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Abstract

The R computer language (R Development Core Team 2004) has been applied with a
great deal of success to a wide variety of statistical, physical, and medical applications.
Here, I show that R is an equally superb research tool in the field of recreational mathe-
matics.

An earlier version of this vignette was published as Hankin (2005).
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1. Overview

Recreational mathematics is easier to recognize than define, but seems to
be characterized by requiring a bare minimum of “raw material”: com-
plex notation is not needed, and problems are readily communicated to
the general public. This is not to say that all problems of recreational
mathematics are trivial: one could argue that much number theory is
recreational in nature; yet attempts to prove Fermat’s Last Theorem, or
the search for ever higher perfect numbers, have been the catalyst for
the development of many fruitful new areas of mathematics.

The study of magic squares is also an example of nontrivial recreational
mathematics as the basic concept is simple to grasp—yet there remain unsolved problems in
the field whose study has revealed deep mathematical truths. Here, I introduce the magic

package, and show that R is an excellent environment for the creation and investigation of
magic squares. I also show that one’s appreciation of magic squares may be enhanced through
computer tools such as R, and that the act of translating ‘paper’ algorithms of the literature
into R idiom can lead to new insight.

2. Introduction

Magic squares have essentially zero practical use; their fascination—like much of pure mathematics—
lies in the appeal of æsthetics and structure rather than immediate usefulness. The following
definitions are almost universal:

• A semimagic square is one all of whose row sums equal all its columnwise sums (i.e. the
magic constant).
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• A magic square is a semimagic square with the sum of both unbroken diagonals equal
to the magic constant.

• A panmagic square is a magic square all of whose broken diagonals sum to the magic
constant.

(all squares are understood to be n × n and to be normal, that is, to comprise n2 consecu-
tive integers1). Functions is.semimagic(), is.magic(), and is.panmagic() test for these
properties.

> require(magic)

A good place to start is the simplest—and by far the most commonly encountered—magic
square, lo zhu:

> magic(3)

[,1] [,2] [,3]

[1,] 2 7 6

[2,] 9 5 1

[3,] 4 3 8

This magic square has been known since antiquity (legend has it that the square was revealed
to humanity inscribed upon the shell of a divine turtle). More generally, if consecutive
numbers of a magic square are joined by lines, a pleasing image is often obtained (figure 1,
for example, shows a magic square of order 7; when viewed in this way, the algorithm for
creating such a square should be immediately obvious).

Function magic() takes an integer argument n and returns a normal magic square of size
n × n. There are eight equivalent forms for lo zhu or indeed any magic square, achieved by
rotating and reflecting the matrix (Benson and Jacoby 1976); such equivalence is tested by
eq() or %eq%. Of these eight forms, a magic square a is said to be in Frénicle’s standard form

if a[1,1]≤b[1,1] whenever a %eq% b, and a[1,2]<a[2,1]. Function is.standard() tests
for this, and function as.standard() places a magic square in standard form. Magic squares
returned by magic() are always in standard form.

A typical (paper) algorithm for placing magic square a in standard form would be “rotate a

until a[1,1]<min(a[1,n],a[n,1],a[n,n]) then, if a[1,2]>a[2,1], take the transpose”. I
shall show later that expressing such an algorithm in R leads to new insight when considering
magic hypercubes.

A wide variety of algorithms exists for calculating magic squares. For a given order n, these
algorithms generally depend on n modulo 4. A typical paper algorithm for magic squares of
order n = 4m would go as follows.

Algorithm 1: in a square of order 4m, shade the long major diagonal. Then shade
all major diagonals distant by a multiple of 4 cells from the long diagonal. Do

1Most workers require the entries to start at 1, which is the convention here; but there are several instances

where starting at 0 is far more convenient. In any case, if x is magic, then x+n is magic for any integer n.
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> magicplot(magic.2np1(3))
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Figure 1: Magic square of order 7 in graphical form (obtained by
magicplot(magic.2np1(3)))
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the same with the minor diagonals. Then, starting with “1” at the top left corner
and proceeding from left to right and top to bottom, count from 1 to n2, filling in
the shaded squares with the appropriate number and omitting the unshaded ones
[figure 2]. Fill in the remaining (unshaded) squares in the same way, starting at
the lower right corner, moving leftwards and upwards [figure 3].

Such paper algorithms are common in the literature but translating this one into code that
uses R’s vectorized tools effectively can lead to new insight. The magicness of such squares
may be proved by considering the increasing and decreasing sequences separately.
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Figure 2: Half-completed magic square of order 8

The interesting part of the above paper algorithm lies in determining the pattern of shaded
and unshaded squares2. As the reader may care to verify, parsing the algorithm into R idiom
is not straightforward. An alternative, readily computed in R, would be to recognize that the
repeating 4 × 4 cell a[2:5,2:5] is kronecker(diag(2),matrix(1,2,2)) -> b say, replicate
it with kronecker(matrix(1,3,3),b) -> g; then trim off the border by selecting only the
middle elements, in this case g[2:9,2:9]. Function magic.4n() implements the algorithm
for general m.

2If a <- matrix(1:(n*n),n,n), with jj a Boolean vector of length n2 with TRUE corresponding to shaded

squares, then with it is clear that a[jj] <- rev(a[jj]) will return the above magic square.



Robin K. S. Hankin 5

57

16

24

33

25

48

56

1

7

50

42

31

39

18

10

63

6

51

43

30

38

19

11

62

60

13

21

36

28

45

53

4

61

12

20

37

29

44

52

5

3

54

46

27

35

22

14

59

2

55

47

26

34

23

15

58

64

9

17

40

32

41

49

8

Figure 3: Magic square of order 8

3. Magic hypercubes

One of the great strengths of R is its ability to handle arbitrary dimensioned arrays in an
efficient and elegant manner.

Generalizing magic squares to magic hypercubes (Hendricks 1973) is thus natural when work-
ing in R. The following definitions represent a general consensus, but are far from universal:

• A semimagic hypercube has all “rook’s move” sums equal to the magic constant (that
is, each

∑n
ir=1 a[i1, i2, . . . , ir−1, ir, ir+1, . . . , id] with 1 6 r 6 d is equal to the magic

constant for all values of the other i’s).

• A magic hypercube is a semimagic hypercube with the additional requirement that all
2d−1 long (ie extreme point-to-extreme point) diagonals sum correctly.

• A perfect magic hypercube is a magic hypercube with all nonbroken diagonals summing
correctly3.

3This condition is quite restrictive; in the case of a tesseract, this would include subsets such as
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• A pandiagonal hypercube is a perfect magic hypercube with all broken diagonals sum-
ming correctly.

(a magic hypercube is understood to be of dimension rep(n,d) and normal). Functions
is.semimagichypercube(), is.magichypercube() and is.perfect(a) test for the first
three properties; the fourth is not yet implemented. Function is.diagonally.correct()

tests for correct summation of the 2d (sic) long diagonals.

3.1. Magic hypercubes of order 4n

Consider algorithm 1 generalized to a d-dimensional hypercube. The appropriate generaliza-
tion of the repeating cell of the 8×8 magic square discussed above is not immediately obvious
when considering figure 2, but the R formalism (viz kronecker(diag(2),matrix(1,2,2)))
makes it clear that the appropriate generalization is to replace matrix(1,2,2) with array(1,rep(2,d)).

The appropriate generalization for diag(2) (call it g) is not so straightforward, but one might
be guided by the following requirements:

• The dimension of g must match the first argument to kronecker(), viz rep(2,d)

• The number of 0s must be equal to the number of 1s: sum(g==1)==sum(g==0)

• The observation that diag(2) is equal to its transpose would generalize to requiring
that aperm(g,K) be identical to g for any permutation K.

These lead to specifying that g[i1,...,id] should be zero if (i1, . . . , id) contains an odd
number of 2s and one otherwise.

One appropriate R idiom would be to define a function dimension(a,p) to be an integer
matrix with the same dimensions as a, with element (n1, n2, ..., nd) being np, then if jj =
∑d

i=1 dimension(a,i), we can specify g=jj*0 and then g[jj%%2==1] <- 1.

Another application of kronecker() gives a hypercube that is of extent 4m+2 in each of its d

dimensions, and this may be trimmed off as above to give an array of dimensions rep(4m,d)

using do.call() and [<-. The numbers may be filled in exactly as for the 2d case.

The resulting hypercube is magic, in the sense defined above4, although it is not perfect;
function magichypercube.4n() implements the algorithm. The ability to generate magic
hypercubes of arbitrary dimension greater than one is apparently novel.

Standard form for hypercubes

Consider again the paper definition for Frénicle’s standard form of a magic square a: it is
rotated so that the smallest number appears at the top left; then if a[1,2]<a[2,1], the
transpose is taken.

When coding up such an algorithm in R with an eye to generalizing it to arbitrarily high
dimensional hypercubes, it becomes apparent that “rotation” is not a natural operation. The
generalization used in the package is directly suggested by R’s array capabilities: it is a two-
step process in which the first step is to maneuver the smallest possible element to position
∑

n

i=1
a[1, i, n − i + 1, n] summing correctly.

4If I had a rigorous proof of this, the margin might be too narrow for it.
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[1,1,...,1] using only operations that reverse the index of some (or all) dimensions. An
example would be a <- a[1:n,n:1,1:n,n:1].

The second step is to use function aperm() to ensure that the appropriate generalization of
a[1,2]<a[2,1], which would be

a[1,1,...,1,2] < a[1,...,2,1] < . . .

. . . < a[1,2,...,1] < a[2,1,...,1]

holds; the appropriate R idiom is a <- aperm(a,order(-a[1+diag(d)]))).

This generalization of Frénicle’s standard form to arbitrary dimensional hypercubes appears
to be new; it arises directly from the power and elegance of R’s array handling techniques.

4. Conclusions

The R language is a natural environment for the investigation of magic squares and hyper-
cubes; and the discipline of translating published algorithms into R idiom can yield new
insight. These insights include a new generalization of Frénicle’s standard form to hyper-
cubes, and also what appears to be the first algorithm for generating magic hypercubes of
any dimension,

Insofar as magic squares and hypercubes are worthy of attention, it is worth creating fast,
efficient routines to carry out the “paper” algorithms of the literature. I hope that the magic

package will continue to facilitate the study of these fascinating objects.
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