Package ‘monitoR’

April 11, 2025

Type Package

Title Acoustic Template Detection in R

Version 1.2

Date 2025-04-10

Maintainer Sasha D. Hafner <sasha.hafner@bce.au.dk>
Depends R (>=2.10), tuneR, methods

Imports graphics, grDevices, stats, utils

Suggests fftw, parallel, RODBC, knitr

Description Acoustic template detection and monitoring database interface. Create, mod-
ify, save, and use templates for detection of animal vocalizations. View, verify, and extract re-
sults. Upload a MySQL schema to a existing instance, manage survey meta-
data, write and read templates and detections locally or to the database.

License GPL-2

URL https://github.com/jonkatz2/monitor
VignetteBuilder knitr
NeedsCompilation no

Author Sasha D. Hafner [aut, cre] (<https://orcid.org/0000-0003-0955-0327>),

Jon Katz [aut],

Jerome Sueur [aut] (seewave package author (code from Fourier transform
used in monitoR)),

Thierry Aubin [aut] (seewave package author (code from Fourier
transform used in monitoR)),

Caroline Simonis [aut] (seewave package author (code from Fourier
transform used in monitoR)),

Uwe Ligges [aut] (tuneR package author (code from readMP3() used in
monitoR)),

Therese Donovan [ctb] (creative direction and database design support)

Repository CRAN
Date/Publication 2025-04-11 12:10:02 UTC

https://github.com/jonkatz2/monitor
https://orcid.org/0000-0003-0955-0327

2 Contents

Contents
batchDetection e e 3
bindEvents 4
BINW . . . e 6
changeSampRate 6
collapseClips i e e e e 7
combineTemplates e 8
compareTemplates L. e 10
CUtWave e e 12
dbDownload 13
dbDownloadResult 15
dbDownloadTemplate L 16
dbSchema 18
dbUploadAnno e e e e 20
dbUploadResult 22
dbUploadSurvey 24
dbUploadTemplate 27
detectionList-class 29
eventEval 31
extract-methods 33
filecCopyRename e 33
findPeaks e 36
getDetections 38
getTemplates oL e 40
makeTemplate oL 41
mMONitoR L 44
mp3Subsamp 47
OVEIL & o v v et e e e e e e e e e e e e e 49
plot-methods L e e 50
readMP3 L 52
readTemplates 53
show-methods L 54
showPeaks L. 56
SpecCols 58
SUIVEY & v v v v e 59
SUIVEY_ANMNO .« . v v v v v o e 60
Template-class e e 61
templateComment L. 62
templateCutoff L 64
TemplateList-class 65
templateMatching L 67
templateNames e e e e e e 69
templatePath L 70
templateScores-class L 72
timeAlign 73
VIEBWSPEC . . . e e e 75

writeTemplates 78

batchDetection 3

Index 80
batchDetection Batch Template Detection

Description

These functions are used to carry out template dection for multiple template and survey files in a
single call. These functions make it easy to analyze multiple survey files in a single call. They call
corMatch or binMatch, followed by findPeaks and getDetections to do the work.

Usage

batchCorMatch(dir.template, dir.survey =

n o n

, ext.template = "ct”, ext.survey = "wav”,

templates, parallel = FALSE, show.prog = FALSE, cor.method = "pearson”, warn = TRUE,
time.source = "filename”, fd.rat =1, ...)

batchBinMatch(dir.template, dir.survey =

n o n

, ext.template = "bt"”, ext.survey = "wav”,

templates, parallel = FALSE, show.prog = FALSE, warn = TRUE,
time.source = "filename”, fd.rat =1, ...)

Arguments

dir.template

dir.survey
ext.template
ext.survey

templates

parallel

show.prog
cor.method
warn

time.source

fd.rat

A file path to a directory that contains template files to be used. Only used if
template is missing.

A file path to a directory that contains survey files to be analyzed.
Extension of the template files.
Extension of the survey files.

A template list—a corTemplateList object for corMatchorabinTemplatelist
object for binMatch. If templates is missing, all the template filesin dir. template
will be used instead.

If TRUE, mclapply from the parallel package is used for calculation of scores
across all time bins for each template. This option is not available for Windows
operating systems.

If TRUE, progress will be reported during the score calculations.
For corMatch, the method used to calculate correlation coefficients (see cor).
Set to FALSE to suppress warnings about step mismatches.

The source of date and time information. filename will look in the name of
the survey file (survey argument) for a date and time with format YYYY-MM-
DD_HHMMSS_TimeZone. fileinfo will take the date and time from the file
modification information.

A ratio of frame width (twice minimum peak separation) to template duration.
Used by findPeaks.

Additional arguments to the spectro function.

4 bindEvents

Details
These functions are simple but do not provide flexibility in how results are handled. Manually
writing a for loop is a more flexible solution.

Value

A data frame of detections, as returned by getDetections.

Author(s)

Sasha D. Hafner

See Also

corMatch, binMatch, findPeaks, getDetections

Examples

Not run:

Assume multiple survey files are in the subdirectory "Surveys” and templates
are in subdirectory "Templates”

detects <- batchCorMatch("Templates”, "Surveys")

Or, to use an existing template list instead
detects <- batchCorMatch(templates = ctemps, dir.survey = "Surveys")

End(Not run)

bindEvents Summarize/Archive Manually Derived Sound Events

Description
Read in a table of song event times and the corresponding Wave object, extract the song events, and
bind them into a single Wave object for archiving or comparison viewing.

Usage

bindEvents(rec, file, by.species = TRUE, parallel = FALSE, return.times = FALSE)

bindEvents 5

Arguments
rec File path to mp3 or wav file or object of class Wave
file File path to csv file containing event times. See details.
by.species Logical. Should each species be in its own Wave object?
parallel Logical. FALSE will use lapply, TRUE will use mclapply.

return.times Logical. FALSE returns only the Wave object with events. TRUE will also return
a data frame with the start and end times of each event in the new Wave object
linked to their original start and end times.

Details

The csv file supplied must use a standard set of column names, which can occur in any order:

name Species name
start.time Event start time, in seconds

end.time Event end time, in seconds

These column names are those supplied in an annotation file produced by viewSpec.

Value

If return. times = FALSE, an object of class Wave.
If return.times = TRUE, a list:

times A data frame with the start and end times of events in the Wave object
wave An object of class Wave
Author(s)

Sasha D. Hafner

See Also

viewSpec, collapseClips, bind.

Examples

data(survey_anno)
data(survey)

Don't return times
events <- bindEvents(rec = survey, file = survey_anno, by.species = TRUE, parallel = FALSE,
return.times = FALSE)

Return times
events <- bindEvents(rec = survey, file = survey_anno, by.species = TRUE, parallel = FALSE,
return.times = TRUE)

6 changeSampRate

btnw Black-Throated Green Warbler (Setophaga virens) Song

Description

A 3 second wave recording of a Black-throated Green Warbler (Setophaga virens) song.

Usage

data(btnw)

Format

The format is:

Formal class 'Wave' [package "tuneR"] with 6 slots ..@ left : int [1:72001] -53 -65 -32

44 -15-37-5262655 @right : num(@) ..@stereo : logi FALSE ..@ samp.rate: int 24000
..@bit : int 16 ..@pcm : logi TRUE

Source

Sound clips were recorded in Vermont, USA in 2010. Equipment was a Wildlife Acoustics SM1(TM)
recorder recording in WACO format, converted to wave using the Wildlife Acoustics Wac2Wav
(TM) converter. Recording has a sample rate of 24kHz and is 16-bit mono.

Examples

data(btnw)

viewSpec(btnw)

changeSampRate Resample Wave objects

Description

Downsample or upsample Wave objects by specifying either a new sample rate or matching the
sample rate of a different Wave object. Optional adjustable dithering.

Usage

changeSampRate (wchange, wkeep = NULL, sr.new = wkeep@samp.rate, dither = FALSE,
dith.noise = 32)

collapseClips 7

Arguments
wchange Object of class Wave to resample.
wkeep Object of class Wave to use to match sampling rate, or specify sampling rate with
sr.new.
sr.new Numerical sampling rate, if specified directly.
dither Logical. TRUE adds gaussian dithering.
dith.noise Adjustable dithering. If dither = TRUE, this value will be the stdev of the nor-
mally distributed noise.
Details

Both downsampling and upsampling are done by spline-fitting a curve to the waveform and resam-
pling the resulting waveform. Artifacts from resampling are nearly guaranteed. Artifacts can be
masked with dithering at a cost: dithering raises the amplitude of background noise but not signal.

Value

An object of class Wave with a modified sample rate.

Author(s)
Sasha D. Hafner, Jon Katz

See Also

downsample

Examples

data(survey)

survey <- changeSampRate(wchange = survey, sr.new = 24000)

collapseClips Summarize/Archive Song Events

Description
Read in a Wave object, extract the song events, and bind them into a single Wave object for archiving
or comparison viewing.

Usage

collapseClips(rec, start.times, end.times, return.times = FALSE)

8 combineTemplates

Arguments
rec Object of class Wave or file path to wave file.
start.times Vector of event start times, in seconds.
end. times Vector of event end times, in seconds.

return.times Logical. TRUE will return

Details

A stripped-down version of bindEvents, perhaps more readily applied to the output of findPeaks.

Value

If return. times = FALSE, an object of class Wave. If return.times = TRUE, a list:

times A data frame with the start and end times of events in the wave object
wave An object of class Wave
Author(s)

Sasha D. Hafner

See Also

viewSpec, bindEvents, bind.
Examples

data(survey_anno)

data(survey)

events <- collapseClips(rec = survey, start.times = survey_anno[, "start.time"],
end.times = survey_anno[, "end.time"], return.times = FALSE)

combineTemplates Combine Acoustic Template Lists

Description

Use these functions to combine any number of templates together into a larger template list. They
can combine template lists that themselves contain any number of templates.

Usage

combineCorTemplates(...)

combineBinTemplates(...)

combineTemplates 9

Arguments
Correlation or binary template lists (class corTemplateList orbinTemplatelList),
or a single list of such.

Details

These functions are the only way to create template lists containing more than one template, and so
should be used often. Only binTemplateList objects should be used with combineBinTemplates,
and only corTemplatelList objects should be used with combineCorTemplates. If you combine
templates that use the same name, a suffix (. 2) will be added to the later name.

Value

A TemplatelList object that contains all the templates submitted to the function.

Author(s)
Sasha D. Hafner

See Also

makeCorTemplate, makeBinTemplate, templateNames

Examples

First need to make some template lists to combine
Load data

data(btnw)

data(oven)

data(survey)

Write Wave objects to file (temporary directory used here)
btnw.fp <- file.path(tempdir(), "btnw.wav")

oven.fp <- file.path(tempdir(), "oven.wav")
writeWave(btnw, btnw.fp)
writeWave(oven, oven.fp)

Create four correlation templates
wct1 <- makeCorTemplate(btnw.fp, name = "wl")

wct2 <- makeCorTemplate(btnw.fp, t.lim = c(1.5, 2.1), frqg.lim = c(4.2, 5.6),
name = "w2")

oct1l <- makeCorTemplate(oven.fp, t.lim = c(1, 4), frg.lim = c(1, 11), name = "01")

oct2 <- makeCorTemplate(oven.fp, t.lim = c(1, 4), frq.lim = c(1, 11), dens =
name = "02")

1
[S)
I

10 compareTemplates

Combine all of them
ctemps <- combineCorTemplates(wctl, wct2, octl, oct2)
ctemps

Binary templates are similar
Create four templates
wbt1 <- makeBinTemplate(btnw.fp, amp.cutoff = -40, name = "wl1")

wbt2 <- makeBinTemplate(btnw.fp, amp.cutoff = -30, t.lim = c(1.5, 2.1),
frg.lim = c(4.2, 5.6), buffer = 2, name = "w2")

obt1 <- makeBinTemplate(oven.fp, amp.cutoff = -20, t.lim = c(1, 4),
frg.lim = c(1, 11), name = "o1")

obt2 <- makeBinTemplate(oven.fp, amp.cutoff = -17, t.lim = c(1, 4),
frg.lim = c(1, 11), buffer = 2, name = "02")

Combine all of them
btemps <- combineBinTemplates(wbt1, wbt2, obt1, obt2)
btemps

Clean up (only because these files were created in these examples)
file.remove(btnw.fp)

file.remove(oven.fp)

compareTemplates Compare Performance of Templates

Description

Provided a detectionList object containing results from N templates scored against the same
survey with Y song events, compareTemplates will create a Y x N matrix to compare how each
template scored each song event. If the song events are the sound clips used to create each template,
compareTemplates may be a means of measuring overall similarity among sound events. Can be
used to identify template clips that may match more than one song type.

Usage

compareTemplates(detection.obj, cutoff.return, cutoff.ignore, tol, n.drop = 0)

Arguments

detection.obj Object of class detectionList.

cutoff.return Score cutoff below which events are not returned.

cutoff.ignore Score cutoff below which events are ignored.

tol Tolerance (s). If a peak is within tol of a peak from another template, they are
in the same event.

n.drop Rows with this many templates or fewer will be dropped. n.drop =@ drops
none.

compareTemplates 11

Details

The matrix is created by comparing the score for each event to the average score for that event.
For cases in which a template does not score an event above cutoff a value of NA is placed in the
matrix for that template-event junction. Similarly, if a template scores an event above cutoff but is
beyond tol of the mean of other events, it will enter the matrix as its own event and an NA will be

placed in the matrix for the event’s junctions with other templates.

Value
A list:
times.mean Vector of mean times for each row of the matrix.
times Matrix of times for each event detection and template.
scores Matrix of scores for each event detection and template.
Note

It can be difficult to make this function do the same grouping of peaks that a human might do.

Author(s)
Sasha D. Hafner

See Also

makeCorTemplate, makeBinTemplate

Examples

Load data
data(btnw)

Write Wave objects to file (temporary directory used here)
btnw.fp <- file.path(tempdir(), "btnw.wav")

writeWave(btnw, btnw.fp)
Make three templates to compare
btnw.1 <- makeBinTemplate(clip = btnw.fp, frqg.lim = c(2.75, 7), t.lim = c(.5, 2.5),

amp.cutoff = -20, name = -20)

btnw.2 <- makeBinTemplate(clip = btnw.fp, frqg.lim = c(2.75, 7), t.lim = c(.5, 2.5),
amp.cutoff = -27, name = -27)

btnw.3 <- makeBinTemplate(clip = btnw.fp, frqg.lim = c(2.75, 7), t.lim = c(.5, 2.5),
amp.cutoff = -34, name = -34)

Combine templates
templates <- combineBinTemplates(btnw.1, btnw.2, btnw.3)

survey <- bind(btnw, btnw, btnw)

12 cutWave

survey.fp <- file.path(tempdir(), "survey.wav")

writeWave(survey, survey.fp)

scores <- binMatch(survey = survey.fp, templates = templates, time.source = "fileinfo")
pks <- findPeaks(scores)

compareTemplates(detection.obj = pks, cutoff.return = 12, cutoff.ignore = 6, tol =1,
n.drop = 0)

Clean up
file.remove(btnw.fp)
file.remove(survey.fp)

cutWave Extract Shorter Wave Objects from other Wave Objects

Description
Extract shorter Wave objects from other Wave objects. Extracted wave object will be between the
from and to boundaries.

Usage

cutWave(wave, from = NULL, to = NULL)

Arguments
wave Object of class Wave.
from Start extracted segment from this point, in seconds from beginning of Wave ob-
ject.
to End of extracted segment, in seconds from beginning of Wave object.
Details

This function is a simplified version of cutw from the seewave package. Its original name in the
monitoR was the same (cutw), but has since been changed to avoid conflict for those who use both
packages.

Value

An object of class Wave.

Author(s)
Sasha D. Hafner

dbDownload 13

Examples

data(survey)

eventl <- cutWave(wave = survey, from = 1.5, to = 4.75)

dbDownload Retrieve Card-Recorder ID Values or Survey Names from a Database

Description

Convenience functions to execute a prewritten SQL query. Wrappers for RODBC: : sqlQuery with
no additional processing.

Usage

dbDownloadCardRecorderID(db.name = "acoustics”, uid, pwd,

date.deployed, date.collected,
loc.prefix, ...)
dbDownloadSurvey(db.name = "acoustics”, uid, pwd, start.date,
end.date, loc.prefix, samp.rate, ext, ...)

Arguments

db.name Name of the ODBC connector data source corresponding to the acoustics database.

uid User ID to allow ODBC connector to connect to database, if not present in

ODBC connector.
pwd Password to allow ODBC connector to connect to database, if not present in

ODBC connector.

date.deployed, date.collected, start.date, end.date
Dates to filter results, as a character string formatted to your database storage;
in the example we use YYYY/MM/DD, but be aware that you may need to include
a full timestamp: YYYY/MM/DD 00:00: 00.

loc.prefix Location prefix or vector of six-character prefixes by which to filter results.
samp.rate Numerical sampling rate of surveys (Hz).
ext Character file extension "wav" or "mp3".

Additional arguments to RODBC: : odbcConnect.

Details

These functions assume a database structure identical to that provided in the acoustics schema.
dbDownloadCardRecorderID may be used to look up CardRecorderID values before uploading
survey metadata; dbDownloadSurvey may be used to generate a table of survey names to work
through for batch detection with either corMatch or binMatch. If the username and password are
present in the ODBC datasource they do not need to be provided. It is possible to store only the
username in the datasource and enter a password, but the reverse will not work.

14 dbDownload

Value

dbDownloadCardRecorderID returns a data frame with fields pkCardRecorderID, fldLocation-
NameAbbreviation, fldSerialNumber, and pkCardID. dbDownloadSurvey returns a data frame with
a single field: fldSurveyName.

Note

These are convenience functions for users who are unfamiliar with SQL syntax and/or have not
established an alternative front-end for their acoustics database. Users capable of doing so may find
more utility and flexibility writing custom queries directly either with an alternative front-end or
RODBC: : sqlQuery. No processing is performed; data from the database is returned as it exists in
the database.

Author(s)

Jon Katz

See Also

sqlQuery, dbDownloadTemplate, dbUploadSurvey

Examples

Not run:

#If using the 'acoustics' schema verbatim:

CRs <- dbDownloadCardRecorderID(
date.deployed = "2012/05/22",
date.collected = "2012/05/29",
loc.prefix = "MABIO1")

surveys <- dbDownloadSurvey(
start.date = "2012/05/22",
end.date = "2012/05/29",
loc.prefix = "MABIOQ1",
samp.rate = 24000,
ext = "wav")

#'acoustics' schema, different database name:
CRs <- dbDownloadCardRecorderID(
db.name = "LocalSQLdb",
uid = "EntryOnly”,
pwd = "@7H23BBM",
date.deployed = "2012/05/22",
date.collected = "2012/05/29",
loc.prefix = "MABIQ1")

surveys <- dbDownloadSurvey(
db.name = "LocalSQLdb",
uid = "EntryOnly”,
pwd = "@7H23BBM",
start.date = "2012/05/22",

dbDownloadResult

15

end.date = "2012/05/29",
loc.prefix = "MABIQ1",
samp.rate = 24000,

ext = "wav")

End(Not run)

dbDownloadResult

Create detectionList Objects from Data Stored in a Database

Description

This function creates detectionList objects corresponding to a specified survey and TemplatelList
from data available in an acoustics database.

Usage
dbDownloadResult(db.name = "acoustics”, uid, pwd, survey, templates,
type, FFTwl, FFTwn, FFTovlp, ...)
Arguments
db.name Name of the ODBC connector data source corresponding to the acoustics database.
uid User ID to allow ODBC connector to connect to database, if not present in
ODBC connector.
pwd Password to allow ODBC connector to connect to database, if not present in
ODBC connector.
survey Character value, name of survey as it appears in the acoustics database
templates object of class TemplatelList or character vector of template names as they
appear in an acoustics database
type Character value in c("BIN", "COR") to filter the results for either binMatch or
corMatch results, respectively
FFTwl Filter for templates with specific FFT window lengths.
FFTovlp Filter for templates with specific FFT window overlap.
FFTwn Filter for templates with specific FFT window names.

Additional arguments to sqlQuery. For example, if the function fails on an
error such as: Error in as.POSIXIt.character(x, tz, ...) : character string is not in
a standard unambiguous format, adding as. is = TRUE may help circumnavigate
the problem (although it will not solve the data issue!)

16 dbDownloadTemplate

Details

This function allows database data to be coerced back into an object of class detectionList,
which is useful in that data can be pulled from the database and used in functions that require
detectionList objects such as plot and showPeaks.

The resulting detectionList object will be incomplete as it is missing the complete scores list,
which is used to plot the scores in the second row of the above plotting functions. Hit markers are
still plotted, and these can still be useful if set to hit.marker = "points”.

Value

An object of class detectionList

Author(s)
Jon Katz, Sasha D. Hafner

See Also

detectionList, TemplatelList, binMatch, corMatch, showPeaks

Examples

Not run:

#If using the 'acoustics' schema verbatim:

examp <- dbDownloadResult(
survey = "INTV@Q2_2011-06-25_081000_EDT.mp3",
templates = templates, type = "BIN")

#'acoustics' schema, different database name:
examp <- dbDownloadResult(
db.name = "LocalSQLdb",
uid = "EntryOnly"” ,
pwd = "@7H23BBM",
survey = "INTVQ2_2011-06-25_081000_EDT.mp3",
templates = templates,
type = "BIN")
End(Not run)

dbDownloadTemplate Retrieve templates from an acoustics database

Description

Download Acoustic Templates from a Database

Usage

dbDownloadTemplate(db.name = "acoustics”, uid, pwd, type, names,
species, FFTwl, FFTovlp, FFTwn, ...)

dbDownloadTemplate 17

Arguments

db.name Name of the ODBC connector data source corresponding to the acoustics database.

uid User ID to allow ODBC connector to connect to database, if not present in
ODBC connector.

pwd Password to allow ODBC connector to connect to database, if not present in
ODBC connector.

type Type of templates to select. Character value of either "BIN" or "COR". Some
partial matching is performed to accept "bt" and "ct", for example.

names Optional character value or vector of template names to filter selection from the
database. If missing all templates matching other filters are selected.

species Optional character value or vector of species to filter selection from the database.
If missing all templates matching other filters are selected.

FFTwl Optional character value or vector of FFT window lengths to filter selection from
the database. If missing all templates matching other filters are selected.

FFTovlp Optional character value or vector of FFT window overlap to filter selection
from the database. If missing all templates matching other filters are selected.

FFTwn Optional character value or vector of FFT window names to filter selection from
the database. If missing all templates matching other filters are selected.
Additional arguments to odbcConnect.

Details

This function assumes a database structure identical to that provided in the acoustics schema. If the
username and password are present in the ODBC datasource they do not need to be provided. It is
possible to store only the username in the datasource and enter a password, but the reverse will not
work.

Value

An object of class TemplatelList.

Note

In the acoustics database templates are broken into components, and vectors are stored as text
objects in various fields. To stay beneath the maximum download vector size of sqlQuery, ex-
traneous characters are removed from each vector during upload; some must be re-inserted during
download. Space characters are not replaced, but all amplitude values for correlation templates are
sign-inverted and converted from integers to floating point decimal. All decimals were rounded
to the hundredth’s place during upload. These measures are sometimes insufficient and users
may find it useful to increase the maximum download vector size in sqlQuery (see the vignette
“MySQL_DataSources_RODBC” for further details). Large templates may take more than several
seconds to download; 2-10 seconds is normal for binary point matching templates, and 5-30 seconds
is normal for correlation templates.

Author(s)

Jon Katz

18

See Also

dbUploadTemplate

Examples

Not run:
#If using the 'acoustics' schema verbatim:

btnw <-

dbDownloadTemplate(

type = "BIN",

names= c("templatel”, "template2")
FFTwl = 512,

FFTovlp = 0,

FFTwn = "hanning")

#'acoustics' schema, different database name:

btnw <-

dbDownloadTemplate(
db.name = "LocalSQLdb",

uid = "EntryOnly” ,

pwd = "@7H23BBM",

type = "COR",

species = c("BTNW"”, "OVEN")
FFTwl = 512,

FFTovlp = 0,

FFTwn = "hanning")

End(Not run)

dbSchema

dbSchema

Upload a MySQL Database Schema to Create Tables in an Acoustics

Database

Description

Use this function to select a schema and upload it to an existing MySQL database. All tables in the
schema will be created in the database.

Usage

dbSchema(schema, name.on.host, tables =
schema.name = "NOH", db.name =
2)

Arguments

schema

name.on.host

tables

schema.name

FALSE,
"acoustics”, uid, pwd,

File path to schema (.txt or .sql).

Database name on MySQL host.

TRUE will return the result of sqlTables

Current name of schema to be replaced by name.on.host

dbSchema

db.name

uid

pwd

Details

Connection name in ODBC data source.

Database User ID, if not in ODBC data source.

Database Password, if not in ODBC data source.

Additional arguments to odbcConnect.

Creating a MySQL database typically requires three steps:
1. Design/test/export schema
2. Create a MySQL instance on the host (locally or on a server)
3. Import schema to create tables, keys, and relationships

The default acoustics database schema will allow the user to skip step 1; this function will take
care of step 3. The user must ensure that a database instance exists and is present in the ODBC data
source list before attempting to use this function. This function was tested using a schema automat-
ically generated using the default "forward engineer" export function in MySQL Workbench with

DROP statements.

Value

If tables, a list:

upload. time

tables

Otherwise a report of the duration of upload and processing time to indicate completion.

Author(s)
Jon Katz
Examples
Not run:
dbSchema(
schema = "acoustics.sql”,
name.on.host = "acoustics”,
tables = TRUE,
schema.name = 'myschema',
db.name = "acoustics”,
uid = "Admin",

pwd = "BadPassword!"”)

$upload.time
[1] "Upload time 10.977 secs”

#H#
$tables
TABLE_CAT TABLE_SCHEM

Duration of upload and processing.

TABLE_NAME

Description tables in the acoustics database.

TABLE_TYPE

20 dbUploadAnno

1 JKATZ3 tblAnnotations TABLE
#H# 2 JKATZ3 tblArchive TABLE
#H# 3 JKATZ3 tblCard TABLE
#i#t 4 JKATZ3 tblCardRecorder TABLE
5 JKATZ3 tblCovariate TABLE
6 JKATZ3 tblEnvironmentalData TABLE
7 JKATZ3 tblLocation TABLE
8 JKATZ3 tblOrganization TABLE
9 JKATZ3 tblPerson TABLE
10 JKATZ3 tblPersonContact TABLE
11 JKATZ3 tblProject TABLE
#H# 12 JKATZ3 tblRecorder TABLE
13 JKATZ3 tblResult TABLE
#H# 14 JKATZ3 tblResultSummary TABLE
15 JKATZ3 tblSpecies TABLE
16 JKATZ3 tblSpeciesPriors TABLE
#H# 17 JKATZ3 tblSurvey TABLE
18 JKATZ3 tblTemplate TABLE
19 JKATZ3 tblTemplatePrior TABLE
#H# REMARKS
1 For annotated song events in surveys.
2 For archiving sound clips extracted from surveys.
3 This table stores information about memory cards.
#it 4 Track survey, recorder, and memory card links.
5 Describe covariates and types of enviromental data collected.
6 Non-acoustic data: environmental covariates.
7 Information about about locations for surveys and templates.
8 Store the organization name and contact info here.
9 Names of people in the monitoring program.
10 Contact info, including Cell/Work Phone and email.
11 Store the names of multiple projects per organization here.
12 This table stores information about recording units.
13 Table to store the results of findPeaks().
14 Store probability of survey presence.
15 Store BBL codes or other 4, 6, or 8 character codes.
16 Store site & species specific priors here.
17 This table stores attributes of the survey recording.
18 Store templates and template metadata.
19 Store beta parameter estimates for error rates.

End(Not run)

dbUploadAnno Upload Spectrogram Annotations to an Acoustics Database

Description

Spectrogram annotations from viewSpec can be uploaded to tblAnnotations in an acoustics database.
Annotations can be specified as either a file path to a csv document or as a data frame. The name

dbUploadAnno 21

of the survey to associate with the annotations must be identical to tblSurvey.fldSurveyName to
properly link the annotations to the survey.

Usage
dbUploadAnno(annotations, survey, db.name = "acoustics”, uid,
pwd, analyst = "", ...)
Arguments
annotations Either a file path to a csv file or a data frame of annotations.
survey Name of survey annotations belong to. Must match tblSurvey.fldSurveyName
db.name Name of the ODBC connector data source corresponding to the acoustics database.
uid User ID to allow ODBC connector to connect to database, if not present in
ODBC connector.
pwd Password to allow ODBC connector to connect to database, if not present in
ODBC connector.
analyst Numerical key value corresponding to the user’s tblPerson.pkPersonID value in
the acoustics database.
Additional arguments to RODBC::odbcConnect.
Details

dbUploadAnno assumes a database structure identical to that provided in the acoustics schema. If
the username and password are present in the ODBC datasource they do not need to be provided. It
is possible to store only the username in the datasource and enter a password, but the reverse will
not work. Annotations are expected to be formatted by (or as if by) viewSpec, so if another piece of
software is recording the annotations the field order must be altered to match output of viewSpec.

Value
Invoked for its side effect. Successful upload is marked by a report of the upload time; unsuccessful
upload will report any errors encountered.

Note

The expected field order is c("start.time”, "end.time"”, "min.frq", "max.frq", "name").
"name” is intentionally ambiguous; it may be used to store the species code, but it is not refer-
enced back to tblSpecies.fldSpeciesCode for verification.

Author(s)

Jon Katz

See Also

viewSpec

22 dbUploadResult

Examples

Assumes 'MABIQ1_2010-05-22_054400_0_000.wav' is a survey in tblSurvey.fldSurveyName
Assumes '"MABIQ1_2010-05-22_054400.csv' is a file of annotations belonging to the above survey

Not run:

#If using the 'acoustics' schema verbatim:

dbUploadAnno(
annotations = "MABIQ1_2010-05-22_054400.csv",
survey = "MABIQ1_2010-05-22_054400_0_000.wav",
analyst = 1)

#'acoustics' schema, different database name:
dbUploadAnno(
annotations = "MABIQ1_2010-05-22_054400.csv",
survey = "MABIQ1_2010-05-22_054400_0_000.wav",
db.name = "LocalSQLdb",
uid = "EntryOnly",
pwd = "@7H23BBM",
analyst = 1)
End(Not run)

dbUploadResult Upload Detection Results to an Acoustics Database

Description
Upload detection results (peaks or detections) from findPeaks directly to tbIResult in an acoustics
database.
Usage
dbUploadResult(detection.obj, which.one, what = "detections”, db.name = "acoustics”,
uid, pwd, analysis.type, analyst = "", ...)
Arguments

detection.obj Object of class detectionlList containing results from findPeaks.

which.one Results from a single template can be selected for upload, or leave blank to
upload results from all templates.

what Character value of either "detections" (the default; peaks above the score cutoff)
or "peaks" (all peaks regardless of score cutoff).

db.name Name of the ODBC connector data source corresponding to the acoustics database.

uid User ID to allow ODBC connector to connect to database, if not present in

ODBC connector.

pwd Password to allow ODBC connector to connect to database, if not present in
ODBC connector.

dbUploadResult 23

analysis.type Character value identifying analysis type, in c("BIN", "COR"). Some partial
matching is performed.

analyst Numerical key value corresponding to the user’s tblPerson.pkPersonID value in
the acoustics database.

Additional arguments to RODBC: : odbcConnect.

Details

dbUploadResult assumes a database structure identical to that provided in the acoustics schema.
If the username and password are present in the ODBC datasource they do not need to be provided.
It is possible to store only the username in the datasource and enter a password, but the reverse will
not work.

The value for analyst must be present in tbIPeople.pkPeoplelD for upload to succeed.

Value

Invoked for its side effect, which is to insert the detection results into tblResult in an acoustics
database. Successful upload is marked by a report of the upload time; unsuccessful upload will
report any errors encountered.

Author(s)

Jon Katz

See Also

findPeaks, getPeaks, getDetections

Examples

Not run:

Not run, as it requires a database to receive the upload
Load data

data(btnw)

data(survey)

Write Wave objects to file (temporary directory used here)

btnw.fp <- file.path(tempdir(), "btnw.wav")

survey.fp <- file.path(tempdir(), "survey2010-12-31_120000_EST.wav")
writeWave(btnw, btnw.fp)

writeWave(survey, survey.fp)

Template construction
b4 <- makeBinTemplate(

btnw. fp,

frq.lim = c(2, 8),
select = "auto”,
name = "b4",
buffer = 4,

amp.cutoff = -31,

24 dbUploadSurvey

binary = TRUE)

Binary point matching
scores <- binMatch(survey = survey.fp, templates = b4, time.source = 'fileinfo')

Isolate peaks
pks <- findPeaks(scores)

#If using the 'acoustics' schema verbatim:
dbUploadResult(detection.obj = pks, analysis.type = "BIN"”, analyst = 1)

#'acoustics' schema, different database name:
dbUploadResult(
detection.obj = pks,
which.one = "b4",
what = "peaks”,
db.name = "LocalSQLdb",
uid = "EntryOnly” ,
pwd = "@7H23BBM",
analysis.type = "BIN",
analyst = 1)
End(Not run)

dbUploadSurvey Upload Survey Metadata to an Acoustics Database

Description

Upload survey metadata to tblSurvey in an acoustics database.

Usage
dbUploadSurvey(db.name = "acoustics"”, uid, pwd, survey.meta, update.query = FALSE,
tz, ...)
Arguments
survey.meta Object containing survey metadata, typically gathered in one or more invoca-
tions of fileCopyRename.
db.name Name of the ODBC connector data source corresponding to the acoustics database.
uid User ID to allow ODBC connector to connect to database, if not present in
ODBC connector.
pwd Password to allow ODBC connector to connect to database, if not present in

ODBC connector.
update.query Logical value to control the type of query. See Details.

dbUploadSurvey 25

tz Time zone, if not in file names or metadata. See Details.

Additional arguments to RODBC: : odbcConnect.

Details

dbUploadSurvey assumes a database structure identical to that provided in the acoustics schema.
If the username and password are present in the ODBC datasource they do not need to be provided.
It is possible to store only the username in the datasource and enter a password, but the reverse will
not work.

Surveys recorded as wav files have metadata read from the header of the file automatically; these
data can be uploaded to the database in a single call to dbUploadSurvey. Metadata for surveys
recorded in proprietary compressed file formats cannot be gathered in the same manner; some basic
metadata is gleaned from the initial transfer of the surveys from memory-card to storage drive, and
the rest is read after the conversion from proprietary format to wav file. If recording in a proprietary
format, normal operation would thus call for two invocations of dbUploadSurvey: the first with
partial metadata, and the second as an update query to fill in the missing values. Therefore, standard
use (update.query = FALSE) passes a simple INSERT INTO query to the database and parses the
fields appropriately. When update. query = TRUE, the assumption is made that many of the fields
in survey.meta have already been entered into the database, but some remain NULL.

If no ’fldOriginalDateModified’ exists in the metadata it will be automatically generated from the
date coded in the file name during fileCopyRename.

Value

Invoked for its side effect, which is to insert the detection results into tbIResult in an acoustics
database. Successful upload is marked by a report of the upload time; unsuccessful upload will
report any errors encountered.

Note

This is a convenience function for users who are unfamiliar with SQL syntax and/or have not es-
tablished an alternative front-end for their acoustics database. Users capable of doing so may find
more utility and flexibility writing custom queries directly either with an alternative front-end or
RODBC: : sqlQuery. No processing is performed; data is uploaded to the database as it exists in the
metadata object.

Author(s)

Jon Katz

See Also

fileCopyRename, mp3Subsamp

Examples

Not run:
metadata for wav files:
metadata <- fileCopyRename(

26

from = '~/media/SDcard',

to = '~/Desktop/Acoustics/Recordings’,
csv.dir = '~/Desktop/Acoustics/Results’,
loc.prefix = 'MABIO1',

ext = 'wav',

CardRecorderID = 1,

kaleidoscope = FALSE)

If using the 'acoustics' schema verbatim:
dbUploadSurvey(survey.meta = metadata)

'acoustics' schema, different database name:
dbUploadSurvey (

survey.meta = metadata,

db.name = "LocalSQLdb",

uid = "EntryOnly",

pwd = "@7H23BBM")

metadata for wac files:

metadata <- fileCopyRename(
from = '~/media/SDcard’,
to = '~/Desktop/Acoustics/Recordings’,
csv.dir = '~/Desktop/Acoustics/Results’,
loc.prefix = 'MABIO1',
ext = 'wac',
CardRecorderID = 1)

If using the 'acoustics' schema verbatim:
dbUploadSurvey(survey.meta = metadata)

'acoustics' schema, different database name:
dbUploadSurvey(

survey.meta = metadata,

db.name = "LocalSQLdb",

uid = "EntryOnly”,

pwd = "@7H23BBM")

After converting wac files to wav files use update.query = TRUE:

new.metadata <- fileCopyRename (
from = '~/Desktop/Acoustics/Recordings',
to = '~/Desktop/Acoustics/Surveys',
csv.dir = '~/Desktop/Acoustics/Results’,
loc.prefix = 'MABIO1',
ext = 'wav',
CardRecorderID = 1,
metadata.only = TRUE)

If using the 'acoustics' schema verbatim:

dbUploadSurvey(survey.meta = new.metadata, update.query = TRUE)

'acoustics' schema, different database name:
dbUploadSurvey (
survey.meta = new.metadata,

dbUploadSurvey

dbUploadTemplate 27

db.name = "LocalSQLdb",

uid = "EntryOnly"”,

pwd = "@7H23BBM",

update.query = TRUE)
End(Not run)

dbUploadTemplate Upload Acoustic Templates to a Database

Description

Upload a binary point matching or correlation template list containing one or more templates to
tblTemplate in an acoustics database. One or more templates may be indexed by name or position
from the template list for upload.

Usage

dbUploadTemplate(templates, which.one, db.name = "acoustics”, uid , pwd, analyst,

locationID = "", date.recorded = "", recording.equip = "", species.code,
type, ...)
Arguments
templates TemplateList object of class binTemplateList or corTemplatelList to up-
load.
which.one Indexing option for individual templates within the TemplatelList object. In-

dexing may be by name or numerical position. If missing, all templates within
the list are uploaded.

db.name Name of the ODBC connector data source corresponding to the acoustics database.

uid User ID to allow ODBC connector to connect to database, if not present in
ODBC connector.

pwd Password to allow ODBC connector to connect to database, if not present in
ODBC connector.

analyst Numerical key value corresponding to the user’s tblPerson.pkPersonID value in
the acoustics database.

locationID Numerical key value corresponding to the location’s tblLocation.pkLocationID
value in the acoustics database.

date.recorded Dates template clip was recorded, in a recognizable POSIX format: YYYY/MM/DD.

recording.equip
Equipment used to record template clip.

species.code Character value corresponding to the species’ tblSpecies.fldSpeciesCode value

in the acoustics database; usually a 4, 6, or 8-character code. Codes not in the
database will return a cryptic error and cause upload to fail.

type Character value identifying template type, in c("BIN", "COR"). Some partial
matching is performed.

Additional arguments to RODBC: : odbcConnect.

28 dbUploadTemplate

Details

dbUploadTemplate assumes a database structure identical to that provided in the acoustics schema.
If the username and password are present in the ODBC datasource they do not need to be provided.
It is possible to store only the username in the datasource and enter a password, but the reverse will
not work.

The following must be true for upload to succeed: The value for analyst must be present in tblPeo-
ple.pkPeopleID The value for locationID must be present in tblLocation.pkLocationID the value for
species.code must be present in tblSpecies.fldSpeciesCode

Value

This function is invoked for its side effect, which is to insert the template list into tbITemplate in
an acoustics database. Successful upload is marked by a report of the upload time; unsuccessful
upload will report any errors encountered.

Note

In the acoustics database templates are broken into components, and vectors are stored as text
objects in various fields. Ultimately templates must be downloaded again to be used; to stay beneath
the maximum download vector size of sqlQuery, extraneous characters are removed from each
vector during upload. All amplitude values for correlation templates are sign-inverted and converted
from floating point decimal to integers, and all decimals are rounded to the hundredth’s place before
upload; after upload all spaces, new-line, and carriage return characters are removed. Removal of
these characters is usually the most time-consuming part of the upload process, and the console
will report "cleaning up" while this is taking place. These measures sometimes inadequately trim
character count, and users may find it necessary to increase the maximum download vector size in
sqlQuery (see the vignette "MySQL_DataSources_ RODBC" for further details). Large templates
may take more than several seconds to upload; 2-5 seconds is normal for binary point matching
templates, and 5-20 seconds is normal for correlation templates.

Author(s)

Jon Katz

See Also

dbDownloadTemplate

Examples

Template construction

Not run:

data(btnw)

b4 <- makeBinTemplate(
"btnw.wav",
frq.lim = c(2, 8),
select = "auto”,
name = "b4",
buffer = 4,

detectionList-class 29

amp.cutoff = -31,
binary = TRUE)

\dontrun{
#If using the 'acoustics' schema verbatim:
dbUploadTemplate(
templates = b4,
analyst = 1,
locationID = "MABIQ1",
date.recorded = "2012/05/22",
recording.equip = "SM2",
species.code = "BTNW",
type = "BIN")

#'acoustics' schema, different database name:
dbUploadTemplate(
templates = b4,
which.one = 1,
db.name = "LocalSQLdb",
uid = "EntryOnly”,
pwd = "@7H23BBM",
analyst = 1,
locationID = "MABIQ1",
date.recorded = "2012/05/22",
recording.equip = "SM2",
species.code = "BTNW",
type = "BIN")}

End(Not run)

detectionList-class Class "detectionList”

Description

These objects contain information on template detections, as well as (almost) all the information
contained in templateScores These objects represent the final result of the template detection
process. Various functions exist for working with these objects. Information on the detections
alone can be extracted with getDetections.

Objects from the Class

Objects can be created by calls of the form new("detectionList”, ...). However, these objects
should always be created by applying the findPeaks to templateScores objects. There are other
functions the exist for modifying existing detectionList objects, including showPeaks, and the
combination of templateCutoff and findDetections.

30

Slots

detectionList-class

survey.name: Object of class "character”. The name of the survey file, or "A Wave object” if

the survey was not read in from a file.

survey: Object of class Wave. The survey data, as a "Wave" object.

survey.data: Object of class list. A named list, with one element for each template. Each

element contains data from a Fourier transform of the original survey: amp is a matrix of
amplitudes (frequency by time, r by column), t.bins is a numeric vector with the values of
the time bins (left-aligned—first bin is always 0.0), and frqg.bins is a numeric vector with
the values of the frequency bins (top-aligned-last bin is always the upper limit). There is a
separate element for each template because each template may use different parameters for
the Fourier transform (see Template).

templates: Object of class list. A named list of templates, which is identical to the origi-

nal TemplatelList used for template matching. This template list can be extracted with
getTemplates.

scores: Object of class 1ist. A named list, with one element for each template. Each element

is a data frame with three columns: date. time is the absolute time of the score, time is the
relative time of the score (relative to the survey start), and score is the score. Times are based
on the center of the template, and so time will not correspond to values in t.bins in the
survey.data above if the template spans an even number of time bins.

peaks: Object of class 1ist. A named list, with one element for each template. Each element is

a data frame that contains information on peaks that were found. The first three columns are
identical to those in the scores data frames (above) (but of course only contain those values
that were identified as peaks). The fourth column is logical and indicates whether the peak
was also a detection.

detections: Objectofclass list. A named list, with one element for each template. Each element

Methods

is a data frame that contains information on detections. The columns are identical to those in
the scores data frames (above) (but of course only contain those values that were identified
as detections (i.e., peaks with a score above the score.cutoff).

show signature(object = "detectionList"): ...

summary signature(object = "detectionList”): ...

Author(s)

Sasha D. Hafner

See Also

findPeaks, getDetections, templateCutoff, templateScores

Examples

showClass("detectionList"”)

eventEval

31

eventEval

Evaluate Detected Events with Known Event Sources and Times

Description

Evaluate whether the detected events are True +, True -, False +, or False - detections by comparing
the results to a table of events with known sources and times (such as annotations from viewSpec).
Events to evaluate may be either directly from an object of class detectionlList, a csv file or data
frame resulting from a call to getPeaks or getDetections, or a data frame downloaded from an
acoustics database. A value for score.cutoff must be supplied to distinguish between True + and
False -, even if assessing all peaks.

Usage

eventEval (detections, what = "detections”, which.one, standard,

score.cutoff =

Arguments

detections

what

which.one

standard

score.cutoff

tol

Details

11, tol = 1)

An object of class detectionlList, a csv file, or data frame containing detection
results. See Details.

If a detectionList object is supplied for detections the character value of
either "detections” (default; all peaks above the score cutoff) or all "peaks" may
be selected.

If the detection process involved multiple templates only one may be selected
for evaluation. Value can be either character (identifying the template name), or
numerical (identifying the position in names(detections[’template’]). See De-
tails.

The "standard" is the results from annotation with viewSpec (i.e. Gold Stan-
dard) containing the source and time of each event. Can be a data frame or a file
path to a csv file.

If no template is supplied a score.cutoff can be supplied to evaluate false
negatives.

Numeric value for tolerance, with units seconds. If a detected event is within
this value (actually +/- 0.5 x tol), the events are assumed to co-occur and be of
the same origin.

Little checking is performed to ensure that evaluation is possible based on the values for detections
and standard. The standard must contain the fields c("start.time”, "end.time”, "min.frq",
"max.frq", "name"”). Objects are assumed to be from an acoustics database if they contain the
fields c("f1ldTime"”, "fldScore”, "fldTemplateName"). Data frames are assumed to be objects
formerly of class detectionlList if they contain the fields c("time", "score"”, "template”).

Results from only one template from one survey may be evaluated in each call to eventEval.

32 eventEval

Value

The detections data frame with an outcome field appended.

Note

eventEval performs the evaluation by merging the detections and standard data frames, ordering
by time, and checking to see which rows occur within a value of tol to the row above. True +
are defined as a detected event that co-occurrs in time with an event from the standard AND scores
above or equal to the score.cutoff. Such an event that scores below the score.cutoff is classified as
a False -. False - events may also be the product of an event from the standard failing to co-occur
with any detected events. True - events don’t co-occur with any standard events, and False + events
similarly don’t co-occur with standard events but score above or equal to the score.cutoff.

Author(s)

Jon Katz

See Also

The function timeAlign operates similarly, but rather than evaluate a set of detections against a
standard it merges detections from multiple templates and retains only the co-occurring detections
with the highest scores.

Examples

Load data
data(btnw)
data(survey)

Write Wave objects to file (temporary directory used here)

btnw.fp <- file.path(tempdir(), "btnw.wav")

survey.fp <- file.path(tempdir(), "survey2010-12-31_120000_EST.wav")
writeWave(btnw, btnw.fp)

writeWave(survey, survey.fp)

Make a template
btemp <- makeBinTemplate(btnw.fp, frqg.lim=c(2, 8), select = "auto”, name = "btnw1"”, buffer =
4, amp.cutoff = -31, binary = TRUE)

Binary point matching
scores <- binMatch(survey = survey.fp, templates = btemp, time.source = "fileinfo")

Isolate peaks
pks <- findPeaks(scores)

Evaluate peaks
data(survey_anno)

survey_anno <- survey_anno[survey_anno['name'] == 'BTNW',] # Extract the "BTNW" rows

peaks <- getPeaks(pks)

extract-methods 33

eval <- eventEval(detections = peaks, standard = survey_anno, score.cutoff = 15)

extract-methods Indexing (Extraction) Methods for monitoR Package

Description

These methods can be used to index detection list (detectionList), template lists (TemplatelList),
and template scores (templateScores) objects. Indexing is analogous to indexing a vector—with
single square brackets, and character (template name) or integer (template position) values.

Methods

signature(x = "detectionList"”) Index by name or position of template(s).
signature(x = "TemplateList”) Index by name or position of template(s).

signature(x = "templateScores”) Index by name or position of template(s).

fileCopyRename Copy and Rename Sound Files from Portable Media

Description

Collects a variety of metadata about recordings that will be acoustic surveys and encodes the date
modified into the file name. Copies files between directories to move them for an SD card to a hard
disk, for example.

Usage

non

fileCopyRename(files, from = , to, csv.dir = to, csv.name, loc.prefix, ext,
rec.tz = NA, hours.offset = @, CardRecorderID = NA, kaleidoscope = TRUE,
split.channels = FALSE, metadata.only = FALSE, full.survey.names = FALSE,
rename = TRUE, copy = TRUE)

Arguments
files Optional vector of mp3, WAC, or WAV files to extract surveys from.
from Directory containing mp3, WAC, or WAV recordings to extract survey from;
required only if files is missing.
to Directory where surveys will be placed after extraction.
csv.dir Directory where csv file of survey metadata will be saved; defaults to the to

directory.

34

fileCopyRename

CcSv.name Name to save csv file of metadata, character value ending in .csv

loc.prefix Character value identifying the location at which the recording was made. Will
be used in the file name (see Details) and the csv file name. Must be in tblLoca-
tion.fldLocationName in the acoustics database.

ext three-characters. The file extension defining the type of files to move, rename,
and collect metadata on. Typically in c("wav", "wac")

rec.tz Time zone for which the recordings were made (optional). Needed if different

from the time zone setting of the operating system, when times will be adjusted
to the ‘correct’ time zone. See details.

hours.offset Hours to offset the modification time. Minimally useful when the recorder clock
was set incorrectly. Use not at all, or if you must, with caution.

CardRecorderID Numeric key value from tblCardRecorder.pkCardRecorderID, which links the
recorder that made the recording with the location it was recorded.

kaleidoscope Logical. If ext = "wac” files must be converted to .wav in Kaleidoscope. Setting
to TRUE anticipates the renaming by Kaleidoscope.

split.channels Logical. If ext = "wac" files must be converted to .wav in Kaleidoscope. Setting
to TRUE anticipates further renaming by Kaleidoscope.

metadata.only Logical. If ext = "wac” files must be converted to .wav before metadata can
be collected; this argument typically is used in the second pass to collect the
metadata.

full.survey.names
Logical. TRUE will use the full file path for the survey name in the resulting
metadata table. In those cases the full path name will be stored in the database
as well. Useful for coping with nested or disparate survey directories.

rename Logical. FALSE will disable renaming.
copy Logical. FALSE will disable file copying.
Details

The file name is where two important pieces of metadata are encoded: the location (as the lo-
cation prefix) and the date and time of recording (as the date modified of the original file). The
detection functions corMatch binMatch are capable of using this data as a time reference. Time
zone management is tricky; if recordings were made in a different time zone than the OS run-
ning fileCopyRename, specify the correct time zone for the recordings with the rec.tz argu-
ment. Unexpected results are possible, as time zone abbreviations in general use may not match
those in the Internet Assigned Numbers Authority tz database. The most reliable way to spec-
ify time zone is to use the full name, most quickly seen using OlsonNames, and also found on
wikipedia: https://en.wikipedia.org/wiki/List_of_tz_database_time_zones. Metadata
cannot be read for non-wave recordings, so typically a first function call is used to encode the loca-
tion prefix and date modified into the file name and move it from the portable media, and a second
function call with metadata.ony = TRUE is used after conversion to wave format to fill in the miss-
ing metadata. The full.survey.names argument is designed to permit the batch processing of
sound files saved in different directories.

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

fileCopyRename 35

Value

A data frame of metadata about the surveys. Contains column names "fldOriginalDateModified",
"fldOriginalRecordingName", "fldSurveyName", "fldRecordingFormat", "fkCardRecorderID", "fld-
SurveyLength", "fldSampleRate", "fldBitsperSample”, and "fldChannels". Column names reflect
the assumption that this data will become a catalog of surveys stored in the database.

Author(s)

Jon Katz

References

Time zone conversion assisted by a post on David Smith’s Revolutions blog, June 02, 2009: https://blog.revolutionanalytics.cc
time-zones.html

See Also

mp3Subsamp

Examples

Not run:
Not run because it will create a file in user's working directory
data(survey)

writeWave(survey, "survey.wav")

meta <- fileCopyRename (
files = "survey.wav",
to = getwd(),
csv.name = "sampleMeta.csv”,
loc.prefix = "MABIQ6",
ext = "wav",
CardRecorderID = 1)

If your recorder's clock is set to GMT but your OS is not:
altmeta <- fileCopyRename(

files = "survey.wav",

to = getwd(),

csv.name = "sampleMeta.csv”,

loc.prefix = "MABI06",

ext = "wav",

rec.tz = "GMT",

CardRecorderID = 1)

file.remove("survey.wave")
End(Not run)

36 findPeaks
findPeaks Find Score Peaks and Detections in a templateScores Object
Description
This function accepts templateScores objects and returns information on all score peaks and those
peaks that are considered detections.
Usage
findPeaks(score.obj, fd.rat = 1, frame, parallel = FALSE)
Arguments
score.obj A templateScores object, produced by corMatch or binMatch.
fd.rat A ratio of frame width (twice minimum peak separation) to template duration.
frame If you want the same frame width for templates with varying duration, specify a
value directly. fd.rate will be ignored if frame is specified.
parallel Set to TRUE for parallel processing using mclapply. This option is not available
for Windows operating systems.
Details

The findPeaks function translates raw scores from template matching to detection information,
by finding peaks in the score data, and determining which peaks, if any, exceed the score cut-
offs specified in the templates (see the two functions for making templates, makeBinTemplate and
makeCorTemplate and templateCutoff for more details on cutoffs).

Value

An S4 object of class templateScores, with the following slots:

survey.name
survey

survey.data

templates

scores

peaks

detections

The file path to the survey that the scores apply to.
The actual survey as a Wave object.

A named list with one element per template. Each element is a named list with
time-domain results for the survey.

The templates (an S4 object of class corTemplateList or binTemplatelList)
used to calculate the scores.

A named list with an element for each template. Each element contains the
scores for an individual template.

A named list with peak information (as a data frame) for each template.

A named list with detection information (as a data frame) for each template.

findPeaks 37

Author(s)
Sasha D. Hafner and Jon Katz

See Also

makeCorTemplate, makeBinTemplate, corMatch, binMatch, getDetections, getPeaks

Examples

Load data
data(btnw)
data(oven)
data(survey)

Write Wave objects to file (temporary directory used here)

btnw.fp <- file.path(tempdir(), "btnw.wav")

oven.fp <- file.path(tempdir(), "oven.wav")

survey.fp <- file.path(tempdir(), "survey2010-12-31_120000_EST.wav")
writeWave(btnw, btnw.fp)

writeWave(oven, oven.fp)

writeWave(survey, survey.fp)

Correlation example
Create two correlation templates
wct <- makeCorTemplate(btnw.fp, t.lim = c(1.5, 2.1), frq.lim = c(4.2, 5.6), name = "w")

oct <- makeCorTemplate(oven.fp, t.lim=c(1, 4), frq.lim=c(1, 11), dens = 0.1, name = "0")

Combine them
ctemps <- combineCorTemplates(wct, oct)

Calculate scores
cscores <- corMatch(survey.fp, ctemps)

Finally, find peaks and detections
cdetects <- findPeaks(cscores)

cdetects
plot(cdetects)

plotting help:
method?plot('detectionList')

Binary example

Not run:

Not run because of the time required (maybe 2-5 seconds) Create two templates

wbt <- makeBinTemplate(btnw.fp, amp.cutoff = -30, t.lim=c(1.5, 2.1), frq.lim=c(4.2, 5.6),
buffer = 2, name = "w")

obt <- makeBinTemplate(oven.fp, amp.cutoff = -20, t.lim = c(1, 4), frqg.lim = c(1, 11),
name = "o")

38 getDetections

Combine them
btemps <- combineBinTemplates(wbt, obt)

Calculate scores
bscores <- binMatch(survey.fp, btemps)

Finally, find peaks and detections
bdetects <- findPeaks(bscores)

bdetects

plot(bdetects)

End(Not run)

Clean up (only because these files were created in these examples)
file.remove(btnw.fp)

file.remove(oven.fp)
file.remove(survey.fp)

getDetections Extract Detections or Peaks from a detectionlList Object

Description
These functions return detection and peak timing and scores from a detectionList object for one
or more templates used to create the object.

Usage

getDetections(detection.obj, which.one = names(detection.obj@detections), id = NULL,
output = "data frame")

getPeaks(detection.obj, which.one = names(detection.obj@detections), id = NULL,
output = "data frame")

Arguments

detection.obj The detectionList object.

which.one The name(s) of the template(s) for which results should be returned. Character
vector.
id Additional information that will be added as an additional column in the returned

data frame(s). By default, no column is added. Length-one vector.

output Type of output, can be "data frame” or "list". List output contains a single
element (a data frame) for each template.

getDetections 39

Details

The id argument is for adding an identifying “tag” to the output. This could be useful when, e.g.,
extracting detections for multiple surveys and then combining all results into a single data frame.

Value

A data frame with up to six (seven for getPeaks) columns: id (from the id argument) (optional),
template name (template), date and time (date. time, relative time (relative to the recording start),
score, and verification results (true) (only present if the detectionList contains verification
results from showPeaks). Or, a list with a separate data frame for each template. For getPeaks,
there is also a detection column, with TRUE when a peak has been identified as a detection.

Author(s)
Sasha D. Hafner

See Also

findPeaks

Examples

Load data
data(btnw)
data(oven)
data(survey)

Write Wave objects to file (temporary directory used here)

btnw.fp <- file.path(tempdir(), "btnw.wav")

oven.fp <- file.path(tempdir(), "oven.wav")

survey.fp <- file.path(tempdir(), "survey2010-12-31_120000_EST.wav")
writeWave(btnw, btnw.fp)

writeWave(oven, oven.fp)

writeWave(survey, survey.fp)

Correlation example

Create two correlation templates

wct <- makeCorTemplate(btnw.fp, t.lim = c(1.5, 2.1), frq.lim = c(4.2, 5.6), name = "w")
oct <- makeCorTemplate(oven.fp, t.lim=c(1, 4), frq.lim=c(1, 11), dens = 0.1, name = "0")

Combine both of them
ctemps <- combineCorTemplates(wct, oct)

Calculate scores
cscores <- corMatch(survey.fp, ctemps)

Find peaks
cdetects <- findPeaks(cscores)

Finally, get detections
getDetections(cdetects)

40 getTemplates

If list is preferred
getDetections(cdetects, output = "list")

For select templates
getDetections(cdetects, which.one = 1)
getDetections(cdetects, which.one = "w")

Or for all peaks
getPeaks(cdetects)
getPeaks(cdetects, output = "list")
getPeaks(cdetects, which.one = 1)

Clean up (only because these files were created in these examples)
file.remove(btnw.fp)

file.remove(oven.fp)

file.remove(survey.fp)

getTemplates Extract a Template List

Description

Use this function to extract template lists from templateScores or detectionList objects.

Usage

getTemplates(object, which.ones = names(object@templates))

Arguments
object The templateScores or detectionList object that contains the templates that
are to be extracted.
which.ones Which templates should be included? A character vector of templates names, or
an integer vector. Default is all templates.
Details

This function would typically be used to extract and save a complete set of templates from a
detectionList object if templateCutoff has been used to modify the template list after scores
were calculated. getTemplates could also be used to extract a subset of templates present in a
template list, but indexing with square brackets is an easier approach.

Value

A template list of class corTemplatelList or binTemplatelList.

Author(s)
Sasha D. Hafner

makeTemplate 41

See Also

makeCorTemplate, makeBinTemplate, templateCutoff, templateComment

makeTemplate Make an Acoustic Template

Description

Functions for creating a spectrogram cross-correlation template or a binary point matching template
for later use in identification of acoustic signals. A template is made by manually or automatically
selecting cells within a Fourier-transformed representation (a spectrogram) of an audio recording.

Usage

makeCorTemplate(clip, t.lim = NA, frqg.lim = c(@, 12), select = "auto”, dens =1,
score.cutoff = 0.4, name = "A", comment = "", spec.col = gray.3(),
sel.col = ifelse(dens == 1, "#99009975", "orange"),
wl = 512, ovlp = @, wn = "hanning”, write.wav = FALSE, ...)

makeBinTemplate(clip, t.1lim =NA, frq.lim=c(@, 12), select = "auto”, binary = TRUE,
buffer = @, dens = 1, score.cutoff = 12, name = "A", comment = "",
amp.cutoff = "i", shift = "i", high.pass = -Inf, spec.col = gray.3(),
bin.col = c("white”, "black"”),
quat.col = c("white"”, "gray40", "gray75", "black"),
sel.col = c("orange”, "blue"), legend.bg.col = "#2E2E2E94",
legend. text.col = "black”, wl = 512, ovlp = @, wn = "hanning",

write.wav = FALSE, ...)
Arguments

clip A file path to one wav or mp3 file, or a Wave object (but see ’Details’ for this
case). Or, for makeBinTemplate only, a list or vector of two such objects. Char-
acter vector or list.

t.lim Time limits of the spectrogram plot or template itself, or a list of exactly two
such vectors. Length two numeric vector.

frq.lim Frequency limits of spectrogram plot or template. Length two numeric vector.

select How should points be selected? Options are "cell", "rectangle", "auto". Length
one character vector.

binary Should plot be binary? Length one logical vector.

buffer The size of a buffer (in number of time by frequency bins) around “on” points
for select = "rectangle" and select = "auto" for makeBinTemplate. Bins within
the buffer will not be included as “on” or “off” points. Length one integer vector.

dens Approximate density of points included with select = "rectangle" and select =

"auto" as a fraction of 1.0. Length one numeric vector.

42 makeTemplate

score.cutoff The numeric value set for the score.cutoff element of the resulting template.
This value will determine which peaks qualify as detections when the resulting
template is used in a complete detection analysis. Length one numeric vector.

name The name of the template, which will be associated with the template. To change
the name of an existing template, see templatenames. Length one character
vevetor.

comment Comment that will be saved with the template. See templateComment.

amp.cutoff Amplitude cutoff for creating a binary plot. Length one numeric vector or else
"i" for interactive selection.

shift When two clips are used, the forward shift for the second clip, in time bins.
Length one integer vector, or "i" for interactive.

high.pass High-pass filter value. All amplitudes below this frequency will be set to the
minimum.

spec.col A color palette function for the spectrogram when binary = FALSE.

bin.col Colors for the spectrogram when binary = TRUE. Length two character vector:

bin.col[1] for cells below the cutoff, bin.col[2] for cells above the cutoff.

quat.col Colors for the spectrogram when using two clips. Length four character vector:
bin.col[1] for cells below the cutoff for both clips, bin.col[2] for cells above
the cutoff for clip 1 only, bin.col[3] for cells above the cutoff for clip 2 only,
bin.col[4] for cells above the cutoff for both clips.

sel.col The color for displaying selected cells.

legend.bg.col The color of the legend background.
legend. text.col
Legend text color.

wl The wl argument sent to the spectro function.

ovlp The ovlp argument sent to the spectro function.

wn The wn argument sent to the spectro function.

write.wav If clip is a Wave object, should it be written to file in the working directory? If

FALSE, it will instead be written to a temporary file. See details.

Additional arguments to spectro.

Details

makeCorTemplate is used for making correlation templates, while makeBinTemplate is used to
make binary point matching templates. makeBinTemplate can be used with one or two recordings
(clip argument). If the clip argument is a Wave object, the functions will write the object(s) to a
wav file(s), in the working directory if the write.wav argument is TRUE, otherwise as a temporary
file. This behavior extends from an early intent to link original recordings with templates while
keeping the templates small. To use templates produced with these functions, see corMatch or
binMatch. To combine template lists, see combineCorTemplates or combineBinTemplates.

Value

An S4 object of class corTemplatelList (returned by makeCorTemplate) or binTemplatelList
(returned by makeBinTemplate).

makeTemplate 43

Author(s)
Sasha D. Hafner and Jon Katz

References

Mellinger, DK, Clark, CW. 1997. Methods for automatic detection of mysticete sounds. Marine
and Freshwater Behaviour and Physiology 29, 163-181.

Towsey M, Planitz, B, Nantes, A, Wimmer, J, Roe, P. 2012. A toolbox for animal call recognition.
Bioacoustics 21, 107-125.
See Also

corMatch, binMatch, templateNames, templateCutoff

Examples

Load example Wave objects
data(btnw)
data(oven)

Use a Wave object directly to make a template

Not run:

Not run because it will create a file in user's working directory with write.wav = TRUE
wctl <- makeCorTemplate(btnw, name = "w1", write.wav = TRUE)

wctl

End(Not run)

For traceability, better to use acoustic files

Here, first write Wave objects to file (temporary directory used here)
btnw.fp <- file.path(tempdir(), "btnw.wav")

oven.fp <- file.path(tempdir(), "oven.wav")

writeWave(btnw, btnw.fp)

writeWave(oven, oven.fp)

Use default arguments except for name
wctl <- makeCorTemplate(btnw.fp, name = "wl")

Specify time and frequency limits to focus on a smaller area
wct2 <- makeCorTemplate(btnw.fp, t.lim = c(1.5, 2.1), frq.lim = c(4.2, 5.6), name = "w2")

For finer control, see options for select argument, e.g.,

Not run:

Not run because requires user interaction

wct3 <- makeCorTemplate(btnw.fp, select = "cell”, name = "w3")

wct4 <- makeCorTemplate(btnw.fp, select = "rectangle”, name = "w4")

End(Not run)

Use a different recording--different species here
oct1l <- makeCorTemplate(oven.fp, name = "o1”, t.lim = c(1, 4), frq.lim = c(1, 11))

44 monitoR

Reduce cell density
oct2 <- makeCorTemplate(oven.fp, name = "02", t.lim = c(1, 4), frq.lim = c(1, 11),
dens = 0.1)

Binary templates are similar

By default, amplitude cutoff is interactively set
Not run:

wbt1 <- makeBinTemplate(btnw.fp, name = "wl")

End(Not run)

Or specify cutoff directly
wbt1 <- makeBinTemplate(btnw.fp, amp.cutoff = -40, name = "wl")

Specify time and frequency limits to focus on a smaller area in spectrogram, and add a
buffer
Not run:
wbt2 <- makeBinTemplate(btnw.fp, amp.cutoff = -30, t.lim = c(1.5, 2.1),
frq.lim = c(4.2, 5.6), buffer = 2, name = "w2")

End(Not run)

For finer control, see options for select argument, e.g.,

Not run:

Not run because it requires user input to select cells for the template

wbt3 <- makeBinTemplate(btnw.fp, amp.cutoff = -40, t.lim = c(0.5, 2.5),
frg.lim = c(1, 11), select = "cell”, name = "w3")

wbt4 <- makeBinTemplate(btnw.fp, amp.cutoff = -40, t.lim = c(0.5, 2.5),
frg.lim = c(1, 11), select = "rectangle”, buffer = 3, name = "w4")

End(Not run)
Clean up (only because these files were created in these examples)
file.remove(btnw.fp)

file.remove(oven.fp)

TemplatelList plotting help:
method?plot('TemplatelList')

monitoR Automated Acoustic Monitoring—overview and examples

Description

monitoR contains functions for template matching, template construction, spectrogram viewing
and annotation, and direct MySQL database connectivity. This package offers two fully-supported
template matching algorithms: binary point matching and spectrogram cross-correlation. The direct
database connection facilitates efficient data management when batch processing as well as template

monitoR 45

storage and sharing. It supplies a database schema that is useful for managing recorders in the field
as well as functions for reading metadata from sound files when they are copied from external
media.

Details

For an introduction to the package see the vignette. For some introductory examples, see ‘Exam-
ples’ below.

Acknowledgments

A Fourier transformed is used in the monitoR package to transform time-domain acoustic data to
frequency-domain data (i.e., the data displayed in the spectrograms used to produce templates).
The spectro function used in our package is a pared-down version of a function of the same name
in Jerome Sueur’s excellent package seewave. To use spectro, the seewave functions dBweight,
ftwindow, hamming.w and other window functions, and stft are from seewave. The function
readMP3 is modified from Uwe Ligges’ package tuneR. And several other tuneR functions are
used directly from the tuneR package. Without seewave and tuneR this project would have gotten
off to a much slower start.

Generous funding for this work was provided by the National Park Service, the U.S. Geological
Survey, and the National Phenology Network.

Disclaimer

“Although this software program has been used by the U.S. Geological Survey (USGS), no war-
ranty, expressed or implied, is made by the USGS or the U.S. Government as to the accuracy and
functioning of the program and related program material nor shall the fact of distribution constitute
any such warranty, and no responsibility is assumed by the USGS in connection therewith.”

Functions in monitoR

Create a MySQL database (dbSchema), to which survey metadata, templates and metadata, and
results can be sent. Copy sound files from external media (fileCopyRename) and upload the
metadata to the database (dbUploadSurvey). View and interactively annotate sound files of any
length (viewSpec). Download a table of surveys from the database (dbDownloadSurvey), construct
a template (makeBinTemplate or makeCorTemplate), detect/score events in a survey (binMatch,
corMatch), apply a threshold to the scores (findPeaks), send the results to the database (dbUploadResult).

Author(s)

Sasha D. Hafner <sdh11@cornell.edu> and Jon Katz <jonkatz4@gmail.com>, with code for the
Fourier transform from the seewave package (by Jerome Sueur, Thierry Aubin, and Caroline Simo-
nis), and code for the readMP3 function from the tuneR package (by Uwe Ligges).

Maintainer: Sasha D. Hafner <sdh11@cornell.edu>

References

Ligges, Uwe. 2011. tuneR: Analysis of music. https://r-forge.r-project.org/projects/
tuner/

https://r-forge.r-project.org/projects/tuner/
https://r-forge.r-project.org/projects/tuner/

46

monitoR

Sueur J, Aubin, T, Simonis, C. 2008. Seewave: a free modular tool for sound analysis and synthesis.
Bioacoustics 18, 213-226.

Towsey M, Planitz, B, Nantes, A, Wimmer, J, Roe, P. 2012. A toolbox for animal call recognition.
Bioacoustics 21, 107-125.

Examples

View spectrograms
data(survey)
viewSpec(survey)

Annotate features

Not run:

Not run because it is interactive and a file is written to user's working directory
viewSpec(survey, annotate = TRUE)

View previous annotations
data(survey_anno)

write.csv(survey_anno, "survey_anno.csv”, row.names = FALSE)
viewSpec(survey, annotate = TRUE, anno = "survey_anno.csv"”, start.time = 5)
End(Not run)

Load example Wave object
data(btnw)
data(oven)

Write Wave objects to file (temporary directory used here)
btnw.fp <- file.path(tempdir(), "btnw.wav")

oven.fp <- file.path(tempdir(), "oven.wav")

survey.fp <- file.path(tempdir(), "survey2010-12-31_120000_EST.wav")

writeWave(btnw, btnw.fp)
writeWave(oven, oven.fp)
writeWave(survey, survey.fp)

Correlation example
Create two correlation templates
wct <- makeCorTemplate(btnw.fp, t.lim = c(1.5, 2.1), frq.lim = c(4.2, 5.6), name = "w")

oct <- makeCorTemplate(oven.fp, t.lim=c(1, 4), frq.lim=c(1, 11), dens = 0.1, name = "0")

Combine them
ctemps <- combineCorTemplates(wct, oct)

Calculate scores
cscores <- corMatch(survey.fp, ctemps)

Find peaks and detections
cdetects <- findPeaks(cscores)

mp3Subsamp 47

Not run:

Not run because it takes a second to draw the plot
View results

plot(cdetects, hit.marker = "points”)

Interactively inspect individual detections

Not run because it is interactive

cdetects <- showPeaks(cdetects, which.one = "w1", flim = c(2, 8), point = TRUE,
scorelim = c(@, 1), verify = TRUE)

End(Not run)

mp3Subsamp Extract Short Surveys from Longer mp3 Recordings

Description

Extract short surveys from longer mp3 recordings without decoding and re-encoding. Collects
metadata about surveys for upload to an acoustic database and renames files with original date
modified. Timing options are one or more surveys per hour starting at the beginning time of the
recording or one survey per hour starting on each hour.

Usage

non

mp3Subsamp(files, from = , to, csv.dir = to, csv.name, duration = 600,
mins.between = 50, index = "hour”, loc.prefix, CardRecorderID = NA,
kbps = 128, samp.rate = 44100, channels = 2, split = TRUE)

Arguments

files Optional vector of mp3 file paths to extract surveys from.

from Directory containing mp3 recordings to extract survey from; required only if
files is missing.

to Directory where surveys will be placed after extraction.

csv.dir Directory where csv file of survey metadata will be saved; defaults to the to
directory.

CSv.name Name assigned to csv file of metadata (character value ending in .csv).

duration Duration of surveys to extract (numeric, units = ’seconds’). Defaults to 600

seconds (10 minutes).

mins.between Number of minutes to skip between surveys (numeric). If index = "hour”,
the value for mins.between + duration x 60 (duration converted to minutes)
equals the repeat period. Defaults to 50 minutes, for a 60 minute repeat period.

index Character value indicating whether to take the first survey at the next hour in the
recording (identified based on file date modified) or simply from the start of the
recording. In c("hour”, "time@"). Defaults to "hour".

48

loc.prefix

CardRecorderID

kbps

samp.rate

channels

split

Details

mp3Subsamp

Six characters identifying the location at which the recording was made. Will
be used in the file name (see Details) and the csv file name. Must be in thlLoca-
tion.fldLocationName in the acoustics database.

Numeric key value from tblCardRecorder.pkCardRecorderID, which links the
recorder that made the recording with the location it was recorded.

Numeric value for mp3 bitrate. Common values are c(64, 128, 160, 192,
224, 256, 320). Must match the bitrate set by the recording device.

Numeric value for mp3 sample rate. Common values are c(22050, 44100,
48000). Must match the sample rate set by the recording device.

Numeric value for number of audio channels in mp3 file. Both "Stereo" and
"Joint Stereo" are 2-channel recordings. "Mono" is a 1-channel recording.

Logical. The default TRUE will send the call to mp3splt to subsample the surveys;
FALSE will generate metadata only.

This function calls mp3splt, a third party library that must be installed separately from https://
mp3splt.sourceforge.net/. This function supplants fileCopyRename as a file copying function
and a metadata collection tool when using the acoustic database.

The survey file names produced will be of the form PREFIX_YYYY-mm-dd_HHMSS.mp3. Sur-
veys from the same location can be linked by the location prefix and differentiated by different

modification dates.

Value

Data frame with metadata about the surveys. Metadata includes: the date modified (fldOriginal-
DateModified), the original recording name (fldOriginalRecordingName), the new survey name
(fildSurveyName), the recording format (fldRecordingFormat), the value for pkCardrecorderID (fk-
CardRecorderID), the duration of each survey (fldSurveyLength), the sample rate (fldSampleRate),
the bit depth (fldBitsperSample), and the number of channels (fldChannels).

Note

dbUploadSurvey assumes a database structure identical to that provided in the acoustics schema.

Author(s)

Jon Katz

See Also

See fileCopyRename to move wave files and prepare metadata for the database; dbUploadSurvey
to upload the survey metadata to the acoustics database.

https://mp3splt.sourceforge.net/
https://mp3splt.sourceforge.net/

oven 49

Examples

Specify individual files, 10 minutes every hour from the file start:

Not run: metadata <- mp3Subsamp(files = '~/media/SDcard/MA@1.mp3', to = '~/Desktop/Acoustics/Recordings"’,
csv.dir = '~/Desktop/Acoustics/Results', index = "time@"”, loc.prefix = '"MABIQ1', CardRecorderID =1

End(Not run)

10 minute surveys at the top of every hour, from an entire SD card:

Not run: metadata <- mp3Subsamp(from = '~/media/SDcard', to = '~/Desktop/Acoustics/Recordings’,
csv.dir = '~/Desktop/Acoustics/Results', loc.prefix = 'MABIQ@1', CardRecorderID = 1

End(Not run)

5 minute surveys every 30 minutes starting at the top of every hour, from an entire SD card:

Not run: metadata <- mp3Subsamp(from = '~/media/SDcard', to = '~/Desktop/Acoustics/Recordings’,
csv.dir = '~/Desktop/Acoustics/Results', duration = 300, mins.between = 25, loc.prefix = 'MABIO1',
CardRecorderID = 1

End(Not run)

oven Ovenbird (Seiurus aurocapilla) Song

Description

A 3 second wave recording of an Ovenbird (Seiurus aurocapilla) song.

Usage

data(oven)

Format

The format is:

Formal class 'Wave' [package "tuneR"] with 6 slots ..@left : int [1:120001] 84 170 281
14212955120 181126178 @right : num(@) ..@stereo : logi FALSE ..@ samp.rate: int
24000 . .@bit : int 16 ..@pcm : logi TRUE

Source

Sound clips were recorded in Vermont, USA in 2010. Equipment was a Wildlife Acoustics SM1(TM)
recorder recording in WACO format, converted to wave using the Wildlife Acoustics Wac2Wav
(TM) converter. Recording has a sample rate of 24kHz and is 16-bit mono.

Examples

data(oven)
viewSpec(oven)

50 plot-methods

plot-methods Methods for the plot Function

Description

Plotting acoustic templates and template scores

Usage

S4 method for signature 'TemplatelList,ANY'

plot(x, which.one = names(x@templates), click = FALSE,

ask = if(length(which.one)>1) TRUE else FALSE, spec.col = gray.3(), on.col = '#FFA50075",
off.col = '#0QQOFF75', pt.col = '#FFA50075', line.col = 'black')

S4 method for signature 'detectionList,ANY'

plot(x, flim = c(@, 12), scorelim,

which.one = names(x@templates), box = TRUE, spec.col = gray.2(), t.each
hit.marker = 'lines',

color = c('red', 'blue', 'green', 'orange', 'purple', 'pink', 'darkgreen', 'turquoise’,
'royalblue', 'orchid4', 'brown', 'salmon2'), legend = TRUE, all.peaks = FALSE,

ask = if(dev.list() == 2) TRUE else FALSE)

30,

Arguments
X A template list (TemplateList object) or detection list (detectionList object).
which.one Names of templates to be plotted.
click Set to TRUE to see values of locations on plot by mouse clicks.
ask Set to FALSE to eliminate pause between plots.
spec.col Color ramp for spectrogram.
on.col Color for “on” points (binary templates only).
off.col Color for “off” points (binary templates only).
pt.col Color for template points (correlation templates only).
line.col Color for lines if click = TRUE.
flim Frequency limits for plot.
scorelim Score limits for plot.
box If TRUE boxes are plotted in spectrogram for each detection.
t.each Duration shown in each individual plot (s).
hit.marker Type of marker used to show detections in score plot. Can be "lines” or
"points”.
color Colors used for individual templates.
legend Show legend?

all.peaks Indicate location of all peaks?

plot-methods 51

Author(s)
Sasha D. Hafner

See Also

makeCorTemplate, makeBinTemplate

Examples

Not run:

Not run because of the time required (maybe 5-10 seconds)
Also some plot calls require user input by default

Load data

data(btnw)

data(survey)

Write Wave objects to file (temporary directory used here)

btnw.fp <- file.path(tempdir(), "btnw.wav")

oven.fp <- file.path(tempdir(), "oven.wav")

survey.fp <- file.path(tempdir(), "survey2010-12-31_120000_EST.wav")
writeWave(btnw, btnw.fp)

writeWave(survey, survey.fp)

Create a template list

ctempl <- makeCorTemplate(btnw.fp, name = "wl")

ctemp2 <- makeCorTemplate(btnw.fp, t.lim =c(0@.5, 2.5), frg.lim=c(1, 10), dens = 0.1, name = "w2")
ctemps <- combineCorTemplates(ctempl, ctemp2)

Then it can be plotted like this
plot(ctemps)

Next call is not useful for template w1l but good for w2:
plot(ctemps, pt.col = "red")

Can plot just one template
plot(ctemps, which.one = 2, pt.col = "red")
plot(ctemps, which.one = "w2", pt.col = "red")

And to check values
plot(ctemps, which.one = 1, click = TRUE)

To plot detections, let's create some
cscores <- corMatch(survey.fp, ctemps)
cdetects <- findPeaks(cscores)

And to plot them:
plot(cdetects)

Clean up (only because these files were created in these examples)
file.remove(btnw.fp)
file.remove(survey.fp)

52 readMP3

End(Not run)

readMP3 Read MP3 Files into a Wave Object

Description

A variation of the MP3 file reader supplied in tuneR. Reads MP3 files in as 16bit PCM data stored
in a Wave object.

Usage

readMP3(filename, from, to)

Arguments
filename Filename of MP3 file.
from Seconds to begin reading, measured from beginning of file. See details.
to Seconds to end reading, measured from beginning of file. See details.
Details

The bare bones MP3 file reader supplied in tuneR reads the entire file in. When the user installs the
third party software mp3splt and libmp3splt, this variant will allow from and to to be specified, and
mp3splt will attempt to read in the MP3 segment without first decoding the file. Because mp3splt
will cut the MP3 file at frame boundaries the from and to arguments are necessarily only guiding
values; actual values may differ.

Value

An object of class Wave.

Note

If mp3splt is not installed a prompt will suggest falling back on the version from tuneR.

Author(s)

Jon Katz

References

mp3splt is documented at http://mp3splt.sourceforge.net/mp3splt_page/home.php.

See Also

readMP3, readWave

readTemplates 53

Examples

Not run:

Assume myMP3 is an MP3 file with a duration of at least 60 seconds:
readMP3 (filename = "myMP3.mp3"”, from = "30", to = "60")

End(Not run)

readTemplates Read Acoustic Templates from a Local Disk

Description

Read single templates stored on a local disk, or read in entire directories of templates.

Usage
readBinTemplates(files = NULL, dir = ".", ext = "bt", parallel = FALSE)
readCorTemplates(files = NULL, dir = ".", ext = "ct", parallel = FALSE)
Arguments
files Optional named vector of file names. See details.
dir Name of directory to read files from. Default is working directory.
ext Extension of files that should be read in. Files in dir without this extension will
be skipped. Not necessary if files is provided.
parallel Logical. TRUE uses mclapply, otherwise lapply is used.
Details

These functions can be used in three different ways, in both cases combing all templates read in into
a single template list. By specifying a character vector of file names for files, they will read in the
named files, and assign names based on file names. If files is a named vector, the vector names
will be used in the resulting template list. Finally, if files is not provided, the functions will read
in all saved templates with the extension ext.
Value

An object of class TemplatelList containing either binary point templates or spectrogram cross-
correlation templates.

Author(s)
Sasha D. Hafner

See Also

writeBinTemplates, writeCorTemplates

54 show-methods

Examples

Load data
data(btnw)
data(oven)

Write Wave objects to file (temporary directory used here)
btnw.fp <- file.path(tempdir(), "btnw.wav")

oven.fp <- file.path(tempdir(), "oven.wav")

writeWave(btnw, btnw.fp)

writeWave(oven, oven.fp)

Correlation example

Create one correlation templates

wctl <- makeCorTemplate(btnw.fp, name = "wl")

wct2 <- makeCorTemplate(btnw.fp, t.lim = c¢(1.5, 2.1), frq.lim = c(4.2, 5.6), name = "w2")
octl <- makeCorTemplate(oven.fp, t.lim = c(1, 4), frq.lim = c(1, 11), name = "ol1")

oct2 <- makeCorTemplate(oven.fp, t.1lim=c(1, 4), frq.lim=c(1, 11), dens = 0.1, name = "02")

Combine all of them
ctemps <- combineCorTemplates(wctl, wct2, octl, oct2)

Not run:
Write ctemps to a directory "templates”
writeCorTemplates(ctemps, dir = "templates”)

Read in all correlation templates in a directory "templates”
ctemps <- readCorTemplates(dir = "templates”)

Read in two specific files
ctemps <- readCorTemplates(files = c("ol.ct”, "o02.ct"), dir = "templates”)

Read in two specific files, and give them names
ctemps <- readCorTemplates(files = c(ovenl = "o1.ct”, oven2 = "02.ct"), dir = "templates”)

End(Not run)
Clean up (only because these files were created in these examples)

file.remove(btnw.fp)
file.remove(oven.fp)

show-methods Methods for the show and summary Functions

Description

These methods are used for viewing template lists and other objects. For all types of objects docu-
mented here, show and summary will produce identical results.

show-methods 55

Methods

signature(object = "binTemplatelList”) Displays a summary of binTemplatelList objects.
signature(object = "corTemplateList"”) Displays a summary of corTemplateList objects.
signature(object = "TemplateList”) Displays a summary of Templatelist objects.
signature(object = "detectionList"”) Displays a summary of detectionList objects.

signature(object = "templateScores”) Displays a summary of templateScores objects.

Author(s)

Sasha D. Hafner

See Also

makeCorTemplate, makeBinTemplate

Examples

Load data
data(btnw)
data(oven)

Write Wave objects to file (temporary directory used here)
btnw.fp <- file.path(tempdir(), "btnw.wav")

oven.fp <- file.path(tempdir(), "oven.wav")

writeWave(btnw, btnw.fp)

writeWave(oven, oven.fp)

Correlation example

Create two correlation templates

wct <- makeCorTemplate(btnw.fp, t.lim = c(1.5, 2.1), frq.lim = c(4.2, 5.6), name = "w")
oct <- makeCorTemplate(oven.fp, t.lim = c(1, 4), frq.lim=c(1, 11), dens = @.1, name = "0")

Combine them
ctemps <- combineCorTemplates(wct, oct)

Then for a quick summary:
ctemps

Clean up (only because these files were created in these examples)
file.remove(btnw.fp)
file.remove(oven.fp)

56 showPeaks

showPeaks View or Verify Detections or Peaks

Description

Use this function to view a spectrogram and score plot of detections or peaks. In its simplest usage,
showPeaks will show all detections within for the first template within the detection list object, one
after the other. With the verify option (verify = TRUE), the user can tag detections or peaks as TRUE
or FALSE, and these results will be saved in an updated detection list object.

Usage

showPeaks(detection.obj, which.one = names(detection.obj@templates)[1], fd.rat = 4,
frame = fd.rat * detection.obj@templates[[which.one]l]@duration, id = 1:nrow(pks),
t.lim, flim = c(@, 20), point = TRUE, ask = if (verify) FALSE else TRUE,
scorelim = NULL, verify = FALSE, what = "detections"”, box = TRUE,

player = "play”, spec.col = gray.3(), on.col = '#FFA50075', off.col = '#0QQQFF75",
pt.col = '#FFA50075')

Arguments

detection.obj A detection list object (detectionList).

which.one Which template should be shown? Identify by name or position. Length-one
integer or character vector.

fd.rat Ratio of plot frame (time duration of plots) to template duration.

frame Or, specify the plot frame (x limits of plots) instead of fr.rate. Length-one
numeric vector.

id Use to specify which peaks or detections will be shown. Integer vector.

t.lim Or, to view only those detections or peaks within a certain time range, specify it
here. Length-two numeric vector.

flim Frequency limits (y axis limits) for the spectrogram. Length-two numeric vector.

point If TRUE, plot points to show detection or peak locations.

ask The setting of the par setting ask. Default value is based on other arguments,
and should suffice in most cases.

scorelim Score limits (y axis limits) for the score plot.

verify If TRUE, R will prompt user to identify whether detections are TRUE

what Should all peaks (what = "peaks") or just detections (what = "detections")
be shown?

box If TRUE plot a box around detections in the spectrogram. Box boundaries are

based on template duration and frequency limits. Can also be set to "template"
to see the template points plotted over the detection.

player If verify = TRUE, the user will have the option to play the detection or peak.
This argument is the command used for starting the player. See Details.

showPeaks 57

spec.col A vector of colors for the spectrogram.

on.col Colors for the on points of a binary point template, if box = "template”. De-
fault is #RRGGBBAA, where AA is the transparency.

off.col Colors for the off points of a binary point template, if box = "template”. De-
fault is #RRGGBBAA, where AA is the transparency.

pt.col Colors for the points of a correlation template, if box = "template”. Default is

#RRGGBBAA, where AA is the transparency.

Details

Note that almost all of the arguments have a default value.

The default audio player, "play", is the shell command for SoX, the multi-OS media player. Win-
dows will detect the file type and use the default media player with "start", or you can specify one
(such as Windows Media Player) with "start wmplayer.exe". On Ubuntu try Rhythmbox ("rhythm-
box"), and on Mac OS try afplay ("afplay").

Value

NULL, invisibly, or, if verify = TRUE, an updated detection list object (detectionList).

Author(s)

Sasha D. Hafner

See Also

findPeaks, plot-methods

Examples

Load data
data(btnw)
data(oven)
data(survey)

Write Wave objects to file (temporary directory used here)

btnw.fp <- file.path(tempdir(), "btnw.wav")

oven.fp <- file.path(tempdir(), "oven.wav")

survey.fp <- file.path(tempdir(), "survey2010-12-31_120000_EST.wav")
writeWave(btnw, btnw.fp)

writeWave(oven, oven.fp)

writeWave(survey, survey.fp)

Correlation example

Create two correlation templates

wct <- makeCorTemplate(btnw.fp, t.lim = c(1.5, 2.1), frq.lim = c(4.2, 5.6), name = "w")
oct <- makeCorTemplate(oven.fp, t.lim=c(1, 4), frq.lim=c(1, 11), dens = 0.1, name = "0")

Combine them
ctemps <- combineCorTemplates(wct, oct)

58 specCols

Calculate scores
cscores <- corMatch(survey.fp, ctemps)

Find peaks and detections
cdetects <- findPeaks(cscores)
cdetects

Interactively inspect individual detections, no return value

Not run:

Not run because user input is required

showPeaks(detection.obj = cdetects, which.one = "w", flim = c(2, 8), point = TRUE,
scorelim = c(0, 1))

Interactively verify individual detections, return adds verification field
cdetects <- showPeaks(detection.obj = cdetects, which.one = "w", flim = c(@, 20),

point = TRUE, scorelim = c(@, 1), verify = TRUE)

End(Not run)

specCols Color Vectors for Spectrograms

Description

Functions to generate a selection of color vectors for spectrograms based on existing color vectors
for images in grDevices. Vectors are reversed relative to their parent (i.e. numerical sequences
progress from 1 to O rather than O to 1).

Usage

gray.1(n = 30)
gray.2(n = 30)
gray.3(n = 30)
rainbow.1(n = 15)
topo.1(n = 12)

Arguments
n A vector of desired color levels between 1 and 0; one indicates high amplitude
("black”, "red", or "blue") and zero indicates low amplitude ("white", "purple",
or "tan").
Details

The n argument will divide the vector into n color levels.

survey 59

Value

A vector of colors.

Author(s)
Jon Katz, Sasha D. Hafner

References

Based on the color palettes from grDevices, and loosely on those used in seewave

See Also

gray, rainbow, topo.colors, terrain.colors

Examples

spec.test <- function(mat, spec.col) image(z = t(mat), col = spec.col)
mat <- matrix(1:30, ncol = 6, byrow = TRUE)

spec.test(mat = mat, spec.col = gray.1())
spec.test(mat = mat, spec.col = gray.2())
spec.test(mat = mat, spec.col = gray.3())
spec.test(mat = mat, spec.col = rainbow.1())
spec.test(mat = mat, spec.col = topo.1())

Not run:

Colors are defined as:

gray.1 <- function(n = 30) gray(seq(l, @, length.out = n))
gray.2 <- function(n = 30) gray(1-seq(@, 1, length.out = n)*2)
gray.3 <- function(n = 30) gray(1-seq(@, 1, length.out = n)*3)
rainbow.1 <- function(n = 15) rev(rainbow(n))

topo.1 <- function(n = 12) rev(topo.colors(n))

End(Not run)

survey Sample Acoustic Survey (Short)

Description

A composite wave file 23.5 seconds long containing 3 black-throated green warbler (Setophaga
virens) songs (at 1.8, 10.5, and 21.6 seconds) and 4 ovenbird (Seiurus aurocapilla) songs (at 5.8,
9.1, 14.8, and 22.0 seconds). The ovenbird song at 14.8 seconds is considerably lower amplitude
than the others.

Usage

data(survey)

60 survey_anno

Format

The format is:

Formal class 'Wave' [package "tuneR"]J with 6 slots ..@left : int [1:564000] 135 192 230
163 158 230 289 277 249280 @right : num(@) ..@stereo : logi FALSE ..@ samp.rate:
int 24000 ..@bit : int 16 ..@pcm : logi TRUE

Source

Sound clips were recorded in Vermont, USA in 2010. Equipment was a Wildlife Acoustics SM1(TM)
recorder recording in WACO format, converted to wave using the Wildlife Acoustics Wac2Wav
(TM) converter. Recording has a sample rate of 24kHz and is 16-bit mono.

Examples

data(survey)
viewSpec(survey)

survey_anno Annotations for survey

Description

Data frame containing annotations for the data file survey.

Usage

data(survey_anno)

Format

The format is: ’data.frame’: 7 obs. of 5 variables: $ start.time: num 1.06 4.21 7.559.85 13.84 ... $
end.time : num 2.59 7.41 10.7 11.06 15.85 ... $ min.frq : num 3.61 2.58 2.63 3.88 2.82 ... $ max.frq
: num 6.35 9.54 9.33 6.25 6.39 ... $ name : Factor w/ 2 levels "BTNW", "OVEN": 1221221

Details

These annotations can be plotted onto the spectrogram by loading them in with the anno argument
of viewSpec.

Examples

Not run:

View annotations

data(survey)

data(survey_anno)

write.csv(survey_anno, "survey_anno.csv”, row.names = FALSE)
viewSpec(survey, annotate = TRUE, anno = "survey_anno.csv")

End(Not run)

Template-class 61

Template-class Class "Template”

Description

A template is an object with acoustic information (frequency, time, and amplitude) on an animal
volcalization. Objects of class "corTemplate” are correlation templates, which contain quantita-
tive data on amplitude. Objects of class "binTemplate” are binary templates, which contain only
qualitative data on amplitude: only whether the it is high (“on” cells) or low (“off™) cells. The class
"Template” is a virtual class, and both types of templates have this class. Templates are always
stored as part of a Templatelist, either a corTemplatelList ora binTemplatelList.

Objects from the Class

Objects can be created by calls of the form new("corTemplate”, ...) or new("binTemplate”,
.. .). However, users should not work directly with objects of this class, but only with corTemplatelList
or binTemplatelList, which can be created as described in the documentation for TemplatelList.

Slots

clip.path: Object of class character. The file path of the original recording used to create the
template.

samp.rate: Object of class integer. The sample rate of the recording.

pt.on: Object of class matrix (binTemplate class only). A two-dimensional matrix with time
(column 1) and frequency (column 2) bins for “on” points. Bin locations are relative to the
first bin (“on” or “off”’), which has a value of 1.

pt.off: Object of class matrix (binTemplate class only). A two-dimensional matrix with time
(column 1) and frequency (column 2) bins for “off” points. Bin locations are relative to the
first bin (“on” or “off”), which has a value of 1.

pts: Object of class "matrix” (corTemplate class only). A two-dimensional matrix with time
(column 1) and frequency (column 2) bins, and amplitude (column 3).

t.step: Object of class numeric. Time step between time bins (sec).

frq.step: Object of class numeric. Frequency step between frequency bins (kHz).

n.t.bins: Object of class integer. Total number of time bins in the template.

first.t.bin: Object of class numeric. Time of the first time bin in the original recording (sec).
n.frg.bins: Object of class integer. Total number of frequency bins.

duration: Object of class numeric. Template duration (sec).

frq.lim: Object of class numeric. Frequency limits (kHz).

wl: Object of class integer. Value of argument wl used in the spectro function call when the
template was created.

ovlp: Object of class integer. Value of argument ovlp used in the spectro function call when
the template was created.

62 templateComment

wn: Object of class character. Value of argument wn used in the spectro function call when the
template was created.

score.cutoff: Object of class numeric. The cutoff that will be used to identify detections when
this template is used.

Extends

Classes corTemplate and binTemplate extend Template, directly.

Methods

No methods defined with these classes in the signature. But see TemplatelList.

Author(s)
Sasha D. Hafner

See Also

binTemplatelList, corTemplatelList, TemplatelList
Examples

showClass("Template”)

showClass("corTemplate")

showClass("binTemplate")

templateComment Query or Set Template Cutoffs

Description

Use this function to add or check comments to templates within template lists (corTemplatelList
or binTemplatelList objects), scores (templateScores objects), or detection list (detectionList
objects).

Usage

templateComment (object)
templateComment (object) <- value

Arguments

object A binary or correlation template list (class binTemplatelList or corTemplatelList).

value A character vector with the new comment.

templateComment 63

Details

templateComment is an accessor function and templateComment <- is a replacement function.
For replacement, the value object should be as long as the number of templates in object (or the
number selecting via indexing) unless it is a named vector (see Examples).

Value

For extraction, a numeric vector of the same length as object with comments. For replacement,
the updated object.

Author(s)
Sasha D. Hafner

See Also

templateNames, templateCutoff, getTemplates

Examples

Load data
data(btnw)
data(oven)

Write Wave objects to file (temporary directory used here)
btnw.fp <- file.path(tempdir(), "btnw.wav")

oven.fp <- file.path(tempdir(), "oven.wav")

writeWave(btnw, btnw.fp)

writeWave(oven, oven.fp)

Create four correlation templates

wctl <- makeCorTemplate(btnw.fp, name = "wl")

wct2 <- makeCorTemplate(btnw.fp, t.lim = c¢(1.5, 2.1), frq.lim = c(4.2, 5.6), name = "w2")
octl <- makeCorTemplate(oven.fp, t.lim = c(1, 4), frq.lim = c(1, 11), name = "o1")

oct2 <- makeCorTemplate(oven.fp, t.lim=c(1, 4), frq.lim=c(1, 11), dens = 0.1, name = "02")

Combine all of them
ctemps <- combineCorTemplates(wct1, wct2, octl, oct2)
ctemps

Add a comment for two templates
templateComment(ctemps) <- c(wl = "This is the best template so far.”,

ol = "Should we drop the lowest syllable?")

Add a default comment also

templateComment(ctemps) <- c(wl = "This is the best template so far.”,
ol = "Should we drop the lowest syllable?”,
default = "These templates have not been tested.")

View comments
templateComment (ctemps)

64 templateCutoff

Clean up (only because these files were created in these examples)
file.remove(btnw.fp)
file.remove(oven.fp)

templateCutoff Query or Set Template Cutoffs

Description

Use this function to check or change the values of score cutoff in template lists (corTemplatelList
orbinTemplatelList objects), scores (templateScores objects), or detections list (detectionList
objects).

Usage

templateCutoff(object)
templateCutoff(object) <- value

Arguments
object A binary or correlation template list (class binTemplatelList or corTemplatelList).
value A numeric vector with the new score cutoff.

Details

templateCutoff is an accessor function and templateCutoff <- is a replacement function.
For replacement, the value object should be as long as the number of templates in object (or the
number selecting via indexing) unless it is a named vector (see Examples).

Value
For extraction, a numeric vector of the same length as object with score cutoffs. For replacement,

the updated object.

Author(s)

Sasha D. Hafner

See Also

templateNames, templateComment

TemplateList-class 65

Examples

Load data
data(btnw)
data(oven)

Write Wave objects to file (temporary directory used here)
btnw.fp <- file.path(tempdir(), "btnw.wav")

oven.fp <- file.path(tempdir(), "oven.wav")

writeWave(btnw, btnw.fp)

writeWave(oven, oven.fp)

Create four correlation templates

wctl <- makeCorTemplate(btnw.fp, name = "wl")

wct2 <- makeCorTemplate(btnw.fp, t.lim = c¢(1.5, 2.1), frq.lim = c(4.2, 5.6), name = "w2")
octl <- makeCorTemplate(oven.fp, t.lim = c(1, 4), frq.lim = c(1, 11), name = "o1")

oct2 <- makeCorTemplate(oven.fp, t.1lim=c(1, 4), frqg.lim=c(1, 11), dens = 0.1, name = "02")

Combine all of them
ctemps <- combineCorTemplates(wctl, wct2, octl, oct2)
ctemps

Check cutoffs
templateCutoff (ctemps)

Change all like this

templateCutoff(ctemps) <- c(0.35, .35, 0.35, 0.35)
or this

templateCutoff(ctemps) <- c(default = 0.35)

Change select ones like this
templateCutoff(ctemps) <- c(ol = 0.45, 02 = 0.45)
or this

templateCutoff(ctemps)[c(3, 4)] <- 0.45

Could combine these two steps
templateCutoff(ctemps) <- c(default = 0.35, o1 = 0.45, 02 = 0.45)

Clean up (only because these files were created in these examples)
file.remove(btnw.fp)
file.remove(oven.fp)

TemplatelList-class Class "TemplateList”

Description

A template is an object with acoustic information (frequency, time, and volume) on an animal vol-
calization. In monitoR, all templates are stored within a template list, which has the (virtual) class
TemplateList. Because the structure of the two types of templates differs slightly (see Template),

66 TemplateList-class

there are actually two classes for template lists: corTemplateList and binTemplatelList, and the
virtual class TemplatelList (which includes both types of template lists) is used to define most
methods.

Objects from the Class

Objects can be created by calls of the form new("”corTemplateList”, ...) ornew("binTemplatelList”,
.. .). However, objects should always be created with the template-creation functions makeCorTemplate
or makeBinTemplate, or else by reading from a file using readCorTemplates or readBinTemplates.
There are also functions for modifying existing template lists or extracting template lists from other
objects.

Slots

templates: Object of class "1ist" A list of either corTemplate or binTemplate objects.

Extends

Classes corTemplatelList and binTemplatelList extend the virtual class Templatelist, directly.

Methods

show signature(object = "corTemplatelList”): ...
summary signature(object = "corTemplateList”): ...
show signature(object = "binTemplatelList"): ...
summary signature(object = "binTemplatelList"”): ...

plot signature(x = "TemplatelList"”, y = "ANY"): ...

Note

For details on the structure of the actual templates, see Template.

Author(s)
Sasha D. Hafner

See Also

Template, combineBinTemplates, templateCutoff, templateComment, getTemplates, plot-methods
[-methods

Examples
showClass("TemplateList"”)
showClass("corTemplatelList")

showClass("binTemplatelList")

templateMatching 67

templateMatching Calculate Spectrogram Template Matching Scores

Description

These functions are used to calculate spectrogram template matching scores between a set of tem-
plates and an acoustic survey using spectrogram cross correlation (corMatch) or binary point match-
ing (binMatch).

Usage

corMatch(survey, templates, parallel = FALSE, show.prog = FALSE, cor.method = "pearson”,
time.source = "filename"”, rec.tz = NA, write.wav = FALSE, quiet = FALSE, ...)

binMatch(survey, templates, parallel = FALSE, show.prog = FALSE, time.source = "filename”,

rec.tz = NA, write.wav = FALSE, report.amp = FALSE, quiet = FALSE, ...)
Arguments

survey A file path to a wav or mp3 recording, or a Wave object. The survey is the
acoustic survey that you want to make detections within.

templates A template list—a corTemplateList object for corMatchorabinTemplatelList
object for binMatch.

parallel If TRUE, mclapply is used for calculation of scores across all time bins for each
template. This option is not available for Windows operating systems.

show. prog If TRUE, progress will be reported during the score calculations.

cor.method For corMatch, the method used to calculate correlation coefficients (see ?cor).

time.source The source of date and time information. filename will look in the name of
the survey file (survey argument) for a date and time with format YYYY-MM-
DD_HHMMSS_TimeZone. "fileinfo” will take the date and time from the
file modification information. See details.

rec.tz Time zone for which the recordings were made (optional). Needed if different
from the time zone setting of the operating system, when times will be adjusted
to the ‘correct’ time zone. See details.

write.wav If survey is a Wave object, should it be written to file? If FALSE, functions will
return an error.

report.amp If TRUE, binMatch will return the mean “on” and “off” amplitudes as well as
their difference (the score). See details.

quiet Use TRUE to suppress status updates to the console. Does not suppress messages

or warnings.

Additional arguments to the spectro function.

68 templateMatching

Details

Scores are refereced by both the time elapsed since the beginning of the recording and the time of
day on the date the recording was made. For times derived from the date modified of the record-
ing file (time.source = "fileinfo") to be accurate the sound file must not have been edited (no
samples added or removed) since its original creation. File copying and duplication (as from re-
moveable media to a storage drive) should not affect the date modified, although the creation date
will be reset. Date modified values are stored in the time zone when they were recorded but will
be translated to the current time zone when read, which may result in errors due to daylight sav-
ings changes or when recorded surveys are shared across time zones. Time zone management
is tricky; if recordings were made in a different time zone than the operating system running
fileCopyRename, you can specify the correct time zone for the recordings with the rec.tz ar-
gument. Unexpected results are possible, as time zone abbreviations in general use may not match
those in the Internet Assigned Numbers Authority tz database. The most reliable way to specify time
zone is to use the full name, most quickly seen using 0lsonNames, and also found on Wikipedia:
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones. Times derived from a
date-time value encoded in the file name (time.source = "filename") are more stable in regard,
and are automatically created with either fileCopyRename or mp3Subsamp.

Binary point matching scores each time frame by computing the difference between the mean am-
plitude in the “on” cells and the mean amplitude in the “off” cells. The resulting score can be a
rough estimate of signal:noise.

Value

An S4 object of class templateScores, with the following slots:

survey.name The file path to the survey that the scores apply to.
survey The actual survey as a Wave object.

survey.data A named list with one element per template. Each element is a named list with
time-domain results for the survey.

templates The templates (an S4 object of class corTemplateList or binTemplatelList)
used to calculate the scores.
scores A named list with an element for each template. Each element contains the
scores for an individual template.
time A character vector containing information on the run time.
Note

Cross-correlation values are not normalized.

Note

For examples, see findPeaks and getDetections.

Author(s)
Sasha D. Hafner and Jon Katz

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

templateNames 69

References
Mellinger, D. K. and C. W. Clark. 1997. Methods for automatic detection of mysticete sounds.
Marine and Freshwater Behaviour and Physiology. 29, 163-181.

Towsey, M., B. Planitz, A. Nantes, J. Wimmer, and P. Roe. 2012. A toolbox for animal call
recognition. Bioacoustics-the International Journal of Animal Sound and Its Recording 21, 107-

125.
See Also

makeCorTemplate, makeBinTemplate, findPeaks, getDetections, getPeaks, fileCopyRename
mp3Subsamp

templateNames Names of Templates

Description

Functions to check or change the names of templates within an acoustic template list.

Usage

templateNames(object)
templateNames(object) <- value

Arguments
object An acoustic template list, i.e., a corTemplatelList or binTemplatelList object.
value A character vector of names. May be named.

Details

This function is analogous to the function names.

Value
For names, NULL or a character vector of the same length as object. For names <-, the updated
template list, i.e., the original template list with only the names changed.

Author(s)
Sasha D. Hafner

See Also

makeCorTemplate, makeBinTemplate, templateComment, templateCutoff

70 templatePath

Examples

Load data
data(btnw)
data(oven)
data(survey)

Write Wave objects to file (temporary directory used here)
btnw.fp <- file.path(tempdir(), "btnw.wav")

oven.fp <- file.path(tempdir(), "oven.wav")

writeWave(btnw, btnw.fp)

writeWave(oven, oven.fp)

Create four correlation templates

wctl <- makeCorTemplate(btnw.fp, name = "wl")

wct2 <- makeCorTemplate(btnw.fp, t.lim = c¢(1.5, 2.1), frq.lim = c(4.2, 5.6), name = "w2")
oct1l <- makeCorTemplate(oven.fp, t.lim = c(1, 4), frqg.lim = c(1, 11), name = "01")

oct2 <- makeCorTemplate(oven.fp, t.lim=c(1, 4), frq.lim=c(1, 11), dens = 0.1, name = "02")

Combine all of them
ctemps <- combineCorTemplates(wct1, wct2, octl, oct2)
ctemps

To check template names
templateNames(ctemps)

Change the first two
templateNames(ctemps)[1:2] <- c("warbler 1", "warbler 2")

Change all
templateNames(ctemps) <- c("a", "b", "c", "d")

To check template names
templateNames(ctemps)

Clean up (only because these files were created in these examples)
file.remove(btnw.fp)
file.remove(oven.fp)

templatePath Song clip path of Templates

Description

Functions to check or change the song clip path of templates within an acoustic template list.

Usage

templatePath(object)
templatePath(object) <- value

templatePath 71

Arguments
object An acoustic template list, i.e., a corTemplateList or binTemplatelList object.
value A character vector of paths. May be named.

Details

This function works in the same way as the function names. No check is performed to ensure that
the specified path is valid.

Value

For filePath, NULL or a character vector of the same length as object. For filePath <-, the
updated template list, i.e., the original template list with only the clip.path values changed.

Author(s)
Sasha D. Hafner

See Also

makeCorTemplate, makeBinTemplate, templateComment, templateCutoff, templateNames,

Examples

Load data
data(btnw)
data(oven)

Write Wave objects to file (temporary directory used here)
btnw.fp <- file.path(tempdir(), "btnw.wav")

oven.fp <- file.path(tempdir(), "oven.wav")

writeWave(btnw, btnw.fp)

writeWave(oven, oven.fp)

Create four correlation templates

wct1 <- makeCorTemplate(btnw.fp, name = "wl")

wct2 <- makeCorTemplate(btnw.fp, t.lim = c(1.5, 2.1), frq.lim = c(4.2, 5.6), name = "w2")
octl <- makeCorTemplate(oven.fp, t.lim = c(1, 4), frq.lim = c(1, 11), name = "ol1")

oct2 <- makeCorTemplate(oven.fp, t.1lim=c(1, 4), frq.lim=c(1, 11), dens = 0.1, name = "02")

Combine all of them
ctemps <- combineCorTemplates(wctl, wct2, octl, oct2)

ctemps

To check paths
templatePath(ctemps)

Change the first two
templatePath(ctemps)[1:2] <- c("~/templates/btnw.wav"”, "~/templates/btnw.wav")

Clean up (only because these files were created in these examples)

72

templateScores-class

file.remove(btnw.fp)
file.remove(oven.fp)

templateScores-class Class "templateScores”

Description

These objects contain template scores, which indicate how well templates match a single survey
recording, with a value for each time bin. Additionally, all the objects which were used to create
these scores are also saved within the objects. Objects of this class represent an intermediate step
in the template detection process—detections need to be found in the scores using findPeaks.

Objects from the Class

Objects can be created by calls of the form new("”templateScores”, ...). However, they should
always be created with the corMatch or binMatch function.

Slots

survey.name: Object of class character. The name of the survey file, or "A Wave object” if the
survey was not read in from a file.

survey: Object of class Wave. The survey data, as a "Wave" object.

survey.data: Object of class 1list. A named list, with one element for each template. Each
element contains data from a Fourier transform of the original survey: amp is a matrix of
amplitudes (frequency by time), t.bins is a numeric vector with the values of the time bins
(left-aligned—first bin is always 0.0), and frq.bins is a numeric vector with the values of the
frequency bins (top-aligned—last bin is always the upper limit). There is a separate element for
each template because each template may use different parameters for the Fourier transform
(see Template).

templates: Object of class list. A named list of templates, which is identical to the origi-
nal TemplatelList used for template matching. This template list can be extracted with
getTemplates.

scores: Object of class 1ist. A named list, with one element for each template. Each element
is a data frame with three columns: date.time is the absolute time of the score, time is the
relative time of the score (relative to the survey start), and score is the score. Times are based
on the center of the template, and so time will not correspond to values in t.bins in the
survey.data above if the template spans an even number of time bins.

time: Object of class character. Information on the time corMatch or binMatch took to run. The
first element is the run time (s), and the second element is “real-time factor” (survey length
divided by the run time).

Methods

show signature(object = "templateScores”): ...

summary signature(object = "templateScores”): ...

timeAlign 73

Author(s)
Sasha D. Hafner

See Also

findPeaks, detectionList

Examples

showClass("templateScores")

timeAlign Condense Detections or Peaks from Multiple Templates

Description

Condense detections or peaks from a number of templates (of the same detection type); events that
occur within an adjustable time buffer of one another are assumed to be duplicate detections. In
such cases the event with the highest score is saved. Functions with detections for a single species
or multiple species.

Usage

timeAlign(x, what = "detections”, tol = 1)

Arguments
X An object of class detectionList, a single data frame of detections, or list of
either file paths to a csv file or of data frames.
what Character, in c("detections”, "peaks"). Detections are peaks above a score
cutoff. Peaks are all peaks. Required only if x is of class detectionList
tol Numeric value for tolerance, with units seconds. If a detected event is within
this value (actually +/- 0.5tol), the events are assumed to co-occur and be of
the same origin. A somewhat arbitrary value (like epsilon), but should be less
than 2/3 the template duration.
Details

If input is an object of class detectionList, a single data frame, or list of either file paths or data
frames. Must be called for each survey.

Value

Returns a single data frame of detections (the input x) with duplicated events removed, leaving only
the event that had the highest score.

74 timeAlign

Note

Events are assumed to be duplicated if they co-occur within a time duration of tol, but they are only
compared to the event above and below when ordered by time. Events with similar times can be
spuriously discarded if tol is set larger than the separation of unrelated peaks. Excessive deletion
of events may also occur if the value for tol is set larger than the duration of the template. Note
that in this function tol specifies seconds, whereas in findPeaks tol specifies a ratio.

Author(s)

Jon Katz

See Also

The function eventEval operates similarly, but rather than merge detection results from multiple
templates it compares them to known events and reports the True +, True -, False +, and False -
rates.

Examples

Not run:

Not run because it will create files in user's working directory
data(survey)

data(btnw)

writeWave(btnw, "btnw.wav")
btnw2 <- cutw(survey, from = 0.75, to = 3)
writeWave(btnw2, "btnw2.wav")

Template construction

btnw1l <- makeBinTemplate(
"btnw.wav",
frqg.lim = c(2, 8),
select = "auto”,
name = "btnwl"”,
buffer = 4,
amp.cutoff = -31,
binary = TRUE)

btnw2 <- makeBinTemplate(

"btnw2.wav",
frg.lim = c(2, 8),
select = "auto”,
name = "btnw2",
buffer = 4,

amp.cutoff = -24,
binary = TRUE)

Join templates
btnw <- combineBinTemplates(btnwl, btnw2)

viewSpec 75

Binary point matching
scores <- binMatch(survey = survey, templates = btnw, time.source = 'fileinfo')

Isolate peaks
pks <- findPeaks(scores)

View detections
getDetections(pks)

Compare to output of timeAlign
timeAlign(pks)
End(Not run)

viewSpec Interactively View and Annotate Spectrograms

Description

Interactively page through short or long spectrograms of wav or mp3 files or Wave objects. Ex-
tract short or long wave files, play audio while viewing spectrogram, and annotate sounds in the
spectrogram. Load annotations from csv files for viewing.

Usage

viewSpec(clip, interactive = FALSE, start.time = 0,
units = "seconds"”", page.length = 30,
annotate = FALSE, anno, channel = "left",
output.dir = getwd(), frqg.lim = c(@, 12), spec.col = gray.3(),
page.ovlp = 0.25, player = "play”, wl = 512, ovlp = 0,

wn = "hanning”, consistent = TRUE,
mp3.meta = list(kbps = 128, samp.rate = 44100, stereo = TRUE),
main = NULL, ...)
Arguments
clip File path to wav file, mp3 file, or wave object. See Details.

interactive Logical. FALSE displays the first 30 seconds (or more, if page.length is in-
creased) of a spectrogram. TRUE enables the options to page through spectro-
grams, zoom in time and frequency, play, extract segments, and annotate. See

Details.
start.time Time in file to start reading.
units Units for start.time. Available units are c("seconds"”, "minutes”, "hours")

Defaults to "seconds".

page.length Duration of page length to view, in seconds. Can be repeatedly halved and
doubled within the function.

76

viewSpec

annotate Logical, to allow sounds to be highlighted and named on the spectrogram. See
Details.

anno Character, file path to csv containing annotations. Read in only if annotate =
TRUE.

channel Character value in c("left"”, "right”, "both"). Stereo recordings may be
viewed as single channel or multi-channel spectrograms. See Details.

output.dir File path to directory where extracted clips and annotations will be saved, if
other than the current working directory.

frq.lim Initial frequency limits to spectrogram, in kHz. Accepts a 2 element vector. Can
be adjusted from within the function.

spec.col Color (or grayscale) gradient to apply to the spectrogram. See Details.

page.ovlp Numeric value between 0 and 1. Proportion of page.length to overlap when
moving to a new page.

player Character value specifying an audio player to play the portion of the file corre-
sponding to the visible spectrogram.

wl Numeric value specifying number of samples per window in the Fourier Trans-
form. Accepts powers of 2: c(128, 256, 512, 1024, 2048)

ovlp Numeric value specifying window overlap in the Fourier Transform. Specified
as a percent between 0 and 99.

wn Character value specifying window function in the Fourier Transform. Defaults
to "hanning”; "hamming” is also implemented.

consistent Logical, offers a method of maintaining color gradient map from page to page.
See Details.

mp3.meta List of metadata used when paging through mp3 files using mp3splt. kbps is the
compression rate, samp.rate is the sample rate, and stereo is logical where
TRUE represents both stereo and JntStereo.

main Optional character object with which to name the spectrogram. If NULL the file
name will be used if possible.
Additional arguments to spectro

Details

When interactive = TRUE, during the function session the console will display a command menu
that prints commands to scroll or nudge to the next/previous page, zoom in/out in the time axis (by
halving or doubling the page.length), play the page, save the page as a wave file, change spectro-
gram parameters (e.g. frg.lim, start.time, wl, ovlp, etc), or quit. An option not presented

nin

on-screen is "i" to identify the RMS amplitude in a selected portion of the spectrogram.

viewSpec relies on the WavelO functions in tuneR, with some modifications. Seeking in wave files
and wave objects is accurate to the nearest sample, but the decoding required for mp3 files is "bare
bones". Users can install the software mp3splt which will allow seeking in mp3 files very similar
(albeit slightly less accurate) to that that exists for wave files. When using mp3splt a short mp3
file the duration of each page is extracted from the clip file or object and saved to the working

viewSpec 77

directory for each new page.

When annotation is set to TRUE the default is to start a new annotation file, unless a csv file
containing annotations is specified with the argument anno. Annotation adds the option to annotate
to the console command menu, and annotations can be made after typing "a" into the console and
pressing enter. Annotation is accomplished by selecting first the upper-left corner of a bounding
box around an event in the spectrogram followed by the lower-right corner; after the selection is
complete the console will prompt to name the annotation. At a minimum the first annotation must
be named, but subsequent annotations will recycle the previous name if a new one is not provided.
When in annotation mode the console menu is not shown; instructions for annotation are displayed
instead. To exit annotation mode right-click an appropriate number of times, and the console com-
mand menu will return. One or more annotations can be deleted by typing "d" in the console after
the command menu is displayed, then bounding all annotations to delete in the same manner as if
creating a new annotation. Annotations are saved when the command to exit the function is initiated
("q"). Occasionally unrecognized commands may cause the function to exit before annotations can
be saved; to guard against losing annotations in such an event, annotations are auto-saved to a file
called "TMPannotations.csv" in the working directory, from where they can be retrieved until writ-
ten over during the next session. Annotation is only possible in one channel per function invocation.
The channel will revert to "1eft"” if annotate = TRUE and channel = "both".

Spectrogram colors are adjustable, and users may opt to create their own gradients for display. A
few are provided with monitoR including gray.1, gray. 2, gray. 3, rainbow. 1, and topo. 1, all of
which are based on existing R colors. The gradient is mapped to the values in the spectrogram each
time the page is loaded. In gray. 2, for example, this means that every page will display the highest
dB value as black and the lowest value as white. The highest dB value likely changes from page to
page, which can result in successive pages being displayed with wildly different color values. Set-
ting consistent = TRUE (the default) offers a way to minimize this effect, as it artificially weights a
single cell in the lower-left corner with a value of 0 dB, which is usually mapped to a black. Under
normal circumstances this artificially black cell will not be noticed, but at high magnification it may
stand out as erroneous, in which case setting consistent = FALSE may be warranted.

Spectrograms of existing Wave objects are titled with the first argument of the call, which is assumed
tobe clip.

The default audio player, "play", is the shell command for SoX, the multi-OS media player. Win-
dows will detect the file type and use the default media player with "start", or you can specify one
(such as Windows Media Player) with "start wmplayer.exe". On Ubuntu try Rhythmbox ("rhythm-
box"), and on Mac OS try afplay ("afplay").

Value
A spectrogram plot. Certain options invoked during the function may write new wave or csv files
to the working directory.

Note

The time axis is presented with a fair amount of rounding. It becomes progressively more accurate
as the zoom level increases.

78 writeTemplates

Author(s)
Jon Katz, Sasha D. Hafner

See Also
dbUploadAnno

Examples

data(survey)
viewSpec(survey)

Not run:
Start a new annotation file
viewSpec(survey, annotate = TRUE)

View previous annotations

data(survey_anno)

write.csv(survey_anno, "survey_anno.csv”, row.names = FALSE)

viewSpec(survey, interactive = TRUE, annotate = TRUE, anno = "survey_anno.csv", start.time = 5)

Disable consistent spectrograms
viewSpec(survey, interactive = TRUE, annotate = TRUE, page.length = 10, consistent = FALSE)

End(Not run)

writeTemplates Write Acoustic Templates to Text Files

Description

These functions write all templates within a template list to text files within a specified directory.

Usage
writeCorTemplates(..., dir = ".", ext = "ct", parallel = FALSE)
writeBinTemplates(..., dir = ".", ext = "bt", parallel = FALSE)
Arguments
One or more template lists.
dir A file path to the directory where the files should be saved. If it doesn’t exist,
the function will create it. By default, the working directory.
ext The file extension used for the new file(s).
parallel Set to TRUE to use mclapply from the parallel package to speed up the call for

large template lists (not available for Windows operating systems).

writeTemplates 79

Details

For correlation templates (class corTemplatelList) usewriteCorTemplates, and use writeBinTemplates
for binary templates (class 1inkS4class{binTemplatelList}). To write only some of the templates
in a list to file, use indexing ([-methods).

Value

NULL, invisibly.

Author(s)
Sasha D. Hafner

See Also

makeCorTemplate, makeBinTemplate, readBinTemplates, readCorTemplates

Examples

Load data
data(btnw)
data(oven)

Write Wave objects to file (temporary directory used here)
btnw.fp <- file.path(tempdir(), "btnw.wav")

oven.fp <- file.path(tempdir(), "oven.wav")

writeWave(btnw, btnw.fp)

writeWave(oven, oven.fp)

Create four correlation templates

wctl <- makeCorTemplate(btnw.fp, name = "wl")

wct2 <- makeCorTemplate(btnw.fp, t.lim = c(1.5, 2.1), frq.lim = c(4.2, 5.6), name = "w2")
oct1l <- makeCorTemplate(oven.fp, t.lim = c(1, 4), frqg.lim = c(1, 11), name = "01")

oct2 <- makeCorTemplate(oven.fp, t.lim=c(1, 4), frq.lim=c(1, 11), dens = 0.1, name = "02")

Combine all of them
ctemps <- combineCorTemplates(wct1, wct2, octl, oct2)

To write ctemps to a directory "templates”

Not run:
Not run because it will write files outside of user's temporary directory
writeCorTemplates(ctemps, dir = "templates”)

End(Not run)

Clean up (only because these files were created in these examples)
file.remove(btnw.fp)
file.remove(oven.fp)

Index

* 1O
batchDetection, 3
fileCopyRename, 33
monitoR, 44
mp3Subsamp, 47
readMP3, 52
readTemplates, 53
writeTemplates, 78

+ attribute
templateComment, 62
templateCutoff, 64
templateNames, 69
templatePath, 70

* classes
detectionList-class, 29
Template-class, 61
TemplatelList-class, 65
templateScores-class, 72

* color
specCols, 58

+ database
dbDownload, 13
dbDownloadResult, 15
dbDownloadTemplate, 16
dbSchema, 18
dbUploadAnno, 20
dbUploadResult, 22
dbUploadSurvey, 24
dbUploadTemplate, 27

monitoR, 44
x datasets
btnw, 6
oven, 49
survey, 59
survey_anno, 60
* dynamic
showPeaks, 56
x file

fileCopyRename, 33

80

mp3Subsamp, 47
readMP3, 52
readTemplates, 53
writeTemplates, 78

+ hgraph
makeTemplate, 41

+ hplot
plot-methods, 50

* iplot
monitoR, 44
showPeaks, 56
viewSpec, 75

* iteration
batchDetection, 3

* manip
bindEvents, 4
changeSampRate, 6
collapseClips, 7
combineTemplates, 8
compareTemplates, 10
cutWave, 12
eventEval, 31
findPeaks, 36
getDetections, 38
getTemplates, 40
makeTemplate, 41
templateComment, 62
templateCutoff, 64
templateMatching, 67
timeAlign, 73

+ methods
extract-methods, 33
plot-methods, 50
show-methods, 54

+ package
monitoR, 44

* print
show-methods, 54

+ utilities

INDEX

combineTemplates, 8
cutWave, 12
dbDownload, 13
dbDownloadResult, 15
dbDownloadTemplate, 16
dbSchema, 18
dbUploadAnno, 20
dbUploadResult, 22
dbUploadSurvey, 24
dbUploadTemplate, 27
[,TemplateList-method
(extract-methods), 33
[,detectionList-method
(extract-methods), 33
[,templateScores-method
(extract-methods), 33
[-methods (extract-methods), 33

batchBinMatch (batchDetection), 3

batchCorMatch (batchDetection), 3

batchDetection, 3

bind, 5, 8

bindEvents, 4, 8

binMatch, 3, 4, 13, 15, 16, 34, 37,42, 43,45,
72

binMatch (templateMatching), 67

binTemplate, 66

binTemplate-class (Template-class), 61

binTemplatelist, 3, 9, 42, 55, 61, 62, 64, 69,
71

binTemplatelList-class
(TemplatelList-class), 65

btnw, 6

changeSampRate, 6

collapseClips, 5,7

combineBinTemplates, 42, 66

combineBinTemplates (combineTemplates),
8

combineCorTemplates, 42

combineCorTemplates (combineTemplates),
8

combineTemplates, 8

compareTemplates, 10

cor, 3

corMatch, 3, 4, 13, 15, 16, 34, 37,42, 43, 45,
72

corMatch (templateMatching), 67

corTemplate, 66

81

corTemplate-class (Template-class), 61

corTemplatelist, 3,9, 42, 55, 61, 62, 64, 69,
71,79

corTemplateList-class
(TemplatelList-class), 65

cutw, 12

cutWave, 12

dbDownload, 13

dbDownloadCardRecorderID (dbDownload),
13

dbDownloadResult, 15

dbDownloadSurvey, 45

dbDownloadSurvey (dbDownload), 13

dbDownloadTemplate, /4, 16, 28

dbSchema, 18, 45

dbUploadAnno, 20, 78

dbUploadResult, 22, 45

dbUploadSurvey, 14,24, 45,48

dbUploadTemplate, I8, 27

detectionlList, 10, 15, 16, 22, 31, 33, 40, 50,
55-57,62,64,73

detectionlList-class, 29

downsample, 7

eventEval, 31, 74
extract-methods, 33

fileCopyRename, 24, 25, 33, 45, 48, 68, 69

findDetections, 29

findPeaks, 3, 4, 8, 22, 23, 29, 30, 36, 39, 45,
57,68, 69, 72-74

getDetections, 3, 4, 23, 29-31, 37, 38, 68, 69
getPeaks, 23, 31, 37, 69
getPeaks (getDetections), 38
getTemplates, 30, 40, 63, 66, 72
gray, 59

gray.1,77

gray.1 (specCols), 58
gray.2,77

gray.?2 (specCols), 58
gray.3,77

gray. 3 (specCols), 58

lapply, 5

makeBinTemplate, 9, 11, 36, 37,41, 45, 51,
55,66,69,71,79
makeBinTemplate (makeTemplate), 41

82

makeCorTemplate, 9, 11, 36, 37,41, 45, 51,

55,66,69,71,79
makeCorTemplate (makeTemplate), 41
makeTemplate, 41
mclapply, 3, 5, 36, 67
monitoR, 44
monitoR-package (monitoR), 44
mp3Subsamp, 25, 35, 47, 68, 69

names, 69, 71

odbcConnect, 17, 19
OlsonNames, 34, 68
oven, 49

par, 56
plot,detectionList,ANY-method
(plot-methods), 50
plot,TemplatelList,ANY-method
(plot-methods), 50
plot-methods, 50

rainbow, 59

rainbow.1, 77

rainbow.1 (specCols), 58
readBinTemplates, 66, 79
readBinTemplates (readTemplates), 53
readCorTemplates, 66, 79
readCorTemplates (readTemplates), 53
readMP3, 45, 52, 52

readTemplates, 53

readWave, 52

show,binTemplateList-method
(show-methods), 54
show, corTemplateList-method
(show-methods), 54
show,detectionList-method
(show-methods), 54
show, templateScores-method
(show-methods), 54
show-methods, 54
showPeaks, 16, 29, 56
specCols, 58
spectro, 3,61, 62,76
sqlQuery, 14,17, 28
sqlTables, 18
summary,binTemplateList-method
(show-methods), 54

INDEX

summary,corTemplatelList-method
(show-methods), 54
summary,detectionList-method
(show-methods), 54
summary, TemplatelList-method
(show-methods), 54
summary, templateScores-method
(show-methods), 54
summary-methods (show-methods), 54
survey, 59, 60
survey_anno, 60

Template, 30, 65, 66, 72

Template-class, 61

templateComment, 41, 42, 62, 64, 66, 69, 71

templateComment<- (templateComment), 62

templateCutoff, 29, 30, 36, 40, 41, 43, 63,
64, 66, 69, 71

templateCutoff<- (templateCutoff), 64

Templatelist, 9, 15-17, 30, 33, 50, 53, 55,
61, 62,72

TemplatelList-class, 65

templateMatching, 67

templateNames, 9, 43, 63, 64, 69, 71

templateNames<- (templateNames), 69

templatePath, 70

templatePath<- (templatePath), 70

templateScores, 29, 30, 33, 40, 55, 62, 64

templateScores-class, 72

terrain.colors, 59

timeAlign, 32, 73

topo.1,77

topo.1 (specCols), 58

topo.colors, 59

tuneR, 52, 76

viewSpec, 5, 8, 21, 31,45, 60,75

Wave, 4-7, 12, 30, 52, 67,72, 75
writeBinTemplates, 53
writeBinTemplates (writeTemplates), 78
writeCorTemplates, 53
writeCorTemplates (writeTemplates), 78
writeTemplates, 78

	batchDetection
	bindEvents
	btnw
	changeSampRate
	collapseClips
	combineTemplates
	compareTemplates
	cutWave
	dbDownload
	dbDownloadResult
	dbDownloadTemplate
	dbSchema
	dbUploadAnno
	dbUploadResult
	dbUploadSurvey
	dbUploadTemplate
	detectionList-class
	eventEval
	extract-methods
	fileCopyRename
	findPeaks
	getDetections
	getTemplates
	makeTemplate
	monitoR
	mp3Subsamp
	oven
	plot-methods
	readMP3
	readTemplates
	show-methods
	showPeaks
	specCols
	survey
	survey_anno
	Template-class
	templateComment
	templateCutoff
	TemplateList-class
	templateMatching
	templateNames
	templatePath
	templateScores-class
	timeAlign
	viewSpec
	writeTemplates
	Index

