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average_gain Get estimate of gain given a spend level.

Description

Get an estimate of Q(B).

Usage

average_gain(object, spend)

Arguments

object A maq object.

spend The spend level B.

Value

An estimate of Q(B) along with standard errors.

difference_gain Get estimate of difference in gain given a spend level with paired stan-
dard errors.

Description

Given two Qini curves, Qa and Qb, get an estimate of the difference Qa(B) − Qb(B), at a spend
level B.

Usage

difference_gain(object.lhs, object.rhs, spend)
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Arguments

object.lhs A maq object Qa to subtract from.

object.rhs A maq object Qb to subtract with.

spend The spend level B.

Value

An estimate of difference in gain along with standard errors.

get_aipw_scores Construct evaluation scores via augmented inverse-propensity weight-
ing.

Description

A simple convenience function to construct an AIPW-based evaluation score given estimates of
conditional means and treatment propensities.

Usage

get_aipw_scores(Y, W, mu.hat, W.hat = NULL)

Arguments

Y The observed outcome.

W The observed treatment assignment (must be a factor vector, where the first fac-
tor level is the control arm).

mu.hat A matrix of conditional mean estimates for each arm, E[Yi|Wi = k,Xi].

W.hat Optional treatment propensities. If these vary by unit and arm, then this should
be a matrix with the treatment assignment probability of units to arms, with
columns corresponding to the levels of W. If these only vary by arm, a vector can
also be supplied. If W.hat is NULL (Default), then the assignment probabilities
are assumed to be uniform and the same for each arm.

Value

An n ·K matrix of evaluation scores (eqn (13) in the multi-armed Qini paper).

References

Robins, James M, Andrea Rotnitzky, and Lue Ping Zhao. "Estimation of regression coefficients
when some regressors are not always observed." Journal of the American statistical Association,
89(427), 1994.

Sverdrup, Erik, Han Wu, Susan Athey, and Stefan Wager. "Qini Curves for Multi-Armed Treatment
Rules". Journal of Computational and Graphical Statistics, forthcoming.
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Examples

if (require("grf", quietly = TRUE)) {
# Simulate data with two treatment arms (k = 1, 2) and a control arm (k = 0).
n <- 3000
p <- 5
X <- matrix(runif(n * p), n, p)
W <- as.factor(sample(c("0", "1", "2"), n, replace = TRUE))
Y <- X[, 1] + X[, 2] * (W == "1") + 1.5 * X[, 3] * (W == "2") + rnorm(n)

# Fit a CATE estimator on a training sample.
train <- sample(1:n, n/2)
tau.forest <- grf::multi_arm_causal_forest(X[train, ], Y[train], W[train])

# Predict CATEs on held out evaluation data.
test <- -train
tau.hat <- predict(tau.forest, X[test, ], drop = TRUE)$predictions
# Form costs.
cost <- cbind(X[test, 4] / 4, X[test, 5])

# Estimate nuisance components for test set AIPW scores.
X.test <- X[test, ]
Y.test <- Y[test]
W.test <- W[test]

# Fit models for E[Y | W = k, X], k = 0, 1, 2, using for example separate random forests.
Y0.forest <- grf::regression_forest(X.test[W.test == 0, ], Y.test[W.test == 0])
Y1.forest <- grf::regression_forest(X.test[W.test == 1, ], Y.test[W.test == 1])
Y2.forest <- grf::regression_forest(X.test[W.test == 2, ], Y.test[W.test == 2])
mu.hat = cbind(

mu0 = predict(Y0.forest, X.test)$predictions,
mu1 = predict(Y1.forest, X.test)$predictions,
mu2 = predict(Y2.forest, X.test)$predictions

)

# If unknown, estimate the propensity scores E[W = k | X].
W.hat <- predict(grf::probability_forest(X.test, W.test))$predictions

# Form doubly robust scores.
DR.scores <- get_aipw_scores(Y.test, W.test, mu.hat, W.hat)

# Fit a Qini curve estimated with forest-based AIPW.
qini <- maq(tau.hat, cost, DR.scores, R = 200)
plot(qini)
}

get_ipw_scores Construct evaluation scores via inverse-propensity weighting.
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Description

A simple convenience function to construct an evaluation score matrix via IPW, where entry (i, k)
equals

1(Wi = k)Yi

P [Wi = k|Xi]
− 1(Wi = 0)Yi

P [Wi = 0|Xi]
,

where Wi is the treatment assignment of unit i and Yi the observed outcome. k = 1 . . .K are one
of K treatment arms and k = 0 is the control arm.

Usage

get_ipw_scores(Y, W, W.hat = NULL)

Arguments

Y The observed outcome.

W The observed treatment assignment (must be a factor vector, where the first fac-
tor level is the control arm).

W.hat Optional treatment propensities. If these vary by unit and arm, then this should
be a matrix with the treatment assignment probability of units to arms, with
columns corresponding to the levels of W. If these only vary by arm, a vector can
also be supplied. If W.hat is NULL (Default), then the assignment probabilities
are assumed to be uniform and the same for each arm.

Value

An n ·K matrix of evaluation scores.

Examples

# Draw some equally likely samples from control arm A and treatment arms B and C.
n <- 5000
W <- as.factor(sample(c("A", "B", "C"), n, replace = TRUE))
Y <- 42 * (W == "B") - 42 * (W == "C") + rnorm(n)
IPW.scores <- get_ipw_scores(Y, W)
# An IPW-based estimate of E[Y(B) - Y(A)] and E[Y(C) - Y(A)]. Should be approx 42 and -42.
colMeans(IPW.scores)

# Draw non-uniformly from the different arms.
W.hat <- c(0.2, 0.2, 0.6)
W <- as.factor(sample(c("A", "B", "C"), n, replace = TRUE, prob = W.hat))
Y <- 42 * (W == "B") - 42 * (W == "C") + rnorm(n)
IPW.scores <- get_ipw_scores(Y, W, W.hat = W.hat)
# Should still be approx 42 and -42.
colMeans(IPW.scores)
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integrated_difference Get estimate of the area between two Qini curves with paired standard
errors.

Description

Given two Qini curves, Qa and Qb, and a maximum spend B̄, get an estimate of the integrated
difference

∫ B̄

0
(Qa(B)−Qb(B))dB.

Usage

integrated_difference(object.lhs, object.rhs, spend)

Arguments

object.lhs A maq object Qa to subtract from.

object.rhs A maq object Qb to subtract with.

spend The spend level B̄.

Value

An estimate of the area between the two curves along with standard errors.

maq Fit a multi-armed Qini curve.

Description

Fit a curve that shows estimates of a policy value Q(B) over increasing decision thresholds B.
These may include constraints on the treatment allocation, such as the fraction treated or spend-
ing per unit. The policy uses estimated treatment effects, for example from one or more CATE
functions, to optimize treatment allocation under the decision constraint B.

Usage

maq(
reward,
cost,
DR.scores,
budget = NULL,
target.with.covariates = TRUE,
R = 0,
paired.inference = TRUE,
sample.weights = NULL,
clusters = NULL,
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tie.breaker = NULL,
num.threads = NULL,
seed = 42

)

Arguments

reward A n ·K matrix of test set treatment effect estimates τ̂(Xi). (Note: the estimated
function τ̂(·) should be constructed on a held-out training set)

cost A n ·K matrix of test set costs C(Xi) > 0, where entry (i, k) measures the cost
of assigning the i-th unit the k-th treatment arm. If the costs does not vary by
unit, only by arm, this can also be a K-length vector. (Note: these costs need not
be denominated on the same scale as the treatment effect estimates).

DR.scores An n ·K matrix of test set evaluation scores used to form an estimate of Q(B).
With known treatment propensities P [Wi|Xi], these scores can be constructed
via inverse-propensity weighting, i.e, with entry (i, k) equal to 1(Wi=k)Yi

P [Wi=k|Xi]
−

1(Wi=0)Yi

P [Wi=0|Xi]
. In observational settings where P [Wi|Xi] has to be estimated,

then an alternative is to construct these scores via augmented inverse-propensity
weighting (AIPW) - yielding a doubly robust estimate of the Qini curve (for
details, see the paper).

budget The maximum spend per unit, Bmax, to fit the Qini curve on. Setting this to
NULL (Default), will fit the path up to a maximum spend per unit where each
unit that is expected to benefit (that is, τ̂k(Xi) > 0) is treated.

target.with.covariates

If TRUE (Default), then the policy πB takes covariates Xi into account. If
FALSE, then the policy only takes the average reward τ̄ = E[τ̂(Xi)] and aver-
age costs C̄ = E[C(Xi)] into account when allocating treatment. This can be
used to construct a baseline Qini curve to assess the value of treatment targeting
based on covariates.

R Number of bootstrap replicates for computing standard errors. Default is 0 (only
point estimates are computed).

paired.inference

Whether to allow for paired tests with other Qini curves fit on the same eval-
uation data. If TRUE (Default) then the path of bootstrap replicates are stored
in order to perform paired comparisons that account for the correlation between
curves evaluated on the same data. This takes memory on the order of O(RnK)
and requires the comparison objects to be fit with the same seed and R values as
well as the same number of samples.

sample.weights Weights given to an observation in estimation. If NULL, each observation is
given the same weight. Default is NULL.

clusters Vector of integers or factors specifying which cluster each observation corre-
sponds to, which are used to construct clustered standard errors. Default is
NULL (ignored).

tie.breaker An optional permutation of the integers 1 to n used to break potential ties in
the optimal treatment allocation (only relevant if the predictions τ̂(X) are not
continuous). If NULL, the ties are broken by the lowest sample id (i.e. the
sample appearing first in the data). Default is NULL.
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num.threads Number of threads used in bootstrap replicates. By default, the number of
threads is set to the maximum hardware concurrency.

seed The seed of the C++ random number generator. Default is 42.

Details

Consider k = 1, . . . ,K mutually exclusive and costly treatment arms, where k = 0 is a zero-cost
control arm. Let τ̂(·) be an estimated multi-armed treatment effect function and C(·) a known cost
function (where the k-th element of these vectors measures E[Yi(k) − Yi(0)|Xi] and E[Ci(k) −
Ci(0)|Xi] where Yi(k) are potential outcomes corresponding to the k-th treatment state, Ci(k) the
cost of assigning unit i the k-th arm, and Xi a set of covariates). We provide estimates of the Qini
curve:

Q(B) = E[⟨πB(Xi), τ(Xi)⟩], B ∈ (0, Bmax],

which is the expected gain, at any budget constraint B, when assigning treatment in accordance to
πB , the treatment policy that optimally selects which arm to assign to which unit while incurring a
cost less than or equal to B in expectation when using the given functions τ̂(·) and C(·):

πB = argmaxπ {E[⟨π(Xi), τ̂(Xi)⟩] : E[⟨π(Xi), C(Xi)⟩] ≤ B} .

At a budget B, the k-th element of πB(Xi) is 1 if assigning the k-th arm to the i-th unit is optimal,
and 0 otherwise. The Qini curve can be used to quantify the value, as measured by the expected gain
over assigning each unit the control arm when using the estimated function τ̂(·) with cost structure
C(·) to allocate treatment, as we vary the available budget B.

Value

A fit maq object.

References

Sverdrup, Erik, Han Wu, Susan Athey, and Stefan Wager. "Qini Curves for Multi-Armed Treatment
Rules". Journal of Computational and Graphical Statistics, forthcoming.

Examples

if (require("grf", quietly = TRUE)) {
# Fit a CATE estimator on a training sample.
n <- 3000
p <- 5
X <- matrix(runif(n * p), n, p)
W <- as.factor(sample(c("0", "1", "2"), n, replace = TRUE))
Y <- X[, 1] + X[, 2] * (W == "1") + 1.5 * X[, 3] * (W == "2") + rnorm(n)
train <- sample(1:n, n/2)

tau.forest <- grf::multi_arm_causal_forest(X[train, ], Y[train], W[train])

# Predict CATEs on held out evaluation data.
test <- -train
tau.hat <- predict(tau.forest, X[test, ], drop = TRUE)$predictions
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# Assume costs equal a unit's pre-treatment covariate - the following is a toy example.
cost <- cbind(X[test, 4] / 4, X[test, 5])

# Fit an evaluation forest to compute doubly robust scores on the test set.
eval.forest <- grf::multi_arm_causal_forest(X[test, ], Y[test], W[test])
DR.scores <- grf::get_scores(eval.forest, drop = TRUE)

# Fit a Qini curve on evaluation data, using 200 bootstrap replicates for confidence intervals.
ma.qini <- maq(tau.hat, cost, DR.scores, R = 200)

# Plot the Qini curve.
plot(ma.qini)
legend("topleft", c("All arms", "95% CI"), lty = c(1, 3))

# Get an estimate of gain at a given spend per unit along with standard errors.
average_gain(ma.qini, spend = 0.2)

# Get the treatment allocation matrix at a given spend per unit.
pi.mat <- predict(ma.qini, spend = 0.2)

# If the treatment randomization probabilities are known, then an alternative to
# evaluation via AIPW scores is to use inverse-propensity weighting (IPW).
W.hat <- rep(1/3, 3)
IPW.scores <- get_ipw_scores(Y[test], W[test], W.hat)
mq.ipw <- maq(tau.hat, cost, IPW.scores)

plot(mq.ipw, add = TRUE, col = 2)
legend("topleft", c("All arms", "95% CI", "All arms (IPW)"), col = c(1, 1, 2), lty = c(1, 3, 1))

# Estimate some baseline policies.
# a) A policy that ignores covariates and only takes the average reward/cost into account.
qini.avg <- maq(tau.hat, cost, DR.scores, target.with.covariates = FALSE, R = 200)

# b) A policy that only use arm 1.
qini.arm1 <- maq(tau.hat[, 1], cost[, 1], DR.scores[, 1], R = 200)

# c) A policy that only use arm 2.
qini.arm2 <- maq(tau.hat[, 2], cost[, 2], DR.scores[, 2], R = 200)

plot(ma.qini, ci.args = NULL)
plot(qini.avg, col = 2, add = TRUE, ci.args = NULL)
plot(qini.arm1, col = 3, add = TRUE, ci.args = NULL)
plot(qini.arm2, col = 4, add = TRUE, ci.args = NULL)
legend("topleft", c("All arms (targeting)", "All arms (without targeting)", "Arm 1", "Arm 2"),

col = 1:4, lty = 1)

# Estimate the value of employing all arms over a random allocation.
difference_gain(ma.qini, qini.avg, spend = 0.2)

# Estimate the value of targeting with both arms as opposed to targeting with only arm 1.
difference_gain(ma.qini, qini.arm1, spend = 0.2)

# Estimate the value of targeting with both arms as opposed to targeting with only arm 2.
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difference_gain(ma.qini, qini.arm2, spend = 0.2)

# Compare targeting strategies over a range of budget values by estimating an area between
# two curves up to a given spend point.
integrated_difference(ma.qini, qini.arm1, spend = 0.3)
}

plot.maq Plot the estimated Qini curve.

Description

Plot the estimated curve Q(B), B ∈ (0, Bmax]. If the underlying estimated policy πB entails
treating zero units (that is, all the estimated treatment effects are negative) then this function returns
an empty value.

Usage

## S3 method for class 'maq'
plot(
x,
...,
add = FALSE,
horizontal.line = TRUE,
ci.args = list(),
grid.step = NULL

)

Arguments

x A maq object.

... Additional arguments passed to plot.

add Whether to add to an already existing plot. Default is FALSE.
horizontal.line

Whether to draw a horizontal line where the Qini curve plateaus. Only applies
if the maq object is fit with a maximum budget that is sufficient to treat all units
that are expected to benefit. Default is TRUE.

ci.args A list of optional arguments to lines() for drawing 95 % confidence bars. Set
to NULL to ignore CIs.

grid.step The spend grid increment size to plot the curve on. Default is max(floor(length(path.length)
/ 1000), 1) where path.length is the size of the grid underlying the estimated
Qini curve.
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Value

A data.frame with the data making up the plot (point estimates and lower/upper 95% CIs)

Examples

if (require("ggplot2", quietly = TRUE)) {
# Generate toy data and customize plots.
n <- 500
K <- 1
reward <- matrix(1 + rnorm(n * K), n, K)
scores <- reward + matrix(rnorm(n * K), n, K)
cost <- 1

# Fit Qini curves.
qini.avg <- maq(reward, cost, scores, R = 200, target.with.covariates = FALSE)
qini <- maq(reward, cost, scores, R = 200)

# In some settings we may want to plot using one of R's many plot libraries.
# The plot method invisibly returns the plot data we can use for this purpose.
df.qini.baseline <- plot(qini.avg)
df.qini <- plot(qini, add = TRUE, col = 2)

# Make an alternate plot style, using, for example, ggplot.
ggplot(df.qini, aes(x = spend, y = gain)) +

geom_ribbon(aes(ymin = gain - 1.96 * std.err,
ymax = gain + 1.96 * std.err),

fill = "lightgray") +
geom_line(linewidth = 2) +
ylab("Policy value") +
xlab("Fraction treated") +
geom_line(data = df.qini.baseline, aes(x = spend, y = gain), lty = 2)

}

predict.maq Predict treatment allocation.

Description

Get an estimate of the policy πB(Xi) at a spend level B. πB(Xi) is a K-dimensional vector where
the k-th element is 1 if assigning the k-th arm to unit i is optimal at a given spend B, and 0 otherwise
(with all entries 0 if the control arm is assigned). Depending on the value of B, πB(Xj) might be
fractional for at most one unit j. There are two such cases - the first one is when there is not sufficient
budget left to assign j an initial arm. The second is if there is not sufficient budget to upgrade unit
j from arm k to k’. In these cases πB(Xj) takes on one, or two fractional values, respectively,
representing an assignment probability of a given arm.
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Usage

## S3 method for class 'maq'
predict(object, spend, type = c("matrix", "vector"), ...)

Arguments

object A maq object.

spend The spend level B.

type If "matrix" (Default), then return a matrix where the i-th entry equals πB(Xi)
as described above. If "vector", then πB(Xi) is instead encoded taking values
in the set {0, 1, ..., K}. If the allocation is fractional at the given B, this op-
tion returns the policy corresponding to the previous/lower value of the spend
path, at which point the policy is integer-valued, but incurs a cost less than B in
expectation.

... Additional arguments (currently ignored).

Value

A matrix with row i equal to πB(Xi). If type = "vector" then an n-length vector with elements
equal to the arm (from 0 to K) that is assigned at the given spend B (note: if the treatment allocation
contains a fractional entry at the given B, then the returned vector is the policy at the nearest spend
B’ in the solution path where the allocation is integer-valued but incurs a cost B’ < B).

Examples

# Generate some toy data and fit a solution path.
n <- 10
K <- 4
reward <- matrix(rnorm(n * K), n, K)
cost <- matrix(runif(n * K), n, K)
DR.scores <- reward + rnorm(n)
path <- maq(reward, cost, DR.scores)

# Get the treatment allocation matrix
pi.mat <- predict(path, 0.1)
pi.mat
# pi.mat might have fractional entries for a single unit but satisfies
# the budget in expectation exactly.
sum(cost * pi.mat) / n

# Get the treatment allocation instead encoded in the set {0, 1, ..., K}.
pi.vec <- predict(path, 0.1, type = "vector")
pi.vec
# If a unit has a fractional entry, then pi.vec will incur a cost slightly
# lower than 0.1.
sum(cost[cbind(1:n, pi.vec)]) / n

# Retrieve the underlying solution path.
data.path <- summary(path)
# If we predict at a spend level on this grid, say entry 5,
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# then the policy is integer-valued:
spend <- data.path$spend[5]
predict(path, spend)
predict(path, spend, type = "vector")

print.maq Print a maq object.

Description

Print a maq object.

Usage

## S3 method for class 'maq'
print(x, ...)

Arguments

x A maq object.

... Additional arguments (currently ignored).

scale_maq Scale a Qini curve.

Description

Remaps the policy value and budget to application-specific units. This convenience function is
typically useful for plots.

Usage

scale_maq(object, scale = 1)

Arguments

object A maq object.

scale A numeric value to scale by.

Value

A maq object with policy values and budget rescaled by the given factor.
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Examples

# Generate some single-arm toy data.
n <- 1500
K <- 1
reward <- matrix(1 + runif(n * K), n, K)
scores <- reward + 5 * matrix(rnorm(n * K), n, K)
cost <- 1

# Fit a Qini curve.
qini <- maq(reward, cost, scores, R = 200)

# Plot the policy values as we vary the fraction treated.
plot(qini, xlab = "Fraction treated")

# Plot the policy values for a maximum allocation of, for example, 500 units.
plot(scale_maq(qini, 500), xlab = "Units treated")

# With R 4.1.0 or later, the native pipe can be used to chain scaling and plotting.
# scale_maq(qini, 500) |>
# plot(xlab = "Units treated")

summary.maq Qini curve summary.

Description

Get a data.frame with columns equal to [B, Q(B), std.err(Q(B)), i, k], where i is the unit and k the
treatment arm that is optimal to assign at a spend level B.

Usage

## S3 method for class 'maq'
summary(object, ...)

Arguments

object A maq object.

... Additional arguments (currently ignored).

Value

A data.frame making up the elements of the estimated Qini curve.
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