonzeros are recorded as triplets, the preferred storage
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forms for actual computation with sparse matrices are compressed sparse column (CSC) or
compressed sparse row (CSR, Davis 2006, Chapter 2). The CHOLMOD (and, more generally,
the SuiteSparse package of C libraries; Davis et al. 2015) uses the CSC storage format. In
this format the nonzero elements in a column are in adjacent storage locations and access to
all the elements in a column is much easier than access to those in a row (similar to dense
matrices stored in column-major order).

The matrices Z and ZΛθ have the property that the number of nonzeros in each row,
∑k

i=1 pi,
is constant. For CSC matrices we want consistency in the columns rather than the rows, which
is why we work with Z⊤ and Λ

⊤
θ Z⊤ rather than their transposes.

An arbitrary m×n sparse matrix in CSC format is expressed as two vectors of indices, the row
indices and the column pointers, and a numeric vector of the nonzero values. The elements
of the row indices and the nonzeros are aligned and are ordered first by increasing column
number then by increasing row number within column. The column pointers are a vector of
size n + 1 giving the location of the start of each column in the vectors of row indices and
nonzeros.

Because the number of nonzeros in each column of Z⊤, and in each column of matrices derived
from Z⊤ (such as Λ

⊤
θ Z⊤W 1/2) is constant, the vector of nonzeros in the CSC format can be

viewed as a dense matrix, say N , of size (
∑n

i=1 pi) × n. We do not need to store the column
pointers because the columns of Z⊤ correspond to columns of N . All we need is N , the
dense matrix of nonzeros, and the row indices, which are derived from the grouping factor
index vectors ii, i = 1, . . . , k and can also be arranged as a dense matrix of size (

∑n
i=1 pi) × n.

Matrices like Z⊤, with the property that there are the same number of nonzeros in each
column, are sometimes called regular sparse column-oriented (RSC) matrices.

4. Nonlinear optimization module

The objective function module produces a function which implements the penalized least
squares algorithm for a particular mixed model. The next step is to optimize this function
over the covariance parameters, θ, which is a nonlinear optimization problem. The lme4

package separates the efficient computational linear algebra required to compute profiled
likelihoods and deviances for a given value of θ from the nonlinear optimization algorithms,
which use general-purpose nonlinear optimizers.

One benefit of this separation is that it allows for experimentation with different nonlinear
optimizers. Throughout the development of lme4, the default optimizers and control param-
eters have changed in response to feedback from users about both efficiency and convergence
properties. lme4 incorporates two built-in optimization choices, an implementation of the
Nelder-Mead simplex algorithm adapted from Steven Johnson’s NLopt C library (Johnson
2014) and a wrapper for Powell’s BOBYQA algorithm, implemented in the minqa package
(Bates, Mullen, Nash, and Varadhan 2014b) as a wrapper around Powell’s original Fortran

code (Powell 2009). More generally, lme4 allows any user-specified optimizer that (1) can
work with an objective function (i.e., does not require a gradient function to be specified),
(2) allows box constraints on the parameters, and (3) conforms to some simple rules about
argument names and structure of the output. An internal wrapper allows the use of the op-

timx package (Nash and Varadhan 2011), although the only optimizers provided via optimx

that satisfy the constraints above are the nlminb and L-BFGS-B algorithms that are them-
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selves wrappers around the versions provided in base R. Several other algorithms from Steven
Johnson’s NLopt package are also available via the nloptr wrapper package (e.g., alternate
implementations of Nelder-Mead and BOBYQA, and Powell’s COBYLA algorithm).

This flexibility assists with diagnosing convergence problems – it is easy to switch among
several algorithms to determine whether the problem lies in a failure of the nonlinear opti-
mization stage, as opposed to a case of model misspecification or unidentifiability or a problem
with the underlying PLS algorithm. To date we have only observed PLS failures, which arise
if X⊤W X −R⊤

ZXRZX becomes singular during an evaluation of the objective function, with
badly scaled problems (i.e., problems with continuous predictors that take a very large or
very small numerical range of values).

The requirement for optimizers that can handle box constraints stems from our decision to
parameterize the variance-covariance matrix in a constrained space, in order to allow for
singular fits. In contrast to the approach taken in the nlme package (Pinheiro et al. 2014),
which goes to some lengths to use an unconstrained variance-covariance parameterization
(the log-Cholesky parameterization; Pinheiro and Bates 1996), we instead use the Cholesky
parameterization but require the elements of θ corresponding to the diagonal elements of the
Cholesky factor to be non-negative. With these constraints, the variance-covariance matrix is
singular if and only if any of the diagonal elements is exactly zero. Singular fits are common
in practical data-analysis situations, especially with small- to medium-sized data sets and
complex variance-covariance models, so being able to fit a singular model is an advantage:
when the best fitting model lies on the boundary of a constrained space, approaches that try
to remove the constraints by fitting parameters on a transformed scale will often give rise
to convergence warnings as the algorithm tries to find a maximum on an asymptotically flat
surface (Bolker et al. 2013).

In principle the likelihood surfaces we are trying to optimize over are smooth, but in practice
using gradient information in optimization may or may not be worth the effort. In special
cases, we have a closed-form solution for the gradients (Equations 46–48), but in general
we will have to approximate them by finite differences, which is expensive and has limited
accuracy. (We have considered using automatic differentiation approaches to compute the
gradients more efficiently, but this strategy requires a great deal of additional machinery, and
would have drawbacks in terms of memory requirements for large problems.) This is the
primary reason for our switching to derivative-free optimizers such as BOBYQA and Nelder-
Mead in the current version of lme4, although as discussed above derivative-based optimizers
based on finite differencing are available as an alternative.

There is most likely further room for improvement in the nonlinear optimization module; for
example, some speed-up could be gained by using parallel implementations of derivative-free
optimizers that evaluated several trial points at once (Klein and Neira 2013). In practice
users most often have optimization difficulties with poorly scaled or centered data – we are
working to implement appropriate diagnostic tests and warnings to detect these situations.

5. Output module

Here we describe some of the methods in lme4 for exploring fitted linear mixed models (Ta-
ble 8), which are represented as objects of the S4 class ‘lmerMod’. We begin by describing the
theory underlying these methods (Section 5.1) and then continue the sleepstudy example
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introduced in Section 1.2 to illustrate these ideas in practice.

5.1. Theory underlying the output module

Covariance matrix of the fixed-effect coefficients

In the lm function, the variance-covariance matrix of the coefficients is the inverse of the
cross-product of the model matrix, times the residual variance (Chambers 1993). The inverse
cross-product matrix is computed by first inverting the upper triangular matrix resulting from
the QR decomposition of the model matrix, and then taking its cross-product,

Varθ,σ


µU♣Y=yobs

β̂

]
= σ2


L⊤

θ RZX

0 RX

]−1 
Lθ 0

R⊤
ZX R⊤

X

]−1

. (54)

Because of normality, the marginal covariance matrix of β̂ is just the lower-right p-by-p block

of Varθ,σ


µU♣Y=yobs

β̂

]
. This lower-right block is

Varθ,σ(β̂) = σ2R−1
X (R⊤

X)−1, (55)

which follows from the Schur complement identity (Horn and Zhang 2005, Theorem 1.2).
This matrix can be extracted from a fitted merMod object as,

> RX <- getME(fm1, "RX")

> sigma2 <- sigma(fm1)^2

> sigma2 * chol2inv(RX)

[,1] [,2]

[1,] 46.575120 -1.451088

[2,] -1.451088 2.389466

which could be computed with lme4 as vcov(fm1).

The square-root diagonal of this covariance matrix contains the estimates of the standard
errors of fixed-effects coefficients. These standard errors are used to construct Wald confidence
intervals with confint(., method = "Wald"). Such confidence intervals are approximate,
and depend on the assumption that the likelihood profile of the fixed effects is linear on the
ζ scale (Section 5.1.2).

Profiling

The theory of likelihood profiles is straightforward: the deviance (or likelihood) profile,
−2Lp(), for a focal model parameter P is the minimum value of the deviance conditioned
on a particular value of P . For each parameter of interest, our goal is to evaluate the de-
viance profile for many points – optimizing over all of the non-focal parameters each time –
over a wide enough range and with high enough resolution to evaluate the shape of the profile
(in particular, whether it is quadratic, which would allow use of Wald confidence intervals and
tests) and to find the values of P such that −2Lp(P ) = −2L(P̂ ) + χ2(1 − α), which represent
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the profile confidence intervals. While profile confidence intervals rely on the asymptotic dis-
tribution of the minimum deviance, this is a much weaker assumption than the log-quadratic
likelihood surface required by Wald tests.

An additional challenge in profiling arises when we want to compute profiles for quantities
of interest that are not parameters of our PLS function. We have two problems in using the
deviance function defined above to profile linear mixed models. First, a parameterization of
the random-effects variance-covariance matrix in terms of standard deviations and correla-
tions, or variances and covariances, is much more familiar to users, and much more relevant
as output of a statistical model, than the parameters, θ, of the relative covariance factor –
users are interested in inferences on variances or standard deviations, not on θ. Second, the
fixed-effect coefficients and the residual standard deviation, both of which are also of interest
to users, are profiled out (in the sense used above) of the deviance function (Section 3.4), so
we have to find a strategy for estimating the deviance for values of β and σ2 other than the
profiled values.

To handle the first problem we create a new version of the deviance function that first takes
a vector of standard deviations (and correlations), and a value of the residual standard devi-
ation, maps them to a θ vector, and then computes the PLS as before; it uses the specified
residual standard deviation rather than the PLS estimate of the standard deviation (Equa-
tion 34) in the deviance calculation. We compute a profile likelihood for the fixed-effect
parameters, which are profiled out of the deviance calculation, by adding an offset to the
linear predictor for the focal element of β. The resulting function is not useful for general
nonlinear optimization – one can easily wander into parameter regimes corresponding to in-
feasible (non-positive semidefinite) variance-covariance matrices – but it serves for likelihood
profiling, where one focal parameter is varied at a time and the optimization over the other
parameters is likely to start close to an optimum.

In practice, the profile method systematically varies the parameters in a model, assessing
the best possible fit that can be obtained with one parameter fixed at a specific value and
comparing this fit to the globally optimal fit, which is the original model fit that allowed all
the parameters to vary. The models are compared according to the change in the deviance,
which is the likelihood ratio test statistic. We apply a signed square root transformation
to this statistic and plot the resulting function, which we call the profile zeta function or
ζ, versus the parameter value. The signed aspect of this transformation means that ζ is
positive where the deviation from the parameter estimate is positive and negative otherwise,
leading to a monotonically increasing function which is zero at the global optimum. A ζ
value can be compared to the quantiles of the standard normal distribution. For example,
a 95% profile deviance confidence interval on the parameter consists of the values for which
−1.96 < ζ < 1.96. Because the process of profiling a fitted model can be computationally
intensive – it involves refitting the model many times – one should exercise caution with
complex models fit to large data sets.

The standard approach to this computational challenge is to compute ζ at a limited number
of parameter values, and to fill in the gaps by fitting an interpolation spline. Often one is able
to invert the spline to obtain a function from ζ to the focal parameter, which is necessary
in order to construct profile confidence intervals. However, even if the points themselves are
monotonic, it is possible to obtain non-monotonic interpolation curves. In such a case, lme4

falls back to linear interpolation, with a warning.
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The last part of the technical specification for computing profiles is deciding on a strategy
for choosing points to sample. In one way or another one wants to start at the estimated
value for each parameter and work outward either until a constraint is reached (i.e., a value
of 0 for a standard deviation parameter or a value of ±1 for a correlation parameter), or
until a sufficiently large deviation from the minimum deviance is attained. lme4’s profiler
chooses a cutoff ϕ based on the 1 − αmax critical value of the χ2 distribution with a number
of degrees of freedom equal to the total number of parameters in the model, where αmax is
set to 0.05 by default. The profile computation initially adjusts the focal parameter pi by
an amount ϵ = 1.01p̂i from its ML or REML estimate p̂i (or by ϵ = 0.001 if p̂i is zero, as
in the case of a singular variance-covariance model). The local slope of the likelihood profile
(ζ(p̂i + ϵ) − ζ(p̂i))/ϵ is used to pick the next point to evaluate, extrapolating the local slope
to find a new ϵ that would be expected to correspond to the desired step size ∆ζ (equal to
ϕ/8 by default, so that 16 points would be used to cover the profile in both directions if the
log-likelihood surface were exactly quadratic). Some fail-safe testing is done to ensure that
the step chosen is always positive, and less than a maximum; if a deviance is ever detected
that is lower than that of the ML deviance, which can occur if the initial fit was wrong due
to numerical problems, the profiler issues an error and stops.

Parametric bootstrapping

To avoid the asymptotic assumptions of the likelihood ratio test, at the cost of greatly in-
creased computation time, one can estimate confidence intervals by parametric bootstrapping
– that is, by simulating data from the fitted model, refitting the model, and extracting the
new estimated parameters (or any other quantities of interest). This task is quite straightfor-
ward, since there is already a simulate method, and a refit function which re-estimates the
(RE)ML parameters for new data, starting from the previous (RE)ML estimates and re-using
the previously computed model structures (including the fill-reducing permutation) for effi-
ciency. The bootMer function is thus a fairly thin wrapper around a simulate/refit loop,
with a small amount of additional logic for parallel computation and error-catching. (Some
of the ideas of bootMer are adapted from merBoot (Sánchez-Espigares and Ocaña 2009), a
more ambitious framework for bootstrapping lme4 model fits which unfortunately seems to
be unavailable at present.)

Conditional variances of random effects

It is useful to clarify that the conditional covariance concept in lme4 is based on a simplifi-
cation of the linear mixed model. In particular, we simplify the model by assuming that the
quantities, β, Λθ, and σ, are known (i.e., set at their estimated values). In fact, the only
way to define the conditional covariance is at fixed parameter values. Our approximation
here is using the estimated parameter values for the unknown “true” parameter values. In
this simplified case, U is the only quantity in the statistical model that is both random and
unknown.

Given this simplified linear mixed model, a standard result in Bayesian linear regression mod-
eling (Gelman et al. 2013) implies that the conditional distribution of the spherical random
effects given the observed response vector is Gaussian,

(U♣Y = yobs) ∼ N (µU♣Y=yobs
, σ̂2V ), (56)
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where

V =

Λ

⊤

θ̂
Z⊤W ZΛ

θ̂
+ Iq

)−1
=

L−1

θ̂

)⊤ 
L−1

θ̂

)
(57)

is the unscaled conditional variance and

µU♣Y=yobs
= V Λ

⊤

θ̂
Z⊤W


yobs − o − Xβ̂

)
(58)

is the conditional mean/mode. Note that in practice the inverse in Equation 57 does not get
computed directly, but rather an efficient method is used that exploits the sparse structures.

The random-effects coefficient vector, b, is often of greater interest. The conditional covari-
ance matrix of B may be expressed as

σ̂2
Λ

θ̂
V Λ

⊤

θ̂
. (59)

The hat matrix

The hat matrix, H, is a useful object in linear model diagnostics (Cook and Weisberg 1982).
In general, H relates the observed and fitted response vectors, but we specifically define it
as, 

µY♣U=u − o
)

= H (yobs − o) . (60)

To find H we note that


µY♣U=u − o

)
=
[
ZΛ X

] µU♣Y=yobs

β̂θ

]
. (61)

Next we get an expression for


µU♣Y=yobs

β̂θ

]
by solving the normal equations (Equation 17),


µU♣Y=yobs

β̂θ

]
=


L⊤

θ RZX

0 RX

]−1 
Lθ 0

R⊤
ZX R⊤

X

]−1 
Λ

⊤
θ Z⊤

X⊤

]
W (yobs − o). (62)

By the Schur complement identity (Horn and Zhang 2005),


L⊤

θ RZX

0 RX

]−1

=




L⊤

θ

)−1
−

L⊤

θ

)−1
RZXR−1

X

0 R−1
X


 . (63)

Therefore, we may write the hat matrix as

H = (C⊤
L CL + C⊤

R CR), (64)

where,
LθCL = Λ

⊤
θ Z⊤W 1/2 (65)

and,
R⊤

XCR = X⊤W 1/2 − R⊤
ZXCL. (66)

The trace of the hat matrix is often used as a measure of the effective degrees of freedom
(e.g., Vaida and Blanchard 2005). Using a relationship between the trace and vec operators,
the trace of H may be expressed as,

tr(H) = ∥vec(CL)∥2 + ∥vec(CR)∥2 . (67)
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Generic (Section) Brief description of return value

anova (5.2.4) Decomposition of fixed-effects contributions
or model comparison.

as.function Function returning profiled deviance or REML criterion.
coef Sum of the random and fixed effects for each level.
confint (5.2.6) Confidence intervals on linear mixed-model parameters.
deviance (5.2.2) Minus twice maximum log-likelihood.

(Use REMLcrit for the REML criterion.)
df.residual Residual degrees of freedom.
drop1 Drop allowable single terms from the model.
extractAIC Generalized Akaike information criterion
fitted Fitted values given conditional modes (Equation 13).

fixef (5.2.2) Estimates of the fixed-effects coefficients, β̂

formula (2.2.1) Mixed-model formula of fitted model.
logLik Maximum log-likelihood.
model.frame Data required to fit the model.
model.matrix Fixed-effects model matrix, X.
ngrps (5.2.2) Number of levels in each grouping factor.
nobs (5.2.2) Number of observations.
plot Diagnostic plots for mixed-model fits.
predict (5.2.8) Various types of predicted values.
print Basic printout of mixed-model objects.
profile (5.1.2) Profiled likelihood over various model parameters.
ranef (5.2.2) Conditional modes of the random effects.
refit (5.1.3) A model (re)fitted to a new set of observations of the response variable.
refitML (5.2.4) A model (re)fitted by maximum likelihood.
residuals (5.2.2) Various types of residual values.
sigma (5.2.2) Residual standard deviation.
simulate (5.2.8) Simulated data from a fitted mixed model.
summary (5.2.2) Summary of a mixed model.
terms Terms representation of a mixed model.
update (5.2.1) An updated model using a revised formula or other arguments.
VarCorr (5.2.2) Estimated random-effects variances, standard deviations, and correlations.
vcov (5.2.2) Covariance matrix of the fixed-effect estimates.
weights Prior weights used in model fitting.

Table 8: List of currently available methods for objects of the class ‘merMod’.
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5.2. Using the output module

The user interface for the output module largely consists of a set of methods (Table 8) for
objects of class merMod, which is the class of objects returned by lmer. In addition to these
methods, the getME function can be used to extract various objects from a fitted mixed model
in lme4. Here we illustrate the use of several of these methods.

Updating fitted mixed models

To illustrate the update method for ‘merMod’ objects we construct a random intercept only
model. This task could be done in several ways, but we choose to first remove the random-
effects term (Days | Subject) and add a new term with a random intercept,

> fm3 <- update(fm1, . ~ . - (Days | Subject) + (1 | Subject))

> formula(fm3)

Reaction ~ Days + (1 | Subject)

Model summary and associated accessors

The summary method for ‘merMod’ objects provides information about the model fit. Here
we consider the output of summary(fm1) in four steps. The first few lines of output indicate
that the model was fitted by REML as well as the value of the REML criterion (Equation 40)
at convergence (which may also be extracted using REMLcrit(fm1)). The beginning of the
summary also reproduces the model formula and the scaled Pearson residuals,

Linear mixed model fit by REML ['lmerMod']

Formula: Reaction ~ Days + (Days | Subject)

Data: sleepstudy

REML criterion at convergence: 1743.6

Scaled residuals:

Min 1Q Median 3Q Max

-3.9536 -0.4634 0.0231 0.4634 5.1793

This information may also be obtained using standard accessor functions,

> formula(fm1)

> REMLcrit(fm1)

> quantile(residuals(fm1, "pearson", scaled = TRUE))

The second piece of the summary output provides information regarding the random-effects
and residual variation,

Random effects:

Groups Name Variance Std.Dev. Corr

Subject (Intercept) 612.10 24.741
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Days 35.07 5.922 0.07

Residual 654.94 25.592

Number of obs: 180, groups: Subject, 18

which can also be accessed using,

> print(vc <- VarCorr(fm1), comp = c("Variance", "Std.Dev."))

> nobs(fm1)

> ngrps(fm1)

> sigma(fm1)

The print method for objects returned by VarCorr hides the internal structure of these
‘VarCorr.merMod’ objects. The internal structure of an object of this class is a list of
matrices, one for each random-effects term. The standard deviations and correlation ma-
trices for each term are stored as attributes, stddev and correlation, respectively, of the
variance-covariance matrix, and the residual standard deviation is stored as attribute sc. For
programming use, these objects can be summarized differently using their as.data.frame

method,

> as.data.frame(VarCorr(fm1))

grp var1 var2 vcov sdcor

1 Subject (Intercept) <NA> 612.100158 24.74065799

2 Subject Days <NA> 35.071714 5.92213766

3 Subject (Intercept) Days 9.604409 0.06555124

4 Residual <NA> <NA> 654.940008 25.59179572

which contains one row for each variance or covariance parameter. The grp column gives
the grouping factor associated with this parameter. The var1 and var2 columns give the
names of the variables associated with the parameter (var2 is <NA> unless it is a covariance
parameter). The vcov column gives the variances and covariances, and the sdcor column
gives these numbers on the standard deviation and correlation scales.

The next chunk of output gives the fixed-effect estimates,

Fixed effects:

Estimate Std. Error t value

(Intercept) 251.405 6.825 36.838

Days 10.467 1.546 6.771

Note that there are no p values (see Section 5.2.5). The fixed-effect point estimates may be
obtained separately via fixef(fm1). Conditional modes of the random-effects coefficients
can be obtained with ranef (see Section 5.1.4 for information on the theory). Finally, we
have the correlations between the fixed-effect estimates

Correlation of Fixed Effects:

(Intr)

Days -0.138
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The full variance-covariance matrix of the fixed-effects estimates can be obtained in the usual
R way with the vcov method (Section 5.1.1). Alternatively, coef(summary(fm1)) will return
the full fixed-effects parameter table as shown in the summary.

Diagnostic plots

lme4 provides tools for generating most of the standard graphical diagnostic plots (with the
exception of those incorporating influence measures, e.g., Cook’s distance and leverage plots),
in a way modeled on the diagnostic graphics of nlme (Pinheiro and Bates 2000). In particular,
the familiar plot method in base R for linear models (objects of class ‘lm’) can be used to
create the standard fitted vs. residual plots,

> plot(fm1, type = c("p", "smooth"))

scale-location plots,

> plot(fm1, sqrt(abs(resid(.))) ~ fitted(.),

type = c("p", "smooth"))

and quantile-quantile plots (from lattice),

> qqmath(fm1, id = 0.05)

In contrast to plot.lm, these scale-location and Q-Q plots are based on raw rather than
standardized residuals.

In addition to these standard diagnostic plots, which examine the validity of various assump-
tions (linearity, homoscedasticity, normality) at the level of the residuals, one can also use
the dotplot and qqmath methods for the conditional modes (i.e., ‘ranef.mer’ objects gen-
erated by ranef(fit)) to check for interesting patterns and normality in the conditional
modes. lme4 does not provide influence diagnostics, but these (and other useful diagnostic
procedures) are available in the dependent packages HLMdiag and influence.ME (Loy and
Hofmann 2014; Nieuwenhuis, Te Grotenhuis, and Pelzer 2012).

Finally, posterior predictive simulation (Gelman and Hill 2006) is a generally useful diagnostic
tool, adapted from Bayesian methods, for exploring model fit. Users pick some summary
statistic of interest. They then compute the summary statistic for an ensemble of simulations
(Section 5.2.8), and see where the observed data falls within the simulated distribution; if
the observed data is extreme, we might conclude that the model is a poor representation of
reality. For example, using the sleep study fit and choosing the interquartile range of the
reaction times as the summary statistic:

> iqrvec <- sapply(simulate(fm1, 1000), IQR)

> obsval <- IQR(sleepstudy$Reaction)

> post.pred.p <- mean(obsval >= c(obsval, iqrvec))

The (one-tailed) posterior predictive p value of 0.78 indicates that the model represents the
data adequately, at least for this summary statistic. In contrast to the full Bayesian case,
the procedure described here does not allow for the uncertainty in the estimated parameters.
However, it should be a reasonable approximation when the residual variation is large.
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Sequential decomposition and model comparison

Objects of class ‘merMod’ have an anova method which returns F statistics corresponding to
the sequential decomposition of the contributions of fixed-effects terms. In order to illustrate
this sequential ANOVA decomposition, we fit a model with orthogonal linear and quadratic
Days terms,

> fm4 <- lmer(Reaction ~ polyDays[ , 1] + polyDays[ , 2] +

(polyDays[ , 1] + polyDays[ , 2] | Subject),

within(sleepstudy, polyDays <- poly(Days, 2)))

> anova(fm4)

Analysis of Variance Table

npar Sum Sq Mean Sq F value

polyDays[, 1] 1 23875 23875 46.08

polyDays[, 2] 1 340 340 0.66

The relative magnitudes of the two sums of squares indicate that the quadratic term explains
much less variation than the linear term. Furthermore, the magnitudes of the two F statistics
strongly suggest significance of the linear term, but not the quadratic term. Notice that this
is only an informal assessment of significance as there are no p values associated with these
F statistics, an issue discussed in more detail in the next subsection (“Computing p-values”,
p. 35).

To understand how these quantities are computed, let Ri contain the rows of RX (Equa-
tion 18) associated with the ith fixed-effects term. Then the sum of squares for term i is,

SS i = β̂⊤R⊤
i Riβ̂ (68)

If DF i is the number of columns in Ri, then the F statistic for term i is,

Fi =
SS i

σ̂2DF i
(69)

For multiple arguments, the anova method returns model comparison statistics.

> anova(fm1, fm2, fm3)

refitting model(s) with ML (instead of REML)

Data: sleepstudy

Models:

fm3: Reaction ~ Days + (1 | Subject)

fm2: Reaction ~ Days + ((1 | Subject) + (0 + Days | Subject))

fm1: Reaction ~ Days + (Days | Subject)

npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)

fm3 4 1802 1815 -897 1794

fm2 5 1762 1778 -876 1752 42.08 1 8.8e-11

fm1 6 1764 1783 -876 1752 0.06 1 0.8
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The output shows χ2 statistics representing the difference in deviance between successive
models, as well as p values based on likelihood ratio test comparisons. In this case, the
sequential comparison shows that adding a linear effect of time uncorrelated with the intercept
leads to an enormous and significant drop in deviance (∆deviance ≈ 42, p ≈ 10−10), while
the further addition of correlation between the slope and intercept leads to a trivial and non-
significant change in deviance (∆deviance ≈ 0.06). For objects of class ‘lmerMod’ the default
behavior is to refit the models with ML if fitted with REML = TRUE, which is necessary in
order to get sensible answers when comparing models that differ in their fixed effects; this
can be controlled via the refit argument.

Computing p values

One of the more controversial design decisions of lme4 has been to omit the output of p values
associated with sequential ANOVA decompositions of fixed effects. The absence of analytical
results for null distributions of parameter estimates in complex situations (e.g., unbalanced
or partially crossed designs) is a long-standing problem in mixed-model inference. While the
null distributions (and the sampling distributions of non-null estimates) are asymptotically
normal, these distributions are not t distributed for finite size samples – nor are the corre-
sponding null distributions of differences in scaled deviances F distributed. Thus approximate
methods for computing the approximate degrees of freedom for t distributions, or the denom-
inator degrees of freedom for F statistics (Satterthwaite 1946; Kenward and Roger 1997), are
at best ad hoc solutions.

However, computing finite-size-corrected p values is sometimes necessary. Therefore, although
the package does not provide them (except via parametric bootstrapping, Section 5.1.3), we
have provided a help page to guide users in finding appropriate methods:

> help("pvalues")

This help page provides pointers to other packages that provide machinery for calculating
p values associated with ‘merMod’ objects. It also suggests framing the inference problem as
a likelihood ratio test (achieved by supplying multiple ‘merMod’ objects to the anova method
(Section 5.2.4), as well as alternatives to p values such as confidence intervals (Section 5.2.6).

Previous versions of lme4 provided the mcmcsamp function, which generated a Markov chain
Monte Carlo sample from the posterior distribution of the parameters (assuming flat priors).
Due to difficulty in constructing a version of mcmcsamp that was reliable even in cases where
the estimated random-effect variances were near zero, mcmcsamp has been withdrawn.

Computing confidence intervals

As described above (Section 5.1.1), lme4 provides confidence intervals (using confint) via
Wald approximations (for fixed-effect parameters only), likelihood profiling, or parametric
bootstrapping (the boot.type argument selects the bootstrap confidence interval type).

As is typical for computationally intensive profile confidence intervals in R, the intervals can
be computed either directly from fitted ‘merMod’ objects (in which case profiling is done
as an interim step), or from a previously computed likelihood profile (of class ‘thpr’, for
“theta profile”). Parametric bootstrapping confidence intervals use a thin wrapper around
the bootMer function that passes the results to boot.ci from the boot package (Canty and
Ripley 2015; Davison and Hinkley 1997) for confidence interval calculation.
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In the running sleep study example, the 95% confidence intervals estimated by all three
methods are quite similar. The largest change is a 26% difference in confidence interval
widths between profile and parametric bootstrap methods for the correlation between the
intercept and slope random effects ({-0.54,0.98} vs. {-0.48,0.68}).

General profile zeta and related plots

lme4 provides several functions (built on lattice graphics, Sarkar 2008) for plotting the profile
zeta functions (Section 5.1.2) and other related quantities.

• The profile zeta plot (Figure 2; xyplot) is simply a plot of the profile zeta function
for each model parameter; linearity of this plot for a given parameter implies that the
likelihood profile is quadratic (and thus that Wald approximations would be reasonably
accurate).

• The profile density plot (Figure 3; densityplot) displays an approximation of the
probability density function of the sampling distribution for each parameter. These
densities are derived by setting the cumulative distribution function (c.d.f) to be Φ(ζ)
where Φ is the c.d.f. of the standard normal distribution. This is not quite the same as
evaluating the distribution of the estimator of the parameter, which for mixed models
can be very difficult, but it gives a reasonable approximation. If the profile zeta plot is
linear, then the profile density plot will be Gaussian.

• The profile pairs plot (Figure 4; splom) gives an approximation of the two-dimensional
profiles of pairs of parameters, interpolated from the univariate profiles as described in
Bates and Watts (1988, Chapter 6). The profile pairs plot shows two-dimensional 50%,
80%, 90%, 95% and 99% marginal confidence regions based on the likelihood ratio, as
well as the profile traces, which indicate the conditional estimates of each parameter
for fixed values of the other parameters. While panels above the diagonal show profiles
with respect to the original parameters (with random-effects parameters on the standard
deviation/correlation scale, as for all profile plots), the panels below the diagonal show
plots on the (ζi, ζj) scale. The below-diagonal panels allow us to see distortions from an
elliptical shape due to nonlinearity of the traces, separately from the one-dimensional
distortions caused by a poor choice of scale for the parameters. The ζ scales provide, in
some sense, the best possible set of single-parameter transformations for assessing the
contours. On the ζ scales the extent of a contour on the horizontal axis is exactly the
same as the extent on the vertical axis and both are centered about zero.

For users who want to build their own graphical displays of the profile, there is a method for
as.data.frame that converts profile (‘thpr’) objects to a more convenient format.

Computing fitted and predicted values; simulating

Because mixed models involve random coefficients, one must always clarify whether predic-
tions should be based on the marginal distribution of the response variable or on the distri-
bution that is conditional on the modes of the random effects (Equation 12). The fitted

method retrieves fitted values that are conditional on all of the modes of the random effects;
the predict method returns the same values by default, but also allows for predictions to be
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Figure 2: Profile zeta plot: xyplot(prof.obj)

made conditional on different sets of random effects. For example, if the re.form argument
is set to NULL (the default), then the predictions are conditional on all random effects in the
model; if re.form is ~0 or NA, then the predictions are made at the population level (all
random-effect values set to zero). In models with multiple random effects, the user can give
re.form as a formula that specifies which random effects are conditioned on.

lme4 also provides a simulate method, which allows similar flexibility in conditioning on
random effects; in addition it allows the user to choose (via the use.u argument) between
conditioning on the fitted conditional modes or choosing a new set of simulated condi-
tional modes (zero-mean Normal deviates chosen according to the estimated random-effects
variance-covariance matrices). Finally, the simulate method has a method for ‘formula’
objects, which allows for de novo simulation in the absence of a fitted model. In this case, the
user must specify the random-effects (θ), fixed-effects (β), and residual standard deviation
(σ) parameters via the newparams argument. The standard simulation method (based on a
‘merMod’ object) is the basis of parametric bootstrapping (Section 5.1.3) and posterior pre-
dictive simulation (Section 5.2.3); de novo simulation based on a formula provides a flexible
framework for power analysis.

6. Conclusion

Mixed modeling is an extremely useful but computationally intensive technique. Computa-
tional limitations are especially important because mixed models are commonly applied to
moderately large data sets (104–106 observations). By developing an efficient, general, and
(now) well-documented platform for fitted mixed models in R, we hope to provide both a
practical tool for end users interested in analyzing data and a reusable, modular framework
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Figure 3: Profile density plot: densityplot(prof.obj)

for downstream developers interested in extending the class of models that can be easily and
efficiently analyzed in R.

We have learned much about linear mixed models in the process of developing lme4, both from
our own attempts to develop robust and reliable procedures and from the broad community
of lme4 users; we have attempted to describe many of these lessons here. In moving forward,
our main priorities are (1) to maintain the reference implementation of lme4 on the Compre-
hensive R Archive Network (CRAN), developing relatively few new features; (2) to improve
the flexibility, efficiency and scalability of mixed-model analysis across multiple compatible
implementations, including both the MixedModels package for Julia and the experimental
flexLambda branch of lme4.
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A. Modularization examples

The modularized functions in lme4 allow for finer control of the various steps in fitting mixed
models (Table 1). The main advantage of these functions is the ability to extend the class of
models that lmer is capable of fitting. In general there are three steps to this process.

• Construct a mixed-model formula that is similar to the intended model.

• Using the modular functions, hook into and modify the fitting process so that the desired
model is estimated.

• Use the estimated parameter values to make inferences.

Note that the many tools of the output module become unavailable for sufficiently extensive
departures from the class of models fitted by lmer. Therefore, this last inference step may
be more involved in the modular approach than with inference from models fitted by lmer.
Here we provide two examples that illustrate this process.

A.1. Zero slope-slope covariance models

Consider the following mixed-model formula,

> form <- respVar ~ 1 + (explVar1 + explVar2 | groupFac)

in which we have a fixed intercept and two random-effects terms, each with a random slope
and intercept. The lmer function would fit this formula to data by estimating an unstructured
3×3 covariance matrix giving the variances and covariances among the intercept and the two
slopes. It is not possible to use the current version of lmer to fit a model with the following
two properties: (1) the slopes are uncorrelated and (2) the intercept is correlated with both
of the slopes. We illustrate the use of the modular functions in lme4 to fit such a model.

Simulate from a zero slope-slope covariance model

We simulate data from such a model using a balanced design with a single grouping factor.
We use lme4’s utilities for constructing a template from the model formula, with which to
conduct these simulations. We simulate a balanced design with 500 levels to the grouping
factor and 20 observations per group,

> set.seed(1)

> dat <- mkDataTemplate(form,

nGrps = 500,

nPerGrp = 20,

rfunc = rnorm)

> head(dat)

groupFac respVar explVar1 explVar2

1 1 -0.62645 -0.80433 0.23535

2 1 0.18364 -1.05653 0.24483

3 1 -0.83563 -1.03540 -0.64219
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4 1 1.59528 -1.18556 -1.93481

5 1 0.32951 -0.50044 1.03870

6 1 -0.82047 -0.52499 -0.28355

The initial parameters for this model may be obtained using mkParsTemplate.

> (pars <- mkParsTemplate(form, dat))

$beta

(Intercept)

0

$theta

groupFac.(Intercept) groupFac.explVar1.(Intercept)

1 0

groupFac.explVar2.(Intercept) groupFac.explVar1

0 1

groupFac.explVar2.explVar1 groupFac.explVar2

0 1

$sigma

[1] 1

We wish to simulate random effects from the following covariance matrix,

> vc <- matrix(c(1.0, 0.5, 0.5,

0.5, 1.0, 0.0,

0.5, 0.0, 1.0), 3, 3)

Here the intercept is correlated with each of the two slopes, but the slopes are uncorre-
lated. The theta vector that corresponds to this covariance matrix can be computed using
lme4’s facilities for converting between various representations of (co-)variance structures (see
?vcconv).

> pars$theta[] <- Vv_to_Cv(mlist2vec(vc))

With these new parameters installed, we simulate a response variable.

> dat$respVar <- simulate(form,

newdata = dat,

newparams = pars,

family = "gaussian")[[1]]

Indeed this data set appears to contain intercept-slope correlations, but not slope-slope cor-
relations, as we see using the lmList function.

> formLm <- form

> formLm[[3]] <- findbars(form)[[1]]

> print(formLm)
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respVar ~ explVar1 + explVar2 | groupFac

> cor(t(sapply(lmList(formLm, dat), coef)))

(Intercept) explVar1 explVar2

(Intercept) 1.00000 0.528896 0.426486

explVar1 0.52890 1.000000 0.060948

explVar2 0.42649 0.060948 1.000000

This lmList function computes ordinary linear models for each level of the grouping factor.
Next we show how to fit a proper mixed model to these data.

Fitting a zero slope-slope covariance model

The main challenge with fitting a zero slope-slope model is the need to figure out which
Cholesky decompositions correspond to variance-covariance matrices with structural zeros
between the slopes. There are two general approaches to solving this problem. The first is to
reorder the rows and columns of the covariance matrix so that the intercept column comes
last. In this case, setting the second component of the covariance parameter vector, θ, to
zero will achieve the desired covariance structure. However, we consider a second approach,
which retains the ordering produced by the lFormula function: (1) intercept, (2) first slope,
and (3) second slope. The covariance structure for the random effects in this model is given
by the following covariance matrix and its associated Cholesky decomposition.




σ2
1 σ12 σ13

σ21 σ2
2 0

σ31 0 σ2
3


 =




θ1 0 0
θ2 θ4 0
θ3 θ5 θ6







θ1 θ2 θ3

0 θ4 θ5

0 0 θ6


 (70)

where the σ parameters give the standard deviations and covariances, and the θ parameters
are the elements of the Cholesky decomposition. The key feature of this covariance matrix is
the structural zero indicating no covariance between the two slopes. Therefore, in order to
ensure the structural zero, we must have,

θ5 = −
θ2θ3

θ4
. (71)

To represent this restriction in R we introduce a length five vector, phi, which we convert
into an appropriate theta vector using the following function.

> phiToTheta <- function(phi) {

theta5 <- -(phi[2]*phi[3])/phi[4]

c(phi[1:4], theta5, phi[5])

}

We may therefore optimize the structured model by optimizing over phi instead of theta.
We begin to construct an appropriate objective function for such an optimization by taking
the first two modular steps, resulting in a deviance function of theta.

> lf <- lFormula(formula = form, data = dat, REML = TRUE)

> devf <- do.call(mkLmerDevfun, lf)
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This deviance function is a function of the unconstrained theta vector, but we require a
deviance function of the constrained phi vector. We therefore construct a wrapper around
the deviance function as follows.

> devfWrap <- function(phi) devf(phiToTheta(phi))

Finally, we optimize the deviance function,

> opt <- bobyqa(par = lf$reTrms$theta[-5],

fn = devfWrap,

lower = lf$reTrms$lower[-5])

To extract and label the estimated covariance matrix of the random effects, we may use the
conversion functions (?vcconv) and the column names of the random-effects model matrix
(cnms). We construct this estimated matrix and compare it with the true matrix used to
simulate the data.

> vcEst <- vec2mlist(Cv_to_Vv(phiToTheta(opt$par)))[[1]]

> dimnames(vcEst) <- rep(lf$reTrms$cnms, 2)

> round(vcEst, 2)

groupFac

groupFac (Intercept) explVar1 explVar2

(Intercept) 1.00 0.57 0.42

explVar1 0.57 1.11 0.00

explVar2 0.42 0.00 0.99

> vc

[,1] [,2] [,3]

[1,] 1.0 0.5 0.5

[2,] 0.5 1.0 0.0

[3,] 0.5 0.0 1.0

We see that the estimated covariance matrix provides a good estimate of the true matrix.

A.2. Additive models

It is possible to interpret additive models as a particular class of mixed models (Wood and
Scheipl 2014). The main benefit of this approach is that it bypasses the need to select
a smoothness parameter using cross-validation or generalized cross-validation. However, it
is inconvenient to specify additive models using the lme4 formula interface. The gamm4

package wraps the modularized functions of lme4 within a more convenient interface (Wood
and Scheipl 2014). In particular, the strategy involves the following steps,

1. Convert a gamm4 formula into an lme4 formula that approximates the intended model.

2. Parse this formula using lFormula.
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3. Modify the resulting transposed random-effects model matrix, Z⊤, so that the intended
additive model results.

4. Fit the resulting model using the remaining modularized functions (Table 1).

Here we illustrate this general strategy using a simple simulated data set,

> library("gamm4")

> library("splines")

> set.seed(1)

> n <- 100

> pSimulation <- 3

> pStatistical <- 8

> x <- rnorm(n)

> Bsimulation <- ns(x, pSimulation)

> Bstatistical <- ns(x, pStatistical)

> beta <- rnorm(pSimulation)

> y <- as.numeric(Bsimulation %*% beta + rnorm(n, sd = 0.3))

where pSimulation is the number of columns in the simulation model matrix and pStatistical

is the number of columns in the statistical model matrix.

We plot the resulting data along with the predictions from the generating model,

> par(mar = c(4, 4, 1, 1), las = 1, bty = "l")

> plot(x, y, las = 1)

> lines(x[order(x)], (Bsimulation %*% beta)[order(x)])
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We now set up an approximate lme4 model formula, and parse it using lFormula,
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> pseudoGroups <- as.factor(rep(1:pStatistical, length = n))

> parsedFormula <- lFormula(y ~ x + (1 | pseudoGroups))

We now insert a spline basis into the parsedFormula object,

> parsedFormula$reTrms <- within(parsedFormula$reTrms, {

Bt <- t(as.matrix(Bstatistical))[]

cnms$pseudoGroups <- "spline"

Zt <- as(Bt, class(Zt))

})

Finally we continue with the remaining modular steps,

> devianceFunction <- do.call(mkLmerDevfun, parsedFormula)

> optimizerOutput <- optimizeLmer(devianceFunction)

> mSpline <- mkMerMod( rho = environment(devianceFunction),

opt = optimizerOutput,

reTrms = parsedFormula$reTrms,

fr = parsedFormula$fr)

> mSpline

Linear mixed model fit by REML ['lmerMod']

REML criterion at convergence: 60.734

Random effects:

Groups Name Std.Dev.

pseudoGroups spline 0.293

Residual 0.300

Number of obs: 100, groups: pseudoGroups, 8

Fixed Effects:

(Intercept) x

-0.0371 -0.1714

Computing the fitted values of this additive model requires some custom code, and illustrates
the general principle that methods for merMod objects constructed from modular fits should
only be used if the user knows what she is doing,

> xNew <- seq(min(x), max(x), length = 100)

> newBstatistical <- predict(Bstatistical, xNew)

> yHat <- cbind(1, xNew) %*% getME(mSpline, "fixef") +

newBstatistical %*% getME(mSpline, "u")

> par(mar = c(4, 4, 1, 1), las = 1, bty = "l")

> plot(x, y)

> lines(xNew, yHat)

> lines(x[order(x)], (Bsimulation %*% beta)[order(x)],lty = 2)

> legend("topright", bty = "n", c("fitted", "generating"), lty = 1:2,col = 1)
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