Package ‘magrittr’

October 13, 2022

Type Package
Title A Forward-Pipe Operator for R
Version 2.0.3

Description Provides a mechanism for chaining commands with a new
forward-pipe operator, %>%. This operator will forward a value, or the
result of an expression, into the next function call/expression.

There is flexible support for the type of right-hand side expressions.
For more information, see package vignette. To quote Rene Magritte,
““Ceci n'est pas un pipe."

License MIT + file LICENSE

URL https://magrittr.tidyverse.org,
https://github.com/tidyverse/magrittr

BugReports https://github.com/tidyverse/magrittr/issues
Depends R (>=3.4.0)

Suggests covr, knitr, rlang, rmarkdown, testthat

VignetteBuilder knitr

ByteCompile Yes

Config/Needs/website tidyverse/tidytemplate

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation yes

Author Stefan Milton Bache [aut, cph] (Original author and creator of
magrittr),
Hadley Wickham [aut],
Lionel Henry [cre],
RStudio [cph, fnd]

Maintainer Lionel Henry <lionel@rstudio.com>
Repository CRAN
Date/Publication 2022-03-30 07:30:09 UTC

https://magrittr.tidyverse.org
https://github.com/tidyverse/magrittr
https://github.com/tidyverse/magrittr/issues

2 debug_fseq

R topics documented:
debug_fseq 2
debug pipe e e 3
EXITACT o e e e e e e e e e e e e e e 3
fag-pipe-gender 4
freduce e 5
functions L L e 5
PIPE-€AZEr e 6
print.fseq 7
[[fseq o o 8
Go<>T . . o o 8
DoS%0 . . . e 9
Do>To . o o e e e e e 10
DoT>% . . o o o 12

Index 14

debug_fseq Debugging function for functional sequences.
Description

This is a utility function for marking functions in a functional sequence for debbuging.

Usage

debug_fseq(fseq, ...)

undebug_fseq(fseq)
Arguments
fseq a functional sequence.

indices of functions to debug.

Value

invisible(NULL).

debug_pipe

debug_pipe

Debugging function for magrittr pipelines.

Description

This function is a wrapper around browser, which makes it easier to debug at certain places in a

magrittr pipe chain.

Usage
debug_pipe(x)

Arguments

X a value

Value

extract

Aliases

Description

magrittr provides a series of aliases which can be more pleasant to use when composing chains
using the %>% operator.

Details

Currently implemented aliases are

extract
extract2
inset
inset2
use_series
add
subtract
multiply_by
raise_to_power
multiply_by_matrix
divide_by
divide_by_int
mod
is_in

(I:l
(I:I:(
:[<_:
‘L[
e
o

C_«¢

gt
CAK
Co %%
</
‘%%
copop ¢
“%in%*

4 faq-pipe-gender
and ‘&
or ‘)¢
equals f==¢
is_greater_than >«
is_weakly_greater_than ‘>=¢
is_less_than ‘<t
is_weakly_less_than ‘<=
not (‘n’est pas*) “re
set_colnames ‘colnames<-¢
set_rownames ‘rownames<-°
set_names ‘names<-°
set_class ‘class<-*
set_attributes ‘attributes<-¢
set_attr ‘attr<-¢
Examples
iris %>%
extract(, 1:4) %>%
head
good.times <-
Sys.Date() %>%
as.POSIXct %>%
seq(by = "15 mins”, length.out = 100) %>%
data.frame(timestamp = .)
good. times$quarter <-
good. times %>%
use_series(timestamp) %>%
format ("%M") %>%
as.numeric %>%
divide_by_int(15) %%
add(1)
fag-pipe-gender FAQ: What is the gender of the pipe?
Description

In Magritte’s original quote "Ceci n’est pas une pipe," the word "pipe" is feminine. However the
magrittr package quotes it as "Ceci n’est pas un pipe,"” with a masculine "pipe." This lighthearted
misappropriation is intentional. Whereas the object represented in Magritte’s painting (a pipe that
you can smoke) is feminine in the French language, a computer pipe (which is an Anglicism in

French) is masculine.

freduce 5

freduce Apply a list of functions sequentially

Description
This function applies the first function to value, then the next function to the result of the previous
function call, etc.

Usage

freduce(value, function_list)

Arguments

value initial value.

function_list alist of functions.

Value

The result after applying each function in turn.

functions Extract the function list from a functional sequence.

Description

This can be used to extract the list of functions inside a functional sequence created with a chain
like . %>% foo %>% bar.

Usage

functions(fseq)

Arguments

fseq A functional sequence ala magrittr.

Value

a list of functions

pipe-eager

pipe-eager Eager pipe

Description

Whereas %>% is lazy and only evaluates the piped expressions when needed, %!>% is eager and
evaluates the piped input at each step. This produces more intuitive behaviour when functions are
called for their side effects, such as displaying a message.

Note that you can also solve this by making your function strict. Call force() on the first argument
in your function to force sequential evaluation, even with the lazy %>% pipe. See the examples
section.

Usage

lhs %!>% rhs

Arguments
lhs A value or the magrittr placeholder.
rhs A function call using the magrittr semantics.
Examples
f <- function(x) {
message("foo")
X
3
g <- function(x) {

3

#
#
#
#

message("bar")
X

<- function(x) {
message("baz")
invisible(x)

The following lazy pipe sequence is equivalent to ‘h(g(f()))".
Given R's lazy evaluation behaviour,*f()* and ‘g()‘ are lazily
evaluated when *h()‘ is already running. This causes the messages
to appear in reverse order:

NULL %% fO %% gO) %% h()

#

Use the eager pipe to fix this:

NULL %!>% £O) %!>% g0 %!>% h()

#
f

Or fix this by calling “force()‘ on the function arguments
<- function(x) {

force(x)

message("foo")

print.fseq

g <- function(x) {
force(x)
message("bar")

X

h <- function(x) {
force(x)
message("baz")
invisible(x)

}

With strict functions, the arguments are evaluated sequentially
NULL %>% £ %% g() %>% h()

Instead of forcing, you can also check the type of your functions.
Type-checking also has the effect of making your function lazy.

print.fseq Print method for functional sequence.

Description

Print method for functional sequence

Usage
S3 method for class 'fseq'
print(x, ...)
Arguments
X A functional sequence object
not used.
Value

8 Y<>%

[[.fseq Extract function(s) from a functional sequence.

Description

Functional sequences can be subset using single or double brackets. A single-bracket subset results
in a new functional sequence, and a double-bracket subset results in a single function.

Usage

S3 method for class 'fseq'

xCL...]]

S3 method for class 'fseq'

x[...]
Arguments

X A functional sequence

index/indices. For double brackets, the index must be of length 1.

Value

A function or functional sequence.

%<>% Assignment pipe

Description

Pipe an object forward into a function or call expression and update the 1hs object with the resulting
value.

Usage

lhs %<>% rhs

Arguments

lhs An object which serves both as the initial value and as target.

rhs a function call using the magrittr semantics.

%3 % 9

Details

The assignment pipe, %<>%, is used to update a value by first piping it into one or more rhs expres-
sions, and then assigning the result. For example, some_object %<>% foo %>% bar is equivalent to
some_object <- some_object %>% foo %>% bar. It must be the first pipe-operator in a chain, but
otherwise it works like %>%.

See Also

%>%, BT>%, %%
Examples
iris$Sepal.Length %<>% sqrt
x <= rnorm(100)
X %<>% abs %>% sort

is_weekend <- function(day)

{
day could be e.g. character a valid representation
day %<>% as.Date
result <- day %>% format("%u") %>% as.numeric %>% is_greater_than(5)
if (result)
message(day %>% paste("is a weekend!"))
else
message(day %>% paste("is not a weekend!"))
invisible(result)
3
%$% Exposition pipe
Description

Expose the names in 1hs to the rhs expression. This is useful when functions do not have a built-in
data argument.

Usage
lhs %$% rhs

Arguments

lhs A list, environment, or a data.frame.

rhs An expression where the names in lhs is available.

10 %>%

Details

Some functions, e.g. 1m and aggregate, have a data argument, which allows the direct use of names
inside the data as part of the call. This operator exposes the contents of the left-hand side object to
the expression on the right to give a similar benefit, see the examples.

See Also

%>%, "<>%, hT>%

Examples

iris %>%
subset(Sepal.Length > mean(Sepal.Length)) %$%
cor(Sepal.Length, Sepal.Width)

data.frame(z = rnorm(100)) %$%
ts.plot(z)

%>% Pipe

Description

Pipe an object forward into a function or call expression.

Usage

lhs %>% rhs

Arguments

lhs A value or the magrittr placeholder.

rhs A function call using the magrittr semantics.
Details

Using %>% with unary function calls:

When functions require only one argument, x %>% f is equivalent to f(x) (not exactly equivalent;
see technical note below.)

Placing 1hs as the first argument in rhs call:

The default behavior of %>% when multiple arguments are required in the rhs call, is to place 1hs
as the first argument, i.e. x %>% f(y) is equivalent to f(x, y).

Placing 1hs elsewhere in rhs call:

Often you will want lhs to the rhs call at another position than the first. For this purpose you
can use the dot (.) as placeholder. For example, y %>% f(x, .) is equivalent to f(x, y) and z %>%
f(x, y, arg=".) isequivalent to f(x, y, arg = z).

%>% 11

Using the dot for secondary purposes:

Often, some attribute or property of lhs is desired in the rhs call in addition to the value of lhs
itself, e.g. the number of rows or columns. It is perfectly valid to use the dot placeholder several
times in the rhs call, but by design the behavior is slightly different when using it inside nested
function calls. In particular, if the placeholder is only used in a nested function call, 1hs will
also be placed as the first argument! The reason for this is that in most use-cases this produces
the most readable code. For example, iris %>% subset(1:nrow(.) %% 2 == @) is equivalent to
iris %>% subset(., 1:nrow(.) %% 2 == @) but slightly more compact. It is possible to overrule
this behavior by enclosing the rhs in braces. For example, 1:10 %>% {c(min(.), max(.))} is
equivalent to c(min(1:10), max(1:10)).

Using %>% with call- or function-producing rhs:

It is possible to force evaluation of rhs before the piping of lhs takes place. This is useful when
rhs produces the relevant call or function. To evaluate rhs first, enclose it in parentheses, i.e. a
%>% (function(x) x*2),and 1:10 %>% (call(”sum")). Another example where this is relevant
is for reference class methods which are accessed using the $ operator, where one would do x %>%
(rc$f), and not x %>% rc$f.

Using lambda expressions with %>%:

Each rhs is essentially a one-expression body of a unary function. Therefore defining lambdas in
magrittr is very natural, and as the definitions of regular functions: if more than a single expression
is needed one encloses the body in a pair of braces, { rhs }. However, note that within braces there
are no "first-argument rule": it will be exactly like writing a unary function where the argument
name is "." (the dot).

Using the dot-place holder as lhs:

When the dot is used as 1hs, the result will be a functional sequence, i.e. a function which applies
the entire chain of right-hand sides in turn to its input. See the examples.

Technical notes

The magrittr pipe operators use non-standard evaluation. They capture their inputs and examines
them to figure out how to proceed. First a function is produced from all of the individual right-hand
side expressions, and then the result is obtained by applying this function to the left-hand side. For
most purposes, one can disregard the subtle aspects of magrittr’s evaluation, but some functions
may capture their calling environment, and thus using the operators will not be exactly equivalent
to the "standard call" without pipe-operators.

Another note is that special attention is advised when using non-magrittr operators in a pipe-chain
(+, -, $, etc.), as operator precedence will impact how the chain is evaluated. In general it is
advised to use the aliases provided by magrittr.

See Also
%<>%, hT>%, %%

Examples

Basic use:
iris %>% head

12 %T>%

Use with lhs as first argument
iris %>% head(10)

Using the dot place-holder
"Ceci n'est pas une pipe” %>% gsub("une”,

” "

un", .)

When dot is nested, lhs is still placed first:
sample(1:10) %>% paste@(LETTERS[.])

This can be avoided:
rnorm(100) %>% {c(min(.), mean(.), max(.))} %>% floor

Lambda expressions:
iris %>%
{
size <- sample(1:10, size = 1)
rbind(head(., size), tail(., size))
3

renaming in lambdas:
iris %>%
{
my_data <- .
size <- sample(1:10, size = 1)
rbind(head(my_data, size), tail(my_data, size))
3

Building unary functions with %>%
trig_fest <- . %>% tan %>% cos %>% sin

1:10 %>% trig_fest
trig_fest(1:10)

BT>% Tee pipe

Description
Pipe a value forward into a function- or call expression and return the original value instead of the
result. This is useful when an expression is used for its side-effect, say plotting or printing.

Usage
lhs %T>% rhs

Arguments

lhs A value or the magrittr placeholder.

rhs A function call using the magrittr semantics.

%T>% 13

Details

The tee pipe works like %>%, except the return value is lhs itself, and not the result of rhs func-
tion/expression.

See Also
%>%, %<>%, %$%

Examples

rnorm(200) %>%

matrix(ncol = 2) %T>%

plot %>% # plot usually does not return anything.
colSums

Index

[.fseq(L[.fseq), 8
[[.fseq, 8

%!>% (pipe-eager), 6
%<>%, 8,10, 11,13
%>%, 9, 10, 10, 13
%T>%, 911,12
%$%,9,9,11,13

add (extract), 3
and (extract), 3

debug_fseq, 2

debug_pipe, 3

divide_by (extract), 3
divide_by_int (extract), 3

equals (extract), 3
extract, 3
extract2 (extract), 3

fag-pipe-gender, 4
freduce, 5
functions, 5

inset (extract), 3

inset2 (extract), 3

is_greater_than (extract), 3
is_in(extract), 3

is_less_than (extract), 3
is_weakly_greater_than (extract), 3
is_weakly_less_than (extract), 3

mod (extract), 3
multiply_by (extract), 3
multiply_by_matrix (extract),3

n’est pas (extract), 3
not (extract), 3

or (extract), 3

pipe-eager, 6

14

print.fseq, 7
raise_to_power (extract), 3

set_attr (extract), 3
set_attributes (extract), 3
set_class (extract), 3
set_colnames (extract), 3
set_names (extract), 3
set_rownames (extract), 3
subtract (extract), 3

undebug_fseq (debug_fseq), 2
use_series (extract), 3

	debug_fseq
	debug_pipe
	extract
	faq-pipe-gender
	freduce
	functions
	pipe-eager
	print.fseq
	[[.fseq
	%<>%
	%$%
	%>%
	%T>%
	Index

