Package ‘mrfDepth’

May 24, 2024

Type Package
Version 1.0.17
Date 2024-05-23

Title Depth Measures in Multivariate, Regression and Functional
Settings

Description Tools to compute depth measures and implementations of related
tasks such as outlier detection, data exploration and
classification of multivariate, regression and functional data.

Depends R (>=3.6.0), ggplot2
Imports abind, geometry, grid, matrixStats, reshape2, Rcpp (>= 0.12.6)
Suggests robustbase

LinkingTo RcppEigen (>=0.3.2.9.0), Rcpp (>= 0.12.6), ReppArmadillo
(>=0.7.600.1.0)

License GPL (>=2)
LazyLoad yes
RoxygenNote 7.1.2
NeedsCompilation yes

Author Pieter Segaert [aut],
Mia Hubert [aut],
Peter Rousseeuw [aut],
Jakob Raymaekers [aut, cre],
Kaveh Vakili [ctb]

Maintainer Jakob Raymaekers <jakob.raymaekers@kuleuven.be>
Repository CRAN
Date/Publication 2024-05-24 21:20:02 UTC

R topics documented:

adjoutl
bagdistance

Index

R topics documented:

bagploto e e e 9
bloodfat e 11
cardata90 L L L 12
characterA 13
characterl e 14
cmItest e e e e 15
compBagplot 16
depthContour e 19
dirOutl e 22
distSpace 25
dprojdepth 27
dprojmedian L e e e e e 29
fHeatmap e e 30
fom . .. 31
fOutl e 33
geological e e 36
glass . . oL e 37
hdepth e 37
hdepthmedian 41
medcouple L. e e e 43
mfd ... e 44
mfdmedian L 47
mrainbowploto L e e e e e 49
52 o 50
OCLANE . .« v v v vt it e e e e e e e e e e e e e 51
OULIYINGNESS .« . . v v v e e i e e e e e e e e e 52
Planeo e e e 56
plotContours 57
projdepth 58
projmedian e e 60
rdepth L e e 62
rdepthmedian 64
sdepth L 66
sprojdepth L e e e e e e 67
sprojmedian L. e e e e e e 69
SEATS .« . o . e e e e e e e 71
SYMUEESE . . ¢ v v e e e e e e e e e e e e e e e e 72
tablets e 73
WINE . . v o v e e e e e e e e e e e e 74

75

adjOutl

adjoutl

Adjusted outlyingness of points relative to a dataset

Description

Computes the skew-adjusted outlyingness of p-dimensional points z relative to a p-dimensional
dataset x. For each multivariate point z;, its adjusted outlyingness relative to x is defined as its
maximal univariate adjusted outlyingness measured over all directions. To obtain the univariate
adjusted outlyingness in the direction v, the dataset x is projected on v, and the robustly skew-
adjusted standardized distance of v’ z; to the median of the projected data points xv is computed.

Usage
adjoutl(x, z =

Arguments

X

z

options

Details

NULL, options = list())

An n by p data matrix.

An optional m by p matrix containing rowwise the points z; for which to com-
pute the adjusted outlyingness. If z is not specified, it is set equal to x.

A list of available options:

* type
Determines the desired type of invariance and should be one of "Affine”,
"Rotation” or "Shift”. When the option "Affine” is used, the direc-
tions v are orthogonal to hyperplanes spanned by p observations from x.
When the option "Rotation” is used, the directions pass by two randomly
selected observations from x. With the option "Shift", directions are ran-
domly generated.
Defaults to "Affine”.

e ndir
Determines the number of directions v by setting ndir to a specific number
or to "all”. In the latter case, an exhaustive search over all possible direc-
tions (according to type) is performed. If ndir is larger than the number of
possible directions, the algorithm will automatically use this setting.
Defaults to 250p when type="Affine"”, to 5000 when type="Rotation"
and to 12500 when type="Shift".

* seed

A strictly positive integer specifying the seed to be used by the C++ code.
Defaults to 10.

The adjusted outlyingness (AO) of multivariate data was introduced in Brys et al. (2005) and studied
in more detail in Hubert and Van der Veeken (2008). It extends the Stahel-Donoho outlyingness
towards skewed distributions.

4 adjOutl

Depending on the dimension p, different approximate algorithms are implemented. The affine
invariant algorithm can only be used when n > p. It draws ndir times at random p observations
from x and considers the direction orthogonal to the hyperplane spanned by these p observations.
At most p out of n directions can be considered. The orthogonal invariant version can be applied
to high-dimensional data. It draws ndir times at random 2 observations from x and considers the
direction through these two observations. Here, at most 2 out of n directions can be considered.
Finally, the shift invariant version randomly draws ndir vectors from the unit sphere.

The resulting AO values are invariant to affine transformations, rotations and shifts respectively
provided that the seed is kept fixed at different runs of the algorithm. Note that the AO values are
guaranteed to increase when more directions are considered provided the seed is kept fixed, as this
ensures that the random directions are generated in a fixed order.

An observation from x and z is flagged as an outlier if its AO exceeds a cutoff value. This cutoff
value is determined using the procedure in Rousseeuw et al. (2018). First, the logarithm of the AO
values is taken to render their distribution more symmetric, after which a normal approximation
yields a cutoff on these values. The cutoff is then transformed back by applying the exponential
function.

It is first checked whether the data lie in a subspace of dimension smaller than p. If so, a warning is
given, as well as the dimension of the subspace and a direction which is orthogonal to it. Further-
more, the univariate adjusted outlyingness of the projected points xv is ill-defined when the scale in
its denominator becomes zero. This can happen when many observations collapse. In these cases
the algorithm will stop and give a warning. The returned values then include the direction v as well
as an indicator specifying which of the observations of x belong to the hyperplane orthogonal to v.

This function extends the adjOutlyingness function in the package robustbase. It has more
options for choosing the directions, it allows to compute the adjusted outlyingness of points not
belonging to the data matrix x and it is faster as it is fully implemented in C++. On the other hand,
the constants (3 and -4) used in the definition of the adjusted outlyingness can not be modified in
this implementation.

Value

A list with components:

outlyingnessX Vector of length n giving the adjusted outlyingness of the observations in x.

outlyingnessZ Vector of length m giving the adjusted outlyingness of the points in z relative to
X.

cutoff Points whose adjusted outlyingness exceeds this cutoff can be considered as
outliers with respect to x.

flagX Observations of x whose adjusted outlyingness exceeds the cutoff receive a flag
FALSE, regular observations receive a flag TRUE.

flagz Points of z whose adjusted outlyingness exceeds the cutoff receive a flag equal
to FALSE, otherwise they receive a flag TRUE.

singularSubsets
When the input parameter type is equal to "Affine”, the number of p-subsets
that span a subspace of dimension smaller than p — 1. In such a case the or-
thogonal direction can not be uniquely determined. This is an indication that

adjOutl

dimension

hyperplane

inSubspace

Author(s)

the data are not in general position. When the input parameter type is equal to
"Rotation” itis possible that two randomly selected points of the data coincide
due to ties in the data. In such a case this value signals how many times this
happens.

When the data x are lying in a lower dimensional subspace, the dimension of
this subspace.

When the data x are lying in a lower dimensional subspace, a direction orthog-
onal to this subspace. When a direction v is found such that the robust skew-
adjusted scale of xv is equal to zero, this equals v.

When a direction v is found such that AO(xwv) is ill-defined, the observations
from x which belong to the hyperplane orthogonal to v receive a value TRUE.
The other observations receive a value FALSE.

P. Segaert using C++ code by K. Vakili, P. Segaert, G. Brys and M. Maechler.

References

Brys G., Hubert M., Rousseeuw P.J. (2005). A robustification of Independent Component Analysis.
Journal of Chemometrics, 19, 364-375.

Hubert M., Van der Veeken S. (2008). Outlier detection for skewed data. Journal of Chemometrics,

22, 235-246.

Hubert M., Vandervieren E. (2008). An adjusted boxplot for skewed distributions. Computational
Statistics & Data Analysis, 52, 5186-5201.

Rousseeuw P.J., Raymaekers J., Hubert M., (2018). A measure of directional outlyingness with
applications to image data and video. Journal of Computational and Graphical Statistics, 27, 345—

359.

See Also

sprojdepth, sprojmedian, dirQOutl, outlyingness

adjbox, adjOutlyingness from package robustbase.

Examples

Compute the adjusted outlyingness of a simple
two-dimensional dataset. Outliers are plotted

in red.

data(geological)

BivData <- geologicall[c("Mn0","Mg0")]
Result <- adjOutl(x = BivData)
IndOutliers <- which(!Result$flagX)

plot(BivData)

points(BivData[IndOutliers,], col = "red")

The number of directions may be specified through
the option list. The resulting adjusted outlyingness

6 bagdistance

is monotone increasing in the number of directions.
Resultl <- adjOutl(x = BivData,

options = list(ndir = 50)

)
Result2 <- adjOutl(x = BivData,

options = list(ndir

)
which(Result2$outlyingnessX - Resultl$outlyingnessX < @)
This is however not the case when the seed is changed
Resultl <- adjoOutl(x = BivData,

options = list(ndir = 50)

)
Result2 <- adjOutl(x = BivData,

options = list(ndir = 100,

seed = 950)

100)

)
plot(Result2%$outlyingnessX - Resultl1$outlyingnessX,

xlab = "Index"”, ylab = "Difference in AQ")

We can also consider directions through two data
points. If the sample is small enough one may opt
to search over all choose(n,2) directions.
Note that the computational load increases dramatically
as n becomes larger.
data(bloodfat)
BivData <- bloodfat[1:100,] # Consider a small toy example.
Result <- adjOutl(x = BivData,

options = list(type = "Rotation”,

ndir = "all")

)
IndOutliers <- which(!Result$flagX)
plot(BivData)
points(BivData[IndOutliers,], col = "red")

Alternatively one may consider randomly generated directions.
data(bloodfat)
Result <- adjOutl(x = bloodfat,

options = list(type = "Shift",
ndir = 1000)
)
IndOutliers <- which(!Result$flagX)

plot(bloodfat)
points(bloodfat[IndOutliers,], col = "red")

bagdistance Bagdistance of points relative to a dataset

Description

Computes the bagdistance of p-dimensional points z relative to a p-dimensional dataset x. To
compute the bagdistance of a point z; first the bag of x is computed as the depth region containing

bagdistance 7

the 50% observations (of x) with largest halfspace depth. Next, the ray from the halfspace median
0 through z; is considered and c, is defined as the intersection of this ray and the boundary of the
bag. The bagdistance of z; to x is then given by the ratio between the Euclidean distance of z; to
the halfspace median and the Euclidean distance of c, to the halfspace median.

Usage

bagdistance(x, z = NULL, options = list())

Arguments

X An n by p data matrix.

z An optional m by p matrix containing rowwise the points z; for which to com-
pute the bagdistance. If z is not specified, it is set equal to x.

options A list of available options:

* approx
In two dimensions one may choose to use an approximate algorithm or the
exact algorithm to find the bag.

Defaults to TRUE.

* max.iter
The maximum number of steps in the bisection algorithm to find the inter-
section point ¢, (see Details).

Defaults to 100.

* All options may be specified that are passed to the hdepth function, see
hdepth for details. Note that the option parameter approx is by default set
to TRUE to save computation time.

Details

The bagdistance has been introduced in Hubert et al. (2015) and studied in Hubert et al. (2017). It
does not assume symmetry and is affine invariant. Note that when the halfspace is not computed in
an affine invariant way, the bagdistance cannot be affine invariant either.

The function first computes the halfspace depth and the halfspace median of x. Additional options
may be passed to the hdepth routine by specifying them in the option list argument.

It is first checked whether the data lie in a subspace of dimension smaller than p. If so, a warning is
given, as well as the dimension of the subspace and a direction which is orthogonal to it.

Depending on the dimensions different algorithms are used. For p = 1 the bagdistance is com-
puted exactly. For p = 2 the default setting (options$approx=TRUE) uses an approximated algo-
rithm. Exact computation, based on the exact algoritm to compute the contours of the bag (see the
depthContour function), is obtained by setting options$approx to FALSE. Note that this may
lead to an increase in computation time.

For the approximated algorithm, the intersection point c, is approximated by searching on each ray
the point whose depth is equal to the median of the depth values of x. As the halfspace depth is
monotone decreasing along the ray, a bisection algorithm is used. Starting limits are obtained by
projecting the data on the direction and considering the data point with univariate depth correspond-
ing to the median of the halfspace depths of x. By definition the multivariate depth of this point has
to be lower or equal than its univariate depth. A second limit is obtained by considering the deepest

8 bagdistance

location estimate. The maximum number of iterations bisecting the current search interval can be
specified through the options argument max. iter.

An observation from z is flagged as an outlier if its bagdistance exceeds a cutoff value. This cutoff
is equal to the squareroot of the 0.99 quantile of the chi-squared distribution with p degrees of
freedom.

Value

A list with components:

bagdistance The bagdistance of the points of z with respect to the data matrix x.

cutoff Points of z whose bagdistance exceeds this cutoff can be considered as outliers
with respect to x.

flag Points of z whose bagdistance exceeds the cutoff receive a flag equal to FALSE,
otherwise they receive a flag TRUE.

converged Vector of length m indicating for each point of z whether the bisection algorithm
converged within the maximum number of steps specified by max.iter in the
options list.

dimension When the data x are lying in a lower dimensional subspace, the dimension of
this subspace.

hyperplane When the data x are lying in a lower dimensional subspace, a direction orthog-
onal to this subspace.

Author(s)
P. Segaert.

References

Hubert M., Rousseeuw P.J., Segaert P. (2015). Multivariate functional outlier detection. Statistical
Methods & Applications, 24, 177-202.

Hubert M., Rousseeuw P.J., Segaert P. (2017). Multivariate and functional classification using depth
and distance. Advances in Data Analysis and Classification, 11, 445-466.

See Also

depthContour, hdepth, bagplot

Examples

Generate some bivariate data

set.seed(5)

nObs <- 500

XS <- matrix(rnorm(nObs * 2), nrow = nObs, ncol = 2)
A <- matrix(c(1,1,.5,.1), ncol = 2, nrow = 2)

X <= XS %*% A

bagplot 9

In two dimensions we may either use the approximate

or the exact algorithm to compute the bag.

respons.exact <- bagdistance(x = X, options = list(approx = FALSE))
respons.approx <- bagdistance(x = X, options = list(approx = TRUE))
Both algorithms yield fairly similar results.
plot(respons.exact$bagdistance, respons.approx$bagdistance)
abline(a =0, b = 1)

In Hubert et al. (2015) it was shown that for elliptical

distributions the squared bagdistance relates to the

squared Mahalanobis distances. This may be easily illustrated.
mahDist <- mahalanobis(x = X, colMeans(X), cov(X))
plot(respons.exact$bagdistance”2, mahDist)

Computation of the bagdistance relies on the computation
of halfspace depth using the hdepth function. Options for
the hdepth routine can be passed down using the options
arguments. Note that the bagdistance is only affine invariant
if the halfspace depth is computed in an affine invariant way.
options <-list(type = "Rotation”,

ndir = 375,

approx = TRUE,

seed = 78341)
respons.approx.rot <- bagdistance(x = X, options = options)
plot(respons.exact$bagdistance, respons.approx.rot$bagdistance)
abline(a =0, b = 1)

*oH o

bagplot Draws a bagplot, a bivariate boxplot

Description

This function draws a bagplot of bivariate data, based on the result of a call to compBagplot.
The bagplot is a generalisation of the univariate boxplot to bivariate data. It aims to visualize the
location, spread, skewness and outliers of the data set.

Usage

bagplot(compbag.result,
colorbag = NULL, colorloop = NULL, colorchull = NULL,
databag = TRUE, dataloop = TRUE, plot.fence = FALSE)

Arguments

compbag.result The return of a call to compBagplot.

colorbag The color of the bag (which contains the 50% observations with largest depth).
colorloop The color of the loop (which contains the regular observations).
colorchull When the bagplot is based on halfspace depth, the depth region with maximal

depth is plotted. This argument controls its color.

10 bagplot

databag Logical indicating whether data points inside the bag need to be plotted.
Defaults to TRUE.

dataloop Logical indicating whether data points inside the fence need to be plotted.
Defaults to TRUE.

plot.fence Logical indicating whether the fence should be plotted.
Defaults to FALSE.

Details

The bagplot has been proposed by Rousseeuw et al. (1999) as a generalisation of the boxplot to
bivariate data. It is constructed based on halfspace depth and as such is invariant under affine trans-
formations. Similar graphical representations can be obtained by means of other depth functions,
as illustrated in Hubert and Van der Veeken (2008) and in Hubert et al. (2015). See compBagplot
for more details.

The deepest point is indicated by a red diamond symbol, the outlying observations by red stars.

The plot is made using ggplot2. The plot itself is returned by the function and is fully customisable
using standard ggplot2 commands.

Author(s)
P. Segaert

References

Rousseeuw P.J., Ruts 1., Tukey J.W. (1999). The bagplot: a bivariate boxplot. The American
Statistician, 53, 382-387.

Hubert M., Van der Veeken S. (2008). Outlier detection for skewed data. Journal of Chemometrics,
22, 235-246.

Hubert M., Rousseeuw P.J., Segaert P. (2015). Rejoinder of *Multivariate functional outlier detec-
tion’. Statistical Methods & Applications, 24, 269-277.

See Also

compBagplot, hdepth, projdepth, sprojdepth, dprojdepth.

Examples

data(bloodfat)

The bagplot can be plotted based on halfspace depth, projection depth,
skewness-adjusted projection depth or directional projection depth.

Note that projection depth is not appropiate for skewed data.

bagplot(compBagplot(bloodfat))

bagplot (compBagplot(bloodfat, type = "projdepth”))

bagplot (compBagplot(bloodfat, type = "dprojdepth”))

The main features of the bagplot can easily be adjusted.
result <- compBagplot(bloodfat, type = "projdepth")
bagplot(result, databag = FALSE, dataloop = FALSE)

bloodfat 11

bagplot(result, colorbag = rgb(0.2, 0.2, 0.2), colorloop = "lightgreen")

data(cardata99)
result <- compBagplot(cardata90, type = "projdepth”)
bagplot(result)

Compared to the original paper on the bagplot,

an additional outlier is identified. However this
point lies very close to the fence and this may be
attributed to differences in numerical rounding.

This may be illustrated by plotting the fence.
plot <- bagplot(result, plot.fence = TRUE)

plot

The returned object is a ggplot2 object and may be

edited using standard ggplot2 commands.

library("ggplot2")

plot + ylab("Engine displacement”) + xlab("Weight in pounds")

bloodfat Blood data for patients with narrowing arteries

Description

Data were collected on the concentration of plasma cholesterol and plasma triglycerides (mg/dl) for
371 male patients evaluated for chest pain. For 51 of those patients, no evidence of heart disease
was found. This subset corresponds to the remaining 320 patients for which there was evidence of
narrowing arteries.

Usage
data(bloodfat)

Format
A data frame containing the following variables:

Cholesterol Concentration of plasma cholesterol [mg/dl].

Triglycerides Concentration of plasma triglycerides [mg/dl].

Source

Hand D.J., Daly F,, Lunn A., McConway A. (1994). A Handbook of Small Data Sets. Londen:
Chapman and Hall, dataset 277.

References

Scott D.W., Gotto A.M., Cole J.S., Gorry G.A. (1978). Plasma lipids as collateral risk factors in
coronary artery disease: a study of 371 males with chest pain. Journal of Chronic Diseases, 31,
337-345.

12 cardata90

Examples

data(bloodfat)
plot(bloodfat)

cardata9e Car data from Consumer Reports in 1990

Description

Subset from data on cars taken from pages 235-255, 281-285 and 287-288 of the April 1990 Con-
sumer Reports Magazine.

Usage

data(cardata90)

Format
A data frame containing the following variables:

Weight Weight of the car (in pounds).

Disp Engine displacement (in cubic inches).

Source

Consumer Reports, April 1990, 235-288.
Chambers J.M., Hastie T.J. (1993). Statistical Models in S. Londen: Chapman and Hall, 46—47.

References

Rousseeuw P.J., Ruts 1., Tukey J.W. (1999). The bagplot: a bivariate boxplot. The American
Statistician, 53, 382-387.

Examples

data(cardata90)
plot(cardata90)

characterA 13

characterA Writing trajectories of the letter 'a’

Description

Subset of the *Character Trajectories Data Set’ from the UCI Machine Learning Repository. The
data set consists of trajectories of the tip of a pen whilst writing the letter "a’. All samples are from
the same writer. Original data has been processed.

Usage

data(characterA)

Format

Three dimensional array. The first dimension represents time. The second dimension corresponds
to the observation number. The third dimension contains the X and Y coordinates.

Source

Bache K., Lichman M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, School of Information and Computer Science.

References

Williams B.H., Toussaint M., Storkey A.J. (2006). Extracting motion primitives from natural hand-
writing data. In ICANN, volume 2, pages 634—643.

Hubert M., Rousseeuw P.J., Segaert P. (2015). Multivariate functional outlier detection (with re-
joinder). Statistical Methods & Applications, 24, 177-202.

Examples

data(characterA)
par(mfrow = c(1,2))
matplot(y = characterA[,,1],

type = "1", col = "black”, 1ty =1,

xlab = "Time", ylab = "X position of the pen")
matplot(y = characterA[l,,2],

type = "1", col = "black”, 1ty =1,

xlab = "Time", ylab = "Y position of the pen")
par(mfrow = c(1,1))

14 characterl

characterl Writing trajectories of the letter i

Description

Subset of the *Character Trajectories Data Set’ from the UCI Machine Learning Repository. The
data set consists of trajectories of the tip of a pen whilst writing the letter ’i’. All samples are from
the same writer. Original data has been processed.

Usage

data(characterI)

Format

Three dimensional array. The first dimension represents time. The second dimension corresponds
to the observation number. The third dimension contains the X and Y coordinates.

Source

Bache K., Lichman M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, School of Information and Computer Science.

References

Williams B.H., Toussaint M., Storkey A.J. (2006). Extracting motion primitives from natural hand-
writing data. In ICANN, volume 2, pages 634—643.

Hubert M., Rousseeuw P.J., Segaert P. (2015). Multivariate functional outlier detection (with re-
joinder). Statistical Methods & Applications, 24, 177-202.

Examples

data(characterI)
par(mfrow = c(1,2))
matplot(y = characterI[,,1],

type = "1", col = "black”, 1ty =1,

xlab = "Time", ylab = "X position of the pen")
matplot(y = characterI[,,2],

type = "1", col = "black”, 1ty =1,

xlab = "Time", ylab = "Y position of the pen")
par(mfrow = c(1,1))

cmltest 15

cmltest Test for linearity of the conditional median in simple regression

Description

A test based on regression depth for linearity of the conditional median z given the simple regression
dataset x. The computation of the regression depth of z with respect to x is done by the function
rdepth. The test is only valid when x contains no duplicates.

Usage

cmltest(x, z)

Arguments
X An n by 2 regression data matrix.
The first column is the explanatory variable, the second column corresponds to
the response variable.
z A matrix with one row containing an intercept and slope.
Details

The following hypothesis test is performed:
Hj: The data come from a model with: med(z2|z1) = 21 + 22 * 21
The test statistic being used is the regression depth of z with respect to x.

Value

pval The p-value of the hypothesis test.

Author(s)

P. Segaert

References

Van Aelst S., Rousseeuw P.J., Hubert M., Struyf A. (2002). The deepest regression method. Journal
of Multivariate Analysis, 81, 138—166.

Rousseeuw P.J., Struyf A. (2002). A depth test for symmetry. In: Goodness-of-Fit Tests and Model
Validity, Birkhduser Boston, pages 401-412.

See Also

rdepth, rdepthmedian

16 compBagplot

Examples

data(stars)

Compute the least squares fit. Due to outliers

this fit will be bad and thus H@ should be rejected.
temp <- 1sfit(x = stars[,1], y = stars[,2])$coefficients
intercept <- temp[1]

slope <- temp[2]

z <- matrix(c(intercept, slope), nrow = 1)

pvaluel <- cmltest(x = stars[!duplicated(stars), 1, z = z)
pvaluel

Let's now test the deepest regression line.

result <- rdepthmedian(x = stars)

pvalue2 <- cmltest(x = stars[!duplicated(stars), 1, z = matrix(result$deepest, nrow = 1))
pvalue2

plot(stars)

abline(a = intercept, b = slope)

abline(result$deepest, col = "red")

text(x = 3.8, y = 5.3, labels = paste("p-value”, round(pvaluel, digits = 3)))

text(x = 4.45, y = 4.8, labels = paste(”"p-value”, round(pvalue2, digits = 3)),
col = "red")

compBagplot Computations for drawing a bagplot

Description

Computes all elements of the bagplot, a generalisation of the univariate boxplot to bivariate data.
The bagplot can be computed based on halfspace depth, projection depth, skewness-adjusted pro-
jection depth and directional projection depth. To draw the actual plot, the function bagplot needs
to be called on the result of compBagplot.

Usage

compBagplot(x, type = "hdepth”, sizesubset = 500,
extra.directions = FALSE, options = NULL)

Arguments
X An n by 2 data matrix.
type Determines the depth function used to construct the bagplot: "hdepth” for half-

space depth, "projdepth” for projection depth, "sprojdepth” for skewness-
adjusted projection depth and "dprojdepth” for directional projection depth.
Defaults to "hdepth”.

compBagplot 17

sizesubset When computing the bagplot based on halfspace depth, the size of the subset
used to perform the main computations. See Details for more information.
Defaults to 500.

extra.directions
Logical indicating whether additional directions should be considered in the
computation of the fence for the bagplot based on projection depth or skewness-
adjusted projection depth. If set to TRUE an additional 250 equispaced directions
are added to the directions defined by the points in x themselves and the center.
If FALSE only directions determined by the points in x are considered.
Defaults to FALSE.

options A list of options to pass to the projdepth, sprojdepth or dprojdepth function.
In addition the following option may be specified:

* max.iter
The maximum number of iterations in the bisection algorithm used to com-
pute the depth contour corresponding to the cutoff. See depthContour for
more information.
Defaults to 100.

Details

The bagplot has been proposed by Rousseeuw et al. (1999) as a generalisation of the boxplot to
bivariate data. It is constructed based on halfspace depth. In the original format the deepest point
is indicated by a "+" and is contained in the bag which is defined as the depth region containing
the 50% observations with largest depth. The fence is obtained by inflating the bag (relative to
the deepest point) by a factor of three. The loop is the convex hull of the observations of x inside
the fence. Observations outside the fence are flagged as outliers and plotted with a red star. This
function only computes all the components constituting the bagplot. The bagplot itself can be drawn
using the bagplot function.

The bagplot may also be defined using other depth functions. When using projection depth, skewness-
adjusted projection depth or directional projection depth, the bagplot is build as follows. The center
corresponds to the observation with largest depth. The bag is constructed as the convex hull of the
fifty percent points with largest depth. Outliers are identified as points with a depth smaller than
a cutoff value, see projdepth, sprojdepth and dprojdepthfor the precise definition. The loop
is computed as the convex hull of the non-outlying points. The fence is approximated by the con-
vex hull of those points that lie on rays from the center through the vertices of the bag and have a
depth that equals the cutoff depth. For a better approximation the user can set the input parameter
extraDirections to TRUE such that an additional 250 equally spaced directions on the circle are
considered.

The computation of the bagplot based on halfspace depth can be time consuming. Therefore it is
possible to limit the bulk of the computations to a random subset of the data. Computations of the
halfspace median and the bag are then based on this random subset. The number of points in this
subset can be controlled by the optional argument sizesubset.

It is first checked whether the data is found to lie on a line. If so, the routine will give a warning,
giving back the dimension of the subspace (being 1) together with the normal vector to that line.

18

Value

compBagplot

A list with components:

center

chull

bag
fence

datatype

flag
depth

dimension

hyperplane

type

Author(s)

Center of the data.
When type = "hdepth”, this corresponds with the Tukey median. In other cases
this point corresponds to the point with maximal depth.

When type = "hdepth”, these are the vertices of the region with maximal half-
space depth. In other cases this is a null vector.

The coordinates of the vertices of the bag.
The coordinates of the vertices of the fence.

An n by 3 matrix. The first two columns correspond with x. The third column
indicates the position of each observation of x in the bagplot: 2 for observations
in the bag, 1 for the observations in the fence and 3 for outliers.

Note that points may not be in the same order as in Xx.

A vector of length n wich is O for outliers and 1 for regular observations of x.
The depth of the observations of x.

If the data are lying in a lower dimensional subspace, the dimension of this
subspace.

If the data are lying in a lower dimensional subspace, a direction orthogonal to
this subspace.

Same as the input parameter type.

P. Segaert based on Fortran code by P.J. Rousseeuw, I. Ruts and A. Struyf.

References

Rousseeuw P.J., Ruts 1., Tukey J.W. (1999). The bagplot: A bivariate boxplot. The American
Statistician, 53, 382-387.

Hubert M., Van der Veeken S. (2008). Outlier detection for skewed data. Journal of Chemometrics,

22, 235-246.

Hubert M., Rousseeuw P.J., Segaert, P. (2015). Rejoinder to *Multivariate functional outlier detec-
tion’. Statistical Methods & Applications, 24, 269-277.

See Also

bagplot, hdepth, projdepth, sprojdepth, dprojdepth.

Examples

data(bloodfat)

Result <- compBagplot(bloodfat)

bagplot(Result)

depthContour 19

The sizesubset argument may be used to control the

computation time when computing the bagplot based on

halfspace depth. However results may be unreliable when
choosing a small subset for the main computations.
system.time(Resultl <- compBagplot(bloodfat))
system.time(Result2 <- compBagplot(bloodfat, sizesubset = 100))
bagplot(Result1)

bagplot(Result2)

e R

When using any of the projection depth functions,
a list of options may be passed down to the corresponding
outlyingness routines.
options <- list(type = "Rotation”,

ndir = 50,

stand = "unimcd”,

h = floor(nrow(bloodfat)*3/4))
Result <- compBagplot(bloodfat,

type = "projdepth”, options = options)

bagplot (Result)

The fence is computed using the depthContour function.
To get a smoother fence, one may opt to consider extra
directions.
options <- list(ndir = 500,

seed = 36)
Result <- compBagplot(bloodfat,

type = "dprojdepth”, options = options)

bagplot(Result, plot.fence = TRUE)

options <- list(ndir = 500,
seed = 36)
Result <- compBagplot(bloodfat,
type = "dprojdepth”, options = options,
extra.directions = TRUE)
bagplot(Result, plot.fence = TRUE)

depthContour Depth contours of multivariate data

Description

Computes the vertices of depth contours of multivariate data. The contours can be computed based
on halfspace depth, projection depth, skewness-adjusted projection depth or directional projection
depth. To make the actual plot for bivariate data, the function plotContours needs to be called on
the result of depthContour.

Usage

depthContour(x, alpha = NULL, type = "hdepth”, directions = NULL, options = NULL)

20 depthContour

Arguments
X An n by p data matrix.
alpha A vector containing the depth values of which the depth contours have to be
computed.
type The depth used in the computation of the contours: hdepth for halfspace depth,
projdepth for projection depth, sprojdepth for skewness-adjusted projection
depth and dprojdepth for directional projection depth.
Defaults to hdepth.
directions An m by p matrix specifying the directions on which to compute the vertices
(see Details).
options A list of options to pass to hdepth, projdepth, sprojdepth or dprojdepth. In
addition the following option may be specified:
* max.iter
The maximum number of iterations in the bisection algorithm used to com-
pute the depth contour corresponding to level alpha.
Defaults to 100.
Details

Depth contours of level a (or a-depth contours) are the boundaries of depth regions. Depth regions
of level « are defined as regions in space containing the multivariate points whose depth value is at
least a.

For bivariate data halfspace depth contours can be computed exactly following the algorithm in
Ruts and Rousseeuw (1996). When the data are not in general position (i.e. when there is a line
containing more than two observations) dithering is performed by adding random Gaussian noise
to the data.

In all other cases an approximated method is performed using a bisection algorithm. Intersections
with the depth contours are searched on lines originating from the depth median. The user can
specify a set of directions corresponding to these lines. By default a random set of 250p directions
is considered. On each direction a point is searched having depth «. Starting limits are obtained by
projecting the data on the direction and considering the data point with univariate depth «. By defi-
nition the multivariate depth of this point has to be lower or equal to o. A second limit is obtained
by considering the deepest location estimate. The maximum number of iterations bisecting the cur-
rent search interval can be specified through the options argument max . i ter. Note that this method
is only affine or rotation equivariant if the chosen directions are affine or rotation equivariant.

It is first checked whether the data is found to lie in a subspace of dimension lower than p. If so,
the routine will give a warning, giving back the dimension of the subspace together with a direction
describing a hyperplane containing this subspace.

Value

The output consists of a list. Each element of the list contains the following elements for each value
« specified in the argument alpha.

depth The depth of the depth contour of level a. For halfspace depth this is equal
to floor(an)/n. For projection depth, skewness-adjusted projection depth and
directional depth, this equals to a.

depthContour

vertices

empty

dithered

converged

type

dimension

hyperplane

Author(s)

21

The coordinates of the vertices of the depth contour.

Logical indicating whether the corresponding depth region is empty.
FALSE indicates the depth region is non-empty.
TRUE indicates the depth region is empty.

Logical indicating whether dithering has been applied in the exact bivariate al-
gorithm based on halfspace depth.

FALSE indicates no dithering has been applied.

TRUE indicates dithering has been applied.

A vector of length m containing a flag indicating for each direction whether con-
vergence was reached by the bisecting algorithm within the allowed max.iter
number of steps.

Same as input parameter type.

If the data are lying in a lower dimensional subspace, the dimension of this
subspace.

If the data are lying in a lower dimensional subspace, a direction orthogonal to
this subspace.

P. Segaert based on Fortran code by P.J. Rousseeuw, 1. Ruts and A. Struyf

References

Ruts I., Rousseeuw P.J. (1996). Computing depth contours of bivariate point clouds. Computational
Statistics & Data Analysis, 23, 153-168.

See Also

plotContours, bagdistance

Examples

Compute and plot some halfspace depth contours of a two-dimensional dataset.

H+

The returned object is a ggplot2 object that may be edited

using standard ggplot2 commands.

One may consider different depth functions such as projection depth
by changing the input parameter 'type'.
By default the halfspace depth is used.

data(bloodfat)

Result <- depthContour(x = bloodfat,

plotContours(x

alpha = c(0.03, 0.125, 0.25))

bloodfat, depthContour = Result)

Other options are projection depth, skewness-adjusted projection depth
and directional projection depth

22 dirOutl

they can be used by specifying type to be

"projdepth”, "sprojdepth” or "dprojdepth” respectively.
When there is skewness in the data projection depth

is less appropriate.

Result <- depthContour(x = bloodfat,
alpha = c(0.25, 0.35, 0.45),
type = "projdepth")
plotContours(x = bloodfat, depthContour = Result)

The skewness-adjusted projection depth and directional projection depth
better reflect the skewness in the data.
Result <- depthContour(x = bloodfat,
alpha = c(0.35, 0.45, 0.55),
type = "sprojdepth")
plotContours(x = bloodfat, depthContour = Result)

Result <- depthContour(x = bloodfat,
alpha = c(0.25, 0.35, 0.45),
type = "dprojdepth")
plotContours(x = bloodfat, depthContour = Result)

dirOutl Directional outlyingness of points relative to a dataset

Description

Computes the directional outlyingness of p-dimensional points z relative to a p-dimensional dataset
x. For each multivariate point z;, its directional outlyingness relative to x is defined as its maximal
univariate directional outlyingness measured over all directions. To obtain the univariate directional
outlyingness in the direction v, the dataset x is projected on v, and the robustly skew-adjusted
standardized distance of v’z; to the median of the projected data points xv is computed. This is
done through the estimation of 2 scales, one on each side of the median, using a 1-step M-estimator
of scale.

Usage

dirOutl(x, z = NULL, options = list())

Arguments
X An n by p data matrix.
z An optional m by p matrix containing rowwise the points z; for which to com-

pute the directional outlyingness. If z is not specified, it is set equal to x.

options A list of available options:

dirOutl 23

* type
Determines the desired type of invariance and should be one of "Affine”,
"compWise"”. When the option "Affine” is used, the directions v are or-
thogonal to hyperplanes spanned by p observations from x. With the option
"compWise", the directional outlyingness is computed in the directions of
the coordinate axes and combined through the Euclidean norm.
Defaults to "Affine”.

e ndir
When type is chosen to be "Affine”, determines the number of directions
v by setting ndir to a specific number. Defaults to 250p.

e seed
A strictly positive integer specifying the seed to be used to select the direc-
tions.
Defaults to 10.

Details

The directional outlyingness (DO) of multivariate data was introduced in Rousseeuw et al. (2018).
It extends the Stahel-Donoho outlyingness towards skewed distributions.

Depending on the dimension p, different approximate algorithms are implemented. The affine
invariant algorithm can only be used when n > p. It draws ndir times at random p observations
from x and considers the direction orthogonal to the hyperplane spanned by these p observations.
At most p out of n directions can be considered. The orthogonal invariant version can be applied
to high-dimensional data. It draws ndir times at random 2 observations from x and considers the
direction through these two observations. Here, at most 2 out of n directions can be considered.
Finally, the shift invariant version randomly draws ndir vectors from the unit sphere.

The resulting DO values are invariant to affine transformations, rotations and shifts respectively
provided that the seed is kept fixed at different runs of the algorithm. Note that the DO values are
guaranteed to increase when more directions are considered provided the seed is kept fixed, as this
ensures that the random directions are generated in a fixed order.

An observation from x and z is flagged as an outlier if its DO exceeds a cutoff value. This cutoff
value is determined using the procedure in Rousseeuw et al. (2018). First, the logarithm of the DO
values is taken to render their distribution more symmetric, after which a normal approximation
yields a cutoff on these values. The cutoff is then transformed back by applying the exponential
function.

It is first checked whether the data lie in a subspace of dimension smaller than p. If so, a warning is
given, as well as the dimension of the subspace and a direction which is orthogonal to it. Further-
more, the univariate directional outlyingness of the projected points xv is ill-defined when the scale
in its denominator becomes zero. This can happen when many observations collapse. In these cases
the algorithm will stop and give a warning. The returned values then include the direction v as well
as an indicator specifying which of the observations of x belong to the hyperplane orthogonal to v.

Value

A list with components:

outlyingnessX Vector of length n giving the directional outlyingness of the observations in x.

24 dirOutl

outlyingnessZ Vector of length m giving the directional outlyingness of the points in z relative
to x.

cutoff Points whose directional outlyingness exceeds this cutoff can be considered as
outliers with respect to x.

flagX Observations of x whose directional outlyingness exceeds the cutoff receive a
flag FALSE, regular observations receive a flag TRUE.

flagz Points of z whose directional outlyingness exceeds the cutoff receive a flag equal
to FALSE, otherwise they receive a flag TRUE.

singularSubsets
When the input parameter type is equal to "Affine"”, the number of p-subsets
that span a subspace of dimension smaller than p — 1. In such a case the orthog-
onal direction can not be uniquely determined. This is an indication that the data
are not in general position.

dimension When the data x are lying in a lower dimensional subspace, the dimension of
this subspace.

hyperplane When the data x are lying in a lower dimensional subspace, a direction orthog-
onal to this subspace. When a direction v is found such that the robust skew-
adjusted scale of xv is equal to zero, this equals v.

inSubspace When a direction v is found such that DO(xv) is ill-defined, the observations
from x which belong to the hyperplane orthogonal to v receive a value TRUE.
The other observations receive a value FALSE.

Author(s)

J. Raymaekers and P. Rousseeuw

References

Rousseeuw P.J., Raymaekers J., Hubert M. (2018). A measure of directional outlyingness with
applications to image data and video. Journal of Computational and Graphical Statistics, 27, 345—
359.

See Also

dprojdepth, dprojmedian, adjOutl, outlyingness

Examples

Compute the directional outlyingness of a two-dimensional dataset.
Outliers are plotted in red.

data(geological)

BivData <- geologicall[c(”"Mn0", "Mg0")]

Result <- dirOutl(x = BivData)

IndOutliers <- which(!Result$flagX)

plot(BivData, pch = 16, col = "grey60")

points(BivData[IndOutliers, 1, pch = 16, col = "red")

The number of directions may be specified through

distSpace

25

the option list. The resulting directional outlyingness

is monotone increasing in the number of directions.

Resultl <- dirQutl(x = BivData, options = list(ndir = 50))

Result2 <- dirOutl(x = BivData, options = list(ndir = 100))
which(Result2$outlyingnessX - Resultl$outlyingnessX < @)

This is however not the case when the seed is changed

Resultl <- dirOutl(x = BivData, options = list(ndir = 50))

Result2 <- dirQutl(x = BivData, options = list(ndir = 100, seed = 950))

plot(Result2$outlyingnessX - Resulti$outlyingnessX,
xlab = "Index"”, ylab = "Difference in D0O")

distSpace

distSpace

Description

Computation of distance space representation.

Usage

distSpace(trainingData, testData = NULL, type = "bagdistance”, options = NULL)

Arguments

trainingData

testData

type

options

Details

A list of n by p matrices containing multivariate data or a list of ¢ by n by p arrays
containing functional data. Each element of the list contains the observations
from one group. The training data should contain at least two groups.

An m by p matrix containing multivariate test data or a ¢ by m by p array for
functional data.

The distance used in the computations. For multivariate data one of the follow-
ing options: bagdistance, outlyingness, adjOutl or dirOutl. Defaults to
bagdistance.

For functional data one of the following options: fbd, fSDO, fAO or fDO. Defaults
to fbd.

A list of options to pass to the function computing the underlying distance.
See bagdistance, outlyingness, adjOutl, dirOutl or fOutl for more infor-
mation.

The distance space representation is a tool in supervised classification and was introduced in Hu-
bert et al. (2016) as a generalisation of the depth-depth representation of a multivariate sample.
Based on a distance transform, an observation (be it multivariate or functional) is mapped to its
representation in distance space. The distance transformation consists of mapping the observation
to a vector containing at coordinate ¢ the distance to the training group ¢. After transformation, any
multivariate classifier may be used to classify new observations in distance space. Typically the
k-nearest neighbour algorithm is used.

26 distSpace

Different options are available to compute the distance to each of the training groups. For multi-
variate data, the user may choose between the bagdistance or any of the projection type distances
including the Stahel-Donoho outlyingness, the adjusted outlyingness or the directional outlying-
ness. For functional data, the user may opt to employ the functional bagdistance (fbd), the func-
tional Stahel-Donoho outlyingness (fSDO), the functional skweness-adjusted outlyingness (fAO) or
the functional directional outlyingness (fDO). Options available in each of the underlying distance
routines may be passed down using the options argument.

Value

A ¢ by (p+ 1) matrix composed of two blocks. The first block contains the observations in the
training set (rows) with in each column the distance to each of the groups. The last column contains
a label indicating the original group membership of the observation. The second block contains the
observations in the test set, if any, with in each column the distance to the different training groups.
The last column contains an indicator signaling the observation was part of the test set.

Author(s)

P. Segaert

References

Hubert M., Rousseeuw P.J., Segaert P. (2017). Multivariate and functional classification using depth
and distance. Advances in Data Analysis and Classification, 11, 445—-466.

Examples

data(plane)

Build the training data
Mirage <- plane$planel[, 1:25, 1, drop = FALSE]
Eurofighter <- plane$plane3[, 1:25, 1, drop = FALSE]
trainingData <- list(groupl = Mirage,

group2 = Eurofighter)

Build the test data

Mirage.t <- plane$planel[, 26:30, 1, drop = FALSE]
Eurofighter.t <- plane$plane3[, 26:30, 1, drop = FALSE]
testData <- abind::abind(Mirage.t, Eurofighter.t, along = 2)

Transform the data into distSpace
Result <- distSpace(trainingData = trainingData, testData = testData, type="fbd")

Plot the results
plotColors <- c(rep("orange”, dim(Mirage)[2]),
rep("blue”, dim(Eurofighter)[2]),
rep("green3”, dim(testData)[2]))
plot(Resultl[, 1:2, 1,
col = plotColors, pch=16,
xlab = "distance to Mirage”, ylab = "distance to Eurofighter”,
main = "distSpace representation of Mirage and Eurofighter”)

dprojdepth 27

legend("bottomleft”, legend = c("Mirage"”,"Eurofighter”, "test data"”), pch = 16,
col = c("orange"”,"blue”, "green3"))

dprojdepth Directional projection depth of points relative to a dataset

Description
Computes the directional projection depth of p-dimensional points z relative to a p-dimensional
dataset x.

Usage

dprojdepth(x, z = NULL, options = NULL)

Arguments
X An n by p data matrix with observations in the rows and variables in the columns.
z An optional m by p matrix containing rowwise the points z; for which to com-
pute the directional projection depth. If z is not specified, it is set equal to x.
options A list of options to pass to the underlying dirOutl routine.
See dirOutl for the full list of options.
Details

Directional projection depth is based on the directional outlyingness and is computed as 1/(1 +
DO). As directional outlyingness extends the Stahel-Donoho outlyingness towards skewed dis-
tributions, the directional projection depth is suited for both elliptical distributions and skewed
multivariate data.

It is first checked whether the data is found to lie in a subspace of dimension lower than p. If so, a
warning is given, as well as the dimension of the subspace and a direction which is orthogonal to it.

See dirOutl for more details on the computation of the DO. To visualize the depth of bivariate data
one can apply the mrainbowplot function. It plots the data colored according to their depth.

The output values of this function are based on the output of the dirOutl function. More details
can be found there.
Value

A list with components:

depthX Vector of length n giving the directional projection depth of the observations in
X.

depthz Vector of length m giving the directional projection depth of the points in z.

28 dprojdepth

cutoff Points whose directional projection depth is smaller than this cutoff can be con-
sidered as outliers.

flagX Observations of x whose directional outlyingness exceeds the cutoff receive a
flag FALSE, regular observations receive a flag TRUE.

flagz Points of z whose directional outlyingness exceeds the cutoff receive a flag equal
to FALSE, otherwise they receive a flag TRUE.

singularSubsets

When the input parameter type is equal to "Affine”, the number of p-subsets
that span a subspace of dimension smaller than p — 1. In such a case the orthog-
onal direction can not be uniquely determined. This is an indication that the data
are not in general position.

dimension When the data x are lying in a lower dimensional subspace, the dimension of
this subspace.

hyperplane When the data x are lying in a lower dimensional subspace, a direction orthogo-
nal to this subspace. When a direction v is found such that the robust directional
scale of xv is equal to zero, this equals v.

inSubspace When a direction v is found such that DO(xv) is ill-defined, the observations
from x which belong to the hyperplane orthogonal to v receive a value TRUE.
The other observations receive a value FALSE.

Author(s)

J. Raymaekers

References

Rousseeuw, P.J., Raymaekers, J., Hubert, M. (2018). A measure of directional outlyingness with
applications to image Data and video. Journal of Computational and Graphical Statistics, 27, 345—
359.

See Also

dirQOutl, dprojmedian, mrainbowplot, adjOutl, outlyingness

Examples

Compute the directional projection depth
of a simple two-dimensional dataset.
Outliers are plotted in red.

data(bloodfat)

Result <- dprojdepth(x = bloodfat)
IndOutliers <- which(!Result$flagX)
plot(bloodfat)
points(bloodfat[IndOutliers,], col = "red")

A multivariate rainbowplot may be obtained using mrainbowplot.
plot.options = list(legend.title = "DPD")
mrainbowplot(x = bloodfat,

dprojmedian 29

depths = Result$depthX, plot.options = plot.options)

Options for the underlying outlyingness routine may be passed
using the options argument.
Result <- dprojdepth(x = bloodfat,

options = list(type = "Affine"”, ndir=100))

dprojmedian Location estimates based on directional projection depth

Description

Computes a directional projection depth based location estimate of a p-dimensional dataset x.

Usage

dprojmedian(x, dprojection.depths = NULL, options = NULL)

Arguments

X An n by p data matrix with observations in the rows and variables in the columns.
dprojection.depths

Vector containing the directional projection depth of the observations in x.

options A list of options to pass to the dprojdepth routine. See dprojdepth for more
details.

Details

The algorithm depends on the function dprojdepth to compute the directional projection depth
of the observations in x. If these depth values have already been computed they can be passed as
an optional argument to save computing time. If not, directional projection depth values will be
computed and the user can pass a list with options to the dprojdepth function.

It is first checked whether the data lie in a subspace of dimension smaller than p. If so, a warning is
given, as well as the dimension of the subspace and a direction which is orthogonal to it.

Value

A list with component:

max The observation of x with maximal directional projection depth. If multiple
points have maximum depth, their center of gravity is returned.

Author(s)

J. Raymaekers

30 fHeatmap

References

Rousseeuw P.J., Raymaekers J., Hubert M. (2018). A measure of directional outlyingness with
applications to image data and video. Journal of Computational and Graphical Statistics, 27, 345—
359.

See Also

dirQutl, dprojdepth, adjOutl, outlyingness

Examples

Compute a location estimate of a two-dimensional dataset.
data(bloodfat)

result <- dprojmedian(x = bloodfat)

plot(bloodfat, pch = 16)

points(result$max, col = "red”, pch = 18, cex = 1.5)

Options for the underlying dprojdepth routine may be passed

using the options argument.

result <- dprojmedian(x = bloodfat, options = list(type = "Rotation”, ndir = 100))
plot(bloodfat, pch = 16)

points(result$max, col = "red”, pch = 18, cex = 1.5)

One may also compute the depth values of the observations in the data

separately. This avoids having to recompute them when conmputing the median.
depth.result <- dprojdepth(x = bloodfat)

result <- dprojmedian(x = bloodfat, dprojection.depths = depth.result$depthX)

fHeatmap Draws a heatmap of functional depth values or distances

Description

Draws a heatmap of depth values or distances of functional data.

Usage
fHeatmap(rowValues, cellValues, type, legend.title = "")
Arguments
rowValues Vector of functional depth or distance values. Each value should correspond
with the functional depth or distance of an observation from a (multivariate)
functional data set.
cellvalues Matrix of multivariate depth or distance values. The value in row ¢ and column

7 should correspond with the multivariate depth or distance of observation ¢ at
time point j.

fom 31

type One of "depth” or "distance”. Determines whether a depth or a distance
heatmap is drawn.

legend.title Title of the legend.

Details

On the vertical axis the functional data are sorted from top to bottom according to their functional
depth or distance value as provided in rowValues. When type = "depth”, the deepest observation
is put at the bottom. When type = "distance”, the rows are sorted in decreasing order of their
functional distance.

Each cell of the map is colored according to the multivariate depth provided in cellValues. For
a depth-based heatmap, the smallest depth value is white and the overall highest depth value is
colored dark green. A distance-based heatmap colors the cells from white to dark red.

Author(s)
P. Segaert

References

Hubert M., Rousseeuw P.J., Segaert P. (2015). Multivariate functional outlier detection (with re-
joinder). Statistical Methods & Applications, 24, 177-202.

Examples

data(octane)
Result <- mfd(octane, diagnostic = TRUE, type = "sprojdepth")
Plot <- fHeatmap(rowValues = Result$MFDdepthZ,
cellValues = Result$crossdepthZ,
type = "depth”,
legend.title = "SPD")
Plot

Result <- fOutl(octane, diagnostic = TRUE, type = "fA0")
Plot <- fHeatmap(rowValues = Result$fOutlyingnessZ,
cellValues = Result$crossDistsZ,
type = "distance”,
legend.title = "AQ")
Plot

fom Draws the Functional Outlier Map (FOM)

Description

Creates the Functional Outlier Map, a graphical tool to detect outliers in multivariate functional
data. Depending on the position of a multivariate curve in the FOM, different types of outliers may
be distinguished.

32 fom

Usage

fom(fOutlResult, cutoff = FALSE)

Arguments

fOutlResult The return of a call to fOutl

cutoff Boolean indicating whether the cutoff should be drawn.

Details

The fom is only applicable when fOutl is called with the following options: diagnostic = TRUE
and type equaling either fAO or fDO.

The functional outlier map was proposed by Hubert et al. (2015) and subsequently improved by
Rousseeuw et al. (2018). It consists of a graphical tool to detect outliers in multivariate functional
data based on functional outlyingness measures such as the fAO or fDO (see fOutl).

The coordinates of the points in the FOM correspond to two outlyingness indicators. On the hori-

zontal axis, the functional outlyingness as obtained by the routine fOutl is plotted. On the vertical

axis the scaled standard deviation of the cross-sectional outlyingness measures across time are plot-

ted. The FOM thus consists of the following points representing the curve i: (fOutl;; std; (fOutl;(t;))/(1+
fOutl;)). The scaling of the standard deviation is added to ensure that curves with a different loca-

tion, measured from the center, but with the same relative variability have a similar y-coordinate.

For some underlying multivariate outlyingness measures, the output of fOutl contains an additional
argument signaling whether curve ¢ is outlying as measured in the multivariate space at time point
j. This information is incorporated in the FOM by plotting the points with a different degree of
outlyingness by a different symbol. Curves that are outlying in the multivariate space determined
by at least 75% of the total number of time points in the domain are plotted using filled diamonds.
Similarly curves that are outlying in at least 50% or 25% of the time points are plotted in filled
squares and filled triangles respectively. Curves that are outlying in fewer than 25% of the time
points are plotted using filled circles.

The user may opt to draw a cutoff curve for the detection of outliers on the FOM. This cutoff was

introduced in Rousseeuw et al. (2018) and is based on the euclidean distance between the points

on the FOM and the origin, after scaling with the median. More specifically, let (fOutl;; vOutl;) =

(fOutly; std;(fOutl;(t5))/(1+ fOutl;)) and let cOutl? = (fOutl; /median(fOutl))?+(vOutl; /median(vOutl))?.
Finally, with lcOutl; = log(0.1 4 coutl;),an observation lies outside of the cutoff when (IcOutl; —
median(lcOutl))/mad(lcOutl) > ®71(0.995).

This FOM may be read in a way similar to the outlier map of robust regression (Rousseeuw and van
Zomeren 1990) and the outlier map of robust principal components (Hubert et al. 2005). Points in
the lower left part of the FOM represent regular curves which hold a central position in the dataset.
Points in the lower right part are curves with a high fOutl but a low variability of their cross-
sectional fOutl values. This happens for shift outliers, i.e. curves which have the same shape as
the majority but are shifted on the whole domain. Points in the upper left part have a low fOutl but
a high variability in cross-sectional fOwutl. Typical examples are isolated outliers, i.e. cuves which
only display outlyingness over a small part of their domain. The points in the upper right part of the
FOM have both a high fOwutl and a high cross-sectional fOwutl. These correspond to curves which
are strongly outlying on a substantial part of their domain.

fOutl 33

Author(s)

P. Segaert

References

Hubert M., Rousseeuw P.J., Segaert P. (2015). Multivariate functional outlier detection (with re-
joinder). Statistical Methods & Applications, 24, 177-202.

Rousseeuw P.J., Raymaekers J., Hubert M., (2018). A measure of directional outlyingness with
applications to image data and video. Journal of Computational and Graphical Statistics, 27, 345—
359.

See Also

foutl

Examples

data(octane)

To construct the FOM, one first need to compute
the functional outlyingness.

Note that the option diagnostic in fOutl must be
set to TRUE. If not calling fom will result in an

error
Result <- fOutl(octane, alpha = @, type = "fA0", diagnostic = TRUE)
fom(Result)

The user may opt to draw a cut off line seperating the outliers.
which will be plotted in red
fom(Result, cutoff = TRUE)

Six observations are flagged as outliers. These correspond to
the samples with added ethanol.

foutl Functional outlyingness measures for functional data

Description

Computes several measures of functional outlyingness for multivariate functional data.

Usage

fOutl(x, z = NULL, type = "fAO", alpha = @, time = NULL,
diagnostic = FALSE, distOptions = NULL)

34 fOutl

Arguments

X A three dimensional ¢ by n by p array, with ¢ the number of observed time points,
n the number of functional observations and p the number of measurements for
every functional observation at every time point.

z An optional three-dimensional ¢ by m by p array, containing the observations
for which to compute the functional outlyingness with respect to x. If z is not
specified, it is set equal to x. The time points of z should correspond to those of
X.

type The outlyingness measure used in the computations. One of the following op-
tions: "fAQ", "fSDO", "fDO" or "fbd".

Defaults to "fAQ".

alpha Specifies the weights at every cross-section. When alpha = 9, uniform weights
are used. Otherwise alpha should be a weight vector of length ¢.
Defaults to 0.

time If the measurements are not equidistant, a sorted numeric vector containing a set
of time points.
Defaults to 1:t.

diagnostic If set to TRUE, the output contains some additional components:
crossDists: an n by ¢ matrix containing the multivariate outlyingness of each
observation at each time point
locOutl: output containing flags for local outlyingness (see "Value" for more
details)

Defaults to FALSE.

distOptions A list of options to pass to the function computing the cross-sectional distances.

See adjoOutl, outlyingness, dirOutl, or bagdistance.
Details

The functional outlyingness of a multivariate curve with respect to a given set of multivariate curves
is defined as the weighted average of its multivariate outlyingness at each time point (Hubert et
al., 2015). The functional outlyingness can be computed in all dimensions p using the adjusted
outlyingness (fA0), the directional outlyingness (fDO), the Stahel-Donoho outlyingness (fSDO) or
the bagdistance (fbd).

When the data array z is specified, the functional outlyingness and diagnostic information for the
data array x is also returned whenever the underlying outlyingness routine allows it. For more
information see the specific routines listed in the section "See Also".

In some situations, additional diagnostics are available to flag outlying time points. At each time
point, observations from the data array x are marked if they are flagged as outliers. The observations
from the data array x are marked if their scaled outlyingness is larger than a prescribed cutoff value
from the chi-square distribution. For more details see the respective outlyingness routines.

It is possible that at certain time points a part of the algorithm can not be executed due to e.g. exact
fits. In that case the weight of that particular time point is set to zero. A warning is issued at the
end of the algorithm to signal these time points. Furthermore the output contains an extra argument
giving the indices of the time points where problems occured.

fOutl 35

Value
A list with the following components:

fOutlyingnessX Vector of length n containing the functional outlyingness of every curve from x.

fOutlyingnessZ Vector of length m containing the functional outlyingness of every curve from
z.

weights Vector of weights according to the input parameter alpha.

crossDistsX An n by ¢ matrix containing the multivariate outlyingness of each observation
of x at each point. Only provided if the input parameter diagnostic is set to
TRUE.

crossDistsZ An m by t matrix containing the multivariate outlyingness of each observation
of z at each point. Only provided if the input parameter diagnostic is set to
TRUE.

locOutlX An n by t matrix flagging local outlyingness for x. Only provided if the input
parameter diagnostic is set to TRUE.
The (i, j)th element takes value 1 if curve z; is outlying at time point j.

locOutlz An m by t matrix flagging local outlyingness for z. Only provided if the input
parameter diagnostic is set to TRUE.
The (i, j)th element takes value 1 if curve z; is outlying at time point j.

IndFlagExactFit
Vector containing the indices of the time points for which an exact fit is detected.

Author(s)

P. Segaert

References

Hubert M., Rousseeuw P.J., Segaert P. (2015). Multivariate functional outlier detection (with re-
joinder). Statistical Methods and Applications, 24, 177-202.

Hubert M., Rousseeuw P.J., Segaert P. (2017). Multivariate and functional classification using depth
and distance. Advances in Data Analysis and Classification, 11, 445—-466.

See Also

bagdistance, outlyingness, adjoutl, dirQOutl, fom

Examples

data(octane)
Data <- octane

When the option diagnostic is set to TRUE, a crude diagnostic
to detect outliers can be extracted from the local outlyingness
indicators.

Result <- fOutl(x = Data, type = "fAO", diagnostic = TRUE)
matplot(Datal,,1], type = "1", col = "black”, 1ty = 1)

36 geological

for (i in 1:dim(Data)[2]) {
if(sum(Result$locOutlz[i, 1) > @) {
obsData <- matrix(Datal,i,1], nrow = 1)
obsData[!Result$locOutlZz[i,]] <- NA
obsData <- rbind(obsData, obsData)
matpoints(t(obsData), col = "red"”, pch = 15)
}
3
For more advanced outlier detection techniques, see the
fom routine.

geological Composition of elements in soil samples around the Baltic Sea

Description

This data originates from a geological survey on the composition in agricultural soils from 10 coun-
tries surrounding the Baltic Sea. Top soil (0-25 cm) and bottom soil (50-75 cm) samples from
768 sites were analysed. This data frame contains the measurements corresponding to the total
concentration of four elements in the top soil samples.

Usage
data(geological)

Format

A data frame containing the following variables:

Fe203 Iron Oxide

MgO0 Magnesium oxide
MnO Manganese oxide
Ti02 Titanium dioxide

Source

Reimann C., Siewers U., Tarvainen T., Bityukova L., Eriksson J., Gilucis A., Gregorauskiene V.,
Lukashev V., Matinian N.N., Pasieczna A. (2000). Baltic soil survey: total concentrations of major
and selected trace elements in arable soils from 10 countries around the Baltic Sea. Science of the
Total Environment, 257, 155-170.

References
Hubert M., Van der Veeken S. (2008). Outlier detection for skewed data. Journal of Chemometrics,
22, 235-246.

Examples

data(geological)
plot(geological)

glass 37

glass EXPMA spectra of glass samples

Description

The glass data set studied by Lemberge et al. (2000) consists of 180 different 16-17th century
archeological glass samples. Electron Probe X-ray Microanalysis (EPXMA) intensities across 750
energy levels are recorded using a Jeol JSM 6300 scanning electron microscope equipped with an
energy-dispersive Si(Li) X-ray detection system (SEM-EDX).

Usage

data(glass)

Format

A three-dimensional ¢ = 750 by n = 180 by p = 1 array.

Source

Lemberge P., De Raedt I., Janssens K.H., Wei F., Van Espen P.J. (2000). Quantitative Z-analysis of
16th-17th century archaeological glass vessels using PLS regression of EPXMA and p-XRF data.
Journal of Chemometrics, 14, 751-763.

References

Hubert M., Rousseeuw P.J., Vanden Branden K. (2005). ROBPCA: a new approach to robust prin-
cipal component analysis. Technometrics, 47, 64—79.

Examples

data(glass)
matplot(glass[,,1], type = "1", 1ty = 1, col = "black")

hdepth Halfspace depth of points relative to a dataset

Description

Computes the halfspace depth of p-dimensional points z relative to a p-dimensional dataset x. Com-
putation is exact for p < 3 and approximate when p > 3. For the approximate algorithm the halfs-
pace depth is computed as the minimal univariate halfspace depth over many directions. To obtain
the univariate halfspace depth in the direction v, the dataset x is projected on v, and the univariate
location depth of the points of v'z; to zv is computed.

38 hdepth

Usage

hdepth(x, z = NULL, options = list())

Arguments

X An n by p data matrix with observations in the rows and variables in the columns.

z An optional m by p matrix containing rowwise the points z; for which to com-
pute the halfspace depth. If z is not specified, it is set equal to x.

options A list of available options:

* type
Determines the desired type of invariance for the approximate algorithm
and should be one of "Affine”, "Rotation” or "Shift"”. When the option
"Affine” is used, the directions v are orthogonal to hyperplanes spanned
by p observations from x. When the option "Rotation” is used, the direc-
tions pass by two randomly selected observations from x. With the option
"Shift", directions are randomly generated.
Defaults to "Affine”.

e ndir
Determines the number of directions v by setting ndir to a specific number
or to "all”. In the latter case, an exhaustive search over all possible direc-
tions (according to type) is performed. If ndir is larger than the number of
possible directions, the algorithm will automatically use this setting.
Defaults to 250p when type="Affine", to 5000 when type="Rotation"
and to 12500 when type="Shift".

* approx
The user may force approximate calculation in two or three dimensions by
setting this option to TRUE.
Defaults to FALSE.

* seed
A strictly positive integer specifying the seed to be used by the C++ code.
Defaults to 10.

Details

Halfspace depth has been introduced by Tukey (1975). The halfspace depth of a point z; is defined
as the minimal number of observations from x that are contained in any closed halfspace with
boundary through z;.

In dimensions p = 2 and p = 3 the computations are by default carried out exactly using the
algorithms described in Rousseeuw and Ruts (1996) and Rousseeuw and Struyf (1998). This yields
an affine invariant measure of depth. Approximate algorithms are also implemented which are
affine, rotation or shift invariant, depending on the value chosen for type. They can be used in any
dimension. The shift invariant algorithm coincides with the random Tukey depth (Cuesta-Albertos
and Nieto-Reyes, 2008).

The resulting halfspace depth values are invariant to affine transformations when the exact algorithm
is used and invariant to affine transformations, rotations and shifts depending on the choice for type,
provided that the seed is kept fixed at different runs of the algorithm. Note that the halfspace depth

hdepth 39

values values are guaranteed to decrease when more directions are considered, provided the seed is
kept fixed, as this ensures that the random directions are generated in a fixed order.

If the halfspace depth needs to be computed for m points z;, it is recommended to apply the function
once with the matrix z as input, instead of applying it m times with input vectors z;, as numerous
computations can be saved. The approximate algorithms automatically then also compute the depth
values of the observations in x. When only the halfspace depth of the observations in x is required,
the call to the function should be hdepth(x) or equivalently hdepth(x,x). In that case the depth
values will be stored in the ’depthZ’ output field. For bivariate data these will be the exact values
by default.

To visualize the depth of bivariate data one can apply the mrainbowplot function. It plots the data
colored according to their depth.

It is first checked whether the data lie in a subspace of dimension smaller than p. If so, a warning is
given, as well as the dimension of the subspace and a direction which is orthogonal to it.

Value

A list with components:

depthX Vector of length n giving the halfspace depth of the observations in x.
By default exact if p < 3 and approximate if p > 3 or the option approx is set
to TRUE.

depthz Vector of length m giving the halfspace depth of the points in z relative to x.
By default exact if p < 3 and approximate if p > 3 or the option approx is set
to TRUE.

singularSubsets

When the input parameter type is equal to "Affine"”, the number of p-subsets
that span a subspace of dimension smaller than p— 1. In that case the orthogonal
direction can not be uniquely determined. This is an indication that the data are
not in general position. When the input parameter type is equal to "Rotation”
it is possible that two randomly selected points of the data coincide due to ties
in the data. In this case this value signals how many times this happens.

dimension When the data x are lying in a lower dimensional subspace, the dimension of
this subspace.

hyperplane When the data x are lying in a lower dimensional subspace, a direction orthog-
onal to this subspace.

Author(s)
P. Segaert based on Fortran code by P.J. Rousseeuw, 1. Ruts and A. Struyf, and C++ code by P.
Segaert and K. Vakili.

References

Tukey J. (1975). Mathematics and the picturing of data. Proceedings of the International Congress
of Mathematicians, 2, 523-531, Vancouver.

Rousseeuw P.J., Ruts 1. (1996). AS 307: Bivariate location depth. Journal of the Royal Statistical
Society: Series C, 45, 516-526.

40

hdepth

Rousseeuw P.J., Struyf A. (1998). Computing location depth and regression depth in higher dimen-
sions. Statistics and Computing, 8, 193-203.

Cuesta-Albertos J., Nieto-Reyes A. (2008). The random Tukey depth. Computational Statistics &
Data Analysis, 52, 4979—4988.

See Also

hdepthmedian, mrainbowplot, bagdistance, bagplot

Examples

Compute the halfspace depth of a simple

two-dimensional dataset.

data(cardata90)

Result <- hdepth(x = cardata90)
mrainbowplot(cardata9e, depths = Result$depthz)

In two dimensions we may also opt to use the
approximate algorithm. The number of directions
may be specified through the option list.
options <- list(type = "Rotation”,

ndir = 750,

approx = TRUE)
Result <- hdepth(x = cardata90, options = options)
The resulting halfspace depth is monotone decreasing
in the number of directions.
options <- list(type = "Rotation”,

ndir = 10,

approx = TRUE)
Resultl <- hdepth(x = cardata90, options = options)
options <- list(type = "Rotation”,

ndir = 500,

approx = TRUE)
Result2 <- hdepth(x = cardata90, options = options)
which(Result1$depthZ - Result2$depthZ < @)
This is however not the case when the seed is changed
options <- list(type = "Rotation”,

ndir = 10,

approx = TRUE)
Resultl <- hdepth(x = cardata9@, options = options)
options <- list(type = "Rotation”,

ndir = 50,
approx = TRUE,
seed = 897)

Result2 <- hdepth(x = cardata90, options = options)
which(Result1$depthZ - Result2$depthz < @)
plot(Resultl1$depthZ - Result2$depthz,

xlab = "Index"”, ylab = "Difference in halfspace depth")

We can also consider directions through two data
points. If the sample is small enough one may opt
to search over all choose(n,2) directions.

hdepthmedian 41

Note that the computational load increases substantially
as n becomes larger.
options <- list(type = "Rotation”,
ndir = "all”,
approx = TRUE)
Resultl <- hdepth(x = cardata9@, options = options)

Alternatively one may consider randomly generated directions.
options <- list(type = "Shift",

ndir = 250,

approx = TRUE)
Resultl <- hdepth(x = cardata9@, options = options)

hdepthmedian Location estimates based on halfspace depth.

Description

Computes the halfspace median and its corresponding halfspace depth for a p-dimensional data set
x. Computation is exact for p < 2 and approximate for p > 2.

Usage

hdepthmedian(x, maxdir = NULL)

Arguments
X An n by p data matrix.
maxdir The number of projections used in the approximate algorithm.
Defaults to 250p.
Details

The halfspace median, or Tukey median, is the multivariate point with largest halfspace depth with
respect to the data x. This point is not always unique. In that case the halfspace median corresponds
to the center of gravity of the convex set of deepest points.

It is first checked whether the data is found to lie in a subspace of dimension lower than p. If so,
the routine will give a warning, giving back the dimension of the subspace together with a direction
describing a hyperplane containing this subspace.

For bivariate data the exact algorithm of Rousseeuw and Ruts (1998) is applied. When the data are
not in general position (i.e. when there is a line containing more than two observations) dithering is
performed by adding random Gaussian noise to the data. In this case the output argument dithered
will contain a flag.

When p > 2 the approximate algorithm of Struyf and Rousseeuw (2000) is applied. It is an iterative
procedure based on projections. Their number can be chosen by the input parameter maxdir.

42

Value

A list containing:

median

depth

dithered

ndir

AlgStopFlag

dimension

hyperplane

Author(s)

hdepthmedian

The coordinates of the halfspace median.
Approximate when p > 2.

The halfspace depth of the halfspace median.
Approximate when p > 2.

Logical indicating whether dithering has been applied in the exact algorithm.
FALSE indicates no dithering has been applied.
TRUE indicates dithering has been applied.

The number of projections used by the approximate algorithm. Due to the pos-
sibility of singularity of certain p subsamples it is possible that not all maxdir
directions are evaluated.

Indicates which stopping rule is used by the approximate algorithm.

0 indicates the maximum number of projections was reached

1 indicates no improvement of the location estimate was made after 10(p + 1)
steps.

If the data are lying in a lower dimensional subspace, the dimension of this
subspace.

If the data are lying in a lower dimensional subspace, a direction orthogonal to
this subspace.

P. Segaert based on Fortran code by P.J. Rousseeuw, 1. Ruts and A. Struyf

References

Rousseeuw P.J., Ruts I. (1998). Constructing the bivariate Tukey median. Statistica Sinica, 8,

827-839.

Struyf A., Rousseeuw P.J. (2000). High-dimensional computation of the deepest location. Compu-
tational Statistics & Data Analysis, 34, 415-436.

Examples

Compute a location estimate of a two-dimensional dataset.

data(cardata90)

Result <- hdepthmedian(x = cardata90)
plot(cardata9e, pch = 16)
points(Result$median, col = "red”, pch = 18, cex = 1.5)

medcouple 43

medcouple A robust measure of skewness for univariate data

Description
Computes the medcouple, a robust measure of skewness for univariate data. For multivariate data
the medcouple is computed on each column of the data matrix.

Usage

medcouple(x, do.reflect = NULL)

Arguments
X An n by p data matrix.
do.reflect Logical indicating whether the medcouple should also be computed on the re-
flected sample -x, with final result (mc(x)—me(—x))/2.
Defaults TRUE when n <= 100 and to FALSE otherwise.
Details

The medcouple is a robust measure of skewness yielding values between —1 and 1. For left- and
right-skewed data the medcouple is negative and positive respectively.

The medcouple is defined as the median of the kernel function h(z;, ;) = &2 _med(za?]?:;TEd(m)_“;i)
evaluated over all couples (z;,2;) where x; is smaller than the median of x and z; larger than
the median of x. When there are multiple observations tied to the median, the kernel is defined
separately as the denominator is not defined for these observations. Let m; < ... < my de-
note the indices of the observations which are tied to the median. Then h(zy,,, Z.,,) is defined
toequal —1ifi+j—1 < k,Owheni+j—1 = kand +1ifi+j —1 > k. To com-
pute the medcouple an algorithm with time complexity O(nlog(n)) is applied. For details, see
https://en.wikipedia.org/wiki/Medcouple.

For numerical accuracy it is advised, for small data sets, to compute the medcouple on both x
and -x. The final value of the medcouple may then be obtained as a linear combination of both
calculations. This procedure is warranted by the properties of the medcouple. Indeed the medcouple
of the distribution X equals minus the medcouple of the reflected distribution —X. Moreover the
medcouple is location and scale invariant.

Note that missing values are not allowed.

Value

mc A p-vector containing the medcouple of each column of the data matrix x.

Author(s)

P. Segaert with original code from M. Maechler and G. Brys.

https://en.wikipedia.org/wiki/Medcouple

44 mfd

References

Brys G., Hubert M., Struyf A. (2004). A robust measure of skewness. Journal of Computational
and Graphical Statistics, 13, 996-1017.

Examples

Calculate the medcouple of a bivariate data set.

Note that the medcouple of each variable is returned.
data(bloodfat)

medcouple(bloodfat)

For smaller data sets it is advisable to compute

the medcouple on both the sample and the reflected sample.
small.data <- bloodfat[1:25,]

medcouple(small.data, do.reflect = FALSE)
-medcouple(-small.data, do.reflect = FALSE)

Small difference are due to numerical instabilities.

Use the option do.reflect to increase expected accuracy.
medcouple(small.data, do.reflect = TRUE)

mfd Multivariate functional depth for functional data

Description

Computes the multivariate functional depth for multivariate functional data.

Usage

mfd(x, z = NULL, type = "hdepth”, alpha = @, time = NULL, diagnostic = FALSE,
depthOptions = NULL)

Arguments

X A three-dimensional ¢ by n by p array, with ¢ the number of observed time
points, n the number of functional observations and p the number of measure-
ments for every functional observation at every time point.

z An optional three-dimensional ¢ by m by p array, containing the observations
for which to compute the multivariate functional depth with respect to x. If z
is not specified, it is set equal to x. The time points of z should correspond to
those of x.

type The depth used in the computations. One of the following options: "hdepth”,

"projdepth”, "sprojdepth"”, "dprojdepth”, "sdepth”.
Defaults to "hdepth”.

mfd

45

alpha Specifies the weights at every cross-section. When alpha = @, uniform weights
are used. Weights following equation (2) in Claeskens et al. (2014) are obtained
by setting alpha to a number smaller than the maximal depth at any time point.
The weights are then proportional to the volume of the a-depth regions at each
cross-section. Otherwise alpha should be a weight vector of length ¢.
Defaults to 0.

time If the measurements are not equidistant, a sorted numeric vector containing a set
of time points.
Defaults to 1:t.

diagnostic If set to TRUE, the output contains some additional components:
crossDepths: an n by ¢ matrix containing the multivariate depth of each obser-
vation at each time point
locOutl: output containing flags for local outlyingness (see "Value" for more
details)
Defaults to FALSE.

depthOptions A list of options to pass to the function computing the cross-sectional depths.
See hdepth, projdepth, sprojdepth, dprojdepth or sdepth.

Details

The multivariate functional depth of a multivariate curve with respect to a given set of multivariate
curves is defined as the weighted average of its multivariate depth at each time point (Claeskens et
al., 2014). The MFD can be computed in all dimensions p using halfspace depth, projection depth,
skewness-adjusted projection depth and directional projection depth. For p <= 2 also simplicial
depth is available.

When the data array z is specified, the MFD depth and diagnostic information for the data array
x is also returned whenever the underlying depth routine allows it. For more information see the
specific depth routines listed in the section "See Also".

For the weight vector, three options are available: uniform weights, user-defined weights or weights
proportional to the volume of the a-depth contour at each time point. The a-depth contours are
computed using the depthContour function.

In some situations, additional diagnostics are available to flag outlying time points, as described in
Hubert et al. (2012). At each time point, observations from the data array x are marked if they
are flagged as outliers. When using any of the projection depth measures, this flag is automatically
returned by the corresponding functions. When using halfspace depth, the diagnostic is only avail-
able for bivariate curves. The observations from the data array x are marked if they are flagged as
outliers by the bagplot, or similarly if their bagdistance is larger than 3 at that time point. This
can be seen as a measure of local outlyingness. The option is not available for simplicial depth.

A heatmap of the cross-sectional depth values can be drawn by setting diagnostic to TRUE and
passing the results to fHeatmap.

It is possible that at certain time points a part of the algorithm can not be executed due to e.g. exact
fits. In that case the weight of that particular time point is set to zero. A warning is issued at the
end of the algorithm to signal these time points. Furthermore the output contains an extra argument
giving the indices of the time points where problems occured.

46

Value

mfd

A list with the following components:

MFDdepthX
MFDdepthZ
weights

crossDepthsX

crossDepthsZ

locOutlX

locOutlz

IndFlagExactFit

IndFlagBag

IndFlagIso

IndFlagAlpha

Author(s)

Vector of length n containing the MFD depth of every curve from x.
Vector of length m containing the MFD depth of every curve from z.
Vector of weights according to the input parameter alpha.

An n by t matrix containing the multivariate depth of each observation of x at
each time point.
Only provided if the input parameter diagnostic is set to TRUE.

An m by ¢ matrix containing the multivariate depth of each observation of z at
each time point.
Only provided if the input parameter diagnostic is set to TRUE.

An n by ¢ matrix flagging local outlyingness for x. Only provided if the input
parameter diagnostic is set to TRUE.
The (i, 7)th element takes value 1 if curve x; is outlying at time point j.

An m by ¢ matrix flagging local outlyingness for z. Only provided if the input
parameter diagnostic is set to TRUE.
The (i, j)th element takes value 1 if curve z; is outlying at time point j.

Vector containing the indices of the time points for which an exact fit is detected.

Vector containing the indices of the time points for which the bagplot could not
be computed.

Vector containing the indices of the time points for which the cross-sectional
a-depth contours could not be computed.

Vector containing the indices of the time points for which the volume of the
cross-sectional a-depth contours could not be computed.

P. Segaert and M. Hubert

References

Claeskens G., Hubert M., Slaets L., Vakili K. (2014). Multivariate functional halfspace depth.
Journal of the American Statistical Association, 109, 411-423.

Hubert M., Claeskens G., De Ketelaere B., Vakili K. (2012). A new depth-based approach for
detecting outlying curves. In Proceedings of COMPSTAT 2012, edited by A. Colubi, K. Fokianos,
G. Gonzalez-Rodriguez, E.J. Kontoghiorghes, 329-340.

See Also

depthContour, hdepth, projdepth, sprojdepth, dprojdepth, sdepth, fHeatmap

mfdmedian 47

Examples

data(octane)
Result <- mfd(x = octane, alpha = 0.125, diagnostic = TRUE)

Plot <- fHeatmap(rowValues = Result$MFDdepthZ,
cellValues = Result$crossdepthZz,
type = "depth”,
legend.title = "HD")

Plot

mfdmedian Multivariate functional median for functional data

Description
Computes the multivariate functional median, an estimate for the central tendency of multivariate
functional data.

Usage

mfdmedian(x, type = "hdepth”, crossDepthsX = NULL,
depthOptions = NULL, centerOption = "maxdepth")

Arguments
X A three-dimensional ¢ by n by p array, with ¢ the number of observed time
points, n the number of functional observations and p the number of measure-
ments for every functional observation at every time point.
type The depth used in the computations. One of the following options: "hdepth”,

"projdepth”, "sprojdepth"”, "dprojdepth”, "sdepth”.
Defaults to "hdepth”.

crossDepthsX Depth values at each time point. Can be used to save computing time.
depthOptions A list of options to pass to the function that computes the cross-sectional depths.

centerOption When equal to "maxdepth” the functional median equals at each time point the
point with cross-sectional maximal depth. When type is equal to "projdepth”,
also a weighted center of gravity can be computed based on Huber weights
(see projmedian). Then centerOption should be set to "Huber"”. Defaults
to "maxdepth”.

Details

The multivariate functional median of a multivariate functional data set is defined as the multivariate
curve connecting the cross-sectional multivariate depth medians (Claeskens et al., 2014). The MFD
median can be computed in all dimensions p using halfspace depth, projection depth, skewness-
adjusted projection depth or directional projection depth. The simplicial depth can only be used for
p<2.

48 mfdmedian

It is possible that at certain time points a part of the algorithm can not be executed due to e.g. exact
fits. In that case the estimate for the center will be set to NaN. A warning is issued at the end of the
algorithm to signal these time points. Furthermore the output contains an extra argument giving the
indices of the time points where problems occured.

Value
A list with the following component:

MFDmedian An t by p matrix containing the estimated central curve.
IndFlagExactFit
Vector containing the indices of the time points for which an exact fit is detected.

Author(s)
P. Segaert, M. Hubert

References

Claeskens G., Hubert M., Slaets L., Vakili K. (2014). Multivariate functional halfspace depth.
Journal of the American Statistical Association, 109, 411-423.

See Also

hdepth, projdepth, sprojdepth, dprojdepth, sdepth, mfd

Examples

Consider a bivariate functional sample.
data(characterA)

Data <- characterA[, 1:50,]

Result <- mfdmedian(Data)

Plot the data and the functional median

par(mfrow = c(1,2))

matplot(Datal, , 1], type = "1", col = "black”, 1ty = 1, ylab = "x-coordinate")
matlines(Result$MFDmedian[, 1], type = "1", col = "red”, lwd = 2)
matplot(Datal, , 2], type = "1", col = "black”, 1ty = 1, ylab = "y-coordinate")
matlines(Result$MFDmedian[, 2], type = "1", col = "red”, lwd = 2)

par(mfrow = c(1,1))

Other depth functions such as the adjusted outlyingness may also
be used to determine the cross-sectional depth median.
In this case the depth median is computed by the
sprojmedian routine.
Optional arguments used by the sprojmedian routine may be specified
using the depthOptions. For example one might choose the
"Rotation” option with 300 directions.
Result <- mfdmedian(Data, type = "sprojdepth”,
depthOptions = list(type = "Rotation”,
ndir = 300))

% ¥ O O H W

par(mfrow = c(1,2))

mrainbowplot 49

matplot(Datal, , 1], type = "1", col = "black”, 1ty = 1, ylab = "x-coordinate")
matlines(Result$MFDmedian[, 1], type = "1", col = "red"”, lwd = 2)
matplot(Datal, , 21, type = "1", col = "black”, 1ty = 1, ylab = "y-coordinate”)
matlines(Result$MFDmedian[, 2], type = "1", col = "red”, lwd = 2)

par(mfrow = c(1,1))

If the user already placed a call to the mfd routine
with the diagnostic options set to TRUE, the
mfdmedian can easily be obtained by passing the cross-sectional
depths. This considerably saves computing time.
tResult <- mfd(x = Data, type = "sprojdepth”, diagnostic = TRUE)
Result <- mfdmedian(Data, type = "sprojdepth”,

crossDepthsX = tResult$crossdepthX,

)

Univariate curves should also be represented as arrays

Data.x <- Datal, , 1, drop = FALSE]

Result <- mfdmedian(Data.x)

matplot(Data.x[, , 11, type = "1", col = "black”, 1ty = 1, ylab = "x-coordinate")
matlines(Result$MFDmedian[, 1], type = "1", col = "red"”, lwd = 2)

mrainbowplot Rainbow plot for bivariate data

Description

Makes a scatterplot of bivariate data and colors the observations according to their depth value.

Usage

mrainbowplot(x, depths, col = NULL, plot.options = list())

Arguments
X An n by 2 data matrix.
depths A column vector of length n.
The depth values of the observations in x. The coloring is based on these depth
values.
col Anm > 2 by 3 matrix.

Colors in rgb format. The user may use this argument to set the colorscale of
the depth range. The first row should contain the rgb values for the lowest depth
value, the last row the rgb values of the color for the deepest depth value. Colors
for other depth values are interpolated. When more than two rows are provided
the color range will be equidistantly divided over the different colors.

plot.options A list of available options:

* legend.title Title of the legend.
Defaults to "Depth”.

¢ point.size Numeric defining the size of the points in the plot.
Defaults to 4.

50 mri

Details

The plot is made using ggplot2. The plot itself is returned by the function and is fully customisable
using standard ggplot2 commands. Similar plots for multivariate data with p > 2 can be made using
the ggpairs function in the library GGally.

Author(s)
P. Segaert

Examples

data(cardata90)

Result <- projdepth(x = cardata90)

plot.options <- list(legend.title = "PD")

plot <- mrainbowplot(cardata9o,
depths = Result$depthZ,
plot.options = plot.options)

plot + ggtitle("Rainbowplot based on projection depth”)

The default color range may be adjusted using the col argument.
RGBmatrix <- c(1, 0, 0, #Red
1, 1, 1, #White
0, 1, @) #Green
RGBmatrix <- matrix(RGBmatrix, ncol = 3, byrow = TRUE)
plot <- mrainbowplot(cardata9o,
depths = Result$depthZz,
col = RGBmatrix,
plot.options = plot.options)
plot + ggtitle("Rainbowplot based on projection depth")

mri Intensities of MRI images

Description

Felipe et al. (2005) obtained intensities of MRI images of 9 different parts of the human body (plus
a group consisting of all remaining body regions, which was of course very heterogeneous). They
then transformed their data to univariate curves.

Usage

data(mri)

Format

A list of arrays corresponding to each bodypart. For each bodypart, a three-dimensional ¢ = 99 by
n by p = 1 array is available. The index ¢ corresponds to the different points of measurement, the
index n to the different observations.

octane 51

Details
When using this data set please cite both Felipe et al. (2005) and Hubert et al. (2017).

Source

Felipe J.C., Traina A.J.M., Traina C. (2005). Global warp metric distance: boosting content-based
image retrieval through histograms. Proceedings of the Seventh IEEE International Symposium on
Multimedia (ISMO05), p.8.

Chen Y., Keogh E., Hu B., Begum N., Bagnall A., Mueen A., Batista G.J. (2015). The UCR Time
Series Classification Archive. [http://www.cs.ucr.edu/~eamonn/time_series_data]

References

Hubert M., Rousseeuw P.J., Segaert P. (2017). Multivariate and functional classification using depth
and distance. Advances in Data Analysis and Classification, 11, 445-466.

Examples

data(mri)
par(mfrow = c(2,1))
matplot(y = mri$bodyparti[,,1],

type = "1", col = "black”, 1ty =1,

xlab = "" ylab="", main = "bodypart 1")
matplot(y = mri$bodypart2[,,1],

type = "1", col = "black”, 1ty =1,

xlab = "" ylab="", main = "bodypart 2")
par(mfrow = c(1,1))

octane Near infrared spectra of gasoline samples

Description

Near infrared absorbance spectra (NIR) of 39 gasoline samples over 226 wavelengths ranging from
1102nm to 1552nm with measurements every two nanometers. Six of the samples (25, 26, 36-39)
contain added alcohol.

Usage

data(octane)

Format

A three-dimensional ¢ = 226 by n = 39 by p = 1 array.

Source

Esbensen K., Schonkopf S., Midtgaard T. (1994). Multivariate Analysis in Practice. Trondheim:
Camo.

52

References

outlyingness

Hubert M., Rousseeuw P.J., Vanden Branden K. (2005). ROBPCA: a new approach to robust prin-
cipal component analysis. Technometrics, 47, 64—719.

Examples

data(octane)

matplot(octane[,1:30,1], type = "1", 1ty = 1, col = "black")

outlyingness

Stahel-Donoho outlyingness of points relative to a dataset

Description

Computes the Stahel-Donoho outlyingness (SDO) of p-dimensional points z relative to a p-dimensional
dataset x. For each multivariate point z;, its outlyingness relative to x is defined as its maximal uni-
variate Stahel-Donoho outlyingness measured over all directions. To obtain the univariate Stahel-
Donoho outlyingness in the direction v, the dataset x is projected on v, and the robustly standardized
distance of v’ z; to the robust center of the projected data points xv is computed.

Usage

outlyingness(x, z = NULL, options = list())

Arguments

X

z

options

An n by p data matrix.

An optional m by p matrix containing rowwise the points z; for which to com-
pute the outlyingness. If z is not specified, it is set equal to x.

A list of available options:

e type

Determines the desired type of invariance and should be one of "Affine”,
"Rotation” or "Shift”. When the option "Affine” is used, the direc-
tions v are orthogonal to hyperplanes spanned by p observations from x.
When the option "Rotation” is used, the directions pass by two randomly
selected observations from x. With the option "Shift", directions are ran-
domly generated.

Defaults to "Affine”.

ndir

Determines the number of directions v by setting ndir to a specific number
or to "all”. In the latter case, an exhaustive search over all possible direc-
tions (according to type) is performed. If ndir is larger than the number of
possible directions, the algorithm will automatically use this setting.
Defaults to 250p when type="Affine", to 5000 when type="Rotation"
and to 12500 when type="Shift".

outlyingness 53

e stand
Determines how to robustly standardize the projected data: "MedMad" uses
the median and the MAD, "unimcd"” uses the univariate MCD of location
and scale.
Defaults to "MedMad".

* centered
When the data matrix x is already centered, no robust center should be
computed in each direction. In that case, centered should be set to TRUE.
Defaults to FALSE.

*h
When the input argument stand is equal to unimcd, the parameter h con-
trols the number of data points that define the MCD estimator (see covMcd
in the robustbase package). This value should lie between [n/2] + 1 and
n.

Defaults to [n/2] + 1.

* seed
A strictly positive integer specifying the seed to be used by the C++ code.
Defaults to 10.

Details

The Stahel-Donoho outlyingness has been introduced by Stahel (1981) and Donoho (1982). It is
mostly suited to measure the degree of outlyingness of multivariate points with respect to a data
cloud from an elliptical distribution.

Depending on the dimension p, different approximate algorithms are implemented. The affine
invariant algorithm can only be used when n > p. It draws ndir times at random p observations
from x and considers the direction orthogonal to the hyperplane spanned by these p observations.
At most p out of n directions can be considered. The orthogonal invariant version can be applied
to high-dimensional data. It draws ndir times at random 2 observations from x and considers the
direction through these observations. Here, at most 2 out of n directions can be considered. Finally,
the shift invariant version randomly draws ndir vectors from the unit sphere.

The resulting Stahel-Donoho outlyingness values are invariant to affine transformations, rotations
and shifts respectively provided that the seed is kept fixed at different runs of the algorithm. Note
that the SDO values are guaranteed to increase when more directions are considered provided the
seed is kept fixed, as this ensures that the random directions are generated in a fixed order.

An observation from x and z is flagged as an outlier if its SDO exceeds a cutoff value. This cutoff
value is determined using the procedure in Rousseeuw et al. (2018). First, the logarithm of the SDO
values is taken to render their distribution more symmetric, after which a normal approximation
yields a cutoff on these values. The cutoff is then transformed back by applying the exponential
function.

It is first checked whether the data lie in a subspace of dimension smaller than p. If so, a warning is
given, as well as the dimension of the subspace and a direction which is orthogonal to it. Moreover,
from the definition of the Stahel-Donoho outlyingness it follows that the outlyingness is ill-defined
when the robust scale of the data projected on the direction v equals zero. In this case the algorithm
will stop and give a warning. The returned values then include the direction v as well as an indicator
specifying which of the observations of x belong to the hyperplane orthogonal to v.

54

Value

outlyingness

A list with components:

outlyingnessX
outlyingnessZ

cutoff

flagX

flagz

singularSubsets

dimension

hyperplane

inSubspace

Author(s)

Vector of length n giving the outlyingness of the observations in x.
Vector of length m giving the outlyingness of the points in z.

Points whose outlyingness exceeds this cutoff can be considered as outliers with
respect to x.

Observations of x whose outlyingness exceeds the cutoff value receive a flag
FALSE, regular observations receive a flag TRUE.

Points of z whose outlyingness exceeds the cutoff value receive a flag equal to
FALSE, otherwise they receive a flag TRUE.

When the input parameter type is equal to "Affine"”, the number of p-subsets
that span a subspace of dimension smaller than p — 1. In such a case the or-
thogonal direction can not be uniquely determined. This is an indication that
the data are not in general position. When the input parameter type is equal to
"Rotation” itis possible that two randomly selected points of the data coincide
due to ties in the data. In such a case this value signals how many times this
happens.

When the data x are lying in a lower dimensional subspace, the dimension of
this subspace.

When the data x are lying in a lower dimensional subspace, a direction orthog-
onal to this subspace. When a direction v is found such that the robust scale of
zv is equal to zero, this equals v.

When a direction v is found such that the robust scale of xv is zero, the obser-
vations from x which belong to the hyperplane orthogonal to v receive a value
TRUE. The other observations receive a value FALSE.

P. Segaert using C++ code by K. Vakili and P. Segaert.

References

Stahel W.A. (1981). Robuste Schatzungen: infinitesimale Optimalitat und Schatzungen von Kovar-
ianzmatrizen. PhD Thesis, ETH Zurich.

Donoho D.L. (1982). Breakdown properties of multivariate location estimators. Ph.D. Qualifying
paper, Dept. Statistics, Harvard University, Boston.

Maronna R.A., Yohai V. (1995). The behavior of the Stahel-Donoho robust multivariate estimator.
Journal of the American Statistical Association, 90, 330-341.

Rousseeuw P.J., Raymaekers J., Hubert M., (2018). A measure of directional outlyingness with
applications to image data and video. Journal of Computational and Graphical Statistics, 27, 345—

359.

outlyingness 55

See Also

projdepth, projmedian, adjoOutl, dirOutl

Examples

Compute the outlyingness of a simple two-dimensional dataset.
Outliers are plotted in red.

if (requireNamespace("robustbase”, quietly = TRUE)) {
BivData <- log(robustbase::Animals2)
} else {
BivData <- matrix(rnorm(120), ncol = 2)
BivData <- rbind(BivData, matrix(c(6,6,6,-2), ncol = 2))
3

Result <- outlyingness(x = BivData)
IndOutliers <- which(!Result$flagX)
plot(BivData)
points(BivData[IndOutliers,], col = "red")

The number of directions may be specified through
the option list. The resulting outlyingness is
monotone increasing in the number of directions.
Resultl <- outlyingness(x = BivData,
options = list(ndir = 50)
)
Result2 <- outlyingness(x = BivData,
options = list(ndir
)
which(Result2$outlyingnessX - Resultl$outlyingnessX < @)
This is however not the case when the seed is changed
Resultl <- outlyingness(x = BivData,
options = list(ndir
)
Result2 <- outlyingness(x = BivData,
options = list(ndir = 100,

100)

50)

seed = 950)
)
plot(Result2$outlyingnessX - Resulti$outlyingnessX,
xlab = "Index"”, ylab = "Difference in outlyingness”)

We can also consider directions through two data
points. If the sample is small enough one may opt
to search over all choose(n,2) directions.
Note that the computational load increases considerably
as n becomes larger.
Result <- outlyingness(x = BivData,
options = list(type = "Rotation”,
ndir = "all")

)
IndOutliers <- which(!Result$flagX)

plot(BivData)

56

plane

points(BivData[IndOutliers,], col = "red")

Alternatively one may consider randomly generated directions.
Result <- outlyingness(x = BivData,
options = list(type = "Shift",
ndir = 1000)

)
IndOutliers <- which(!Result$flagX)

plot(BivData)
points(BivData[IndOutliers,], col = "red")

The default option of using the MAD for the scale may be
changed to using the univariate mcd.
Result <- outlyingness(x = BivData,

options = list(type = "Affine”,

ndir = 1000,
stand = "unimcd”,
h = 0.75*nrow(BivData))
)
IndOutliers <- which(!Result$flagX)

plot(BivData)
points(BivData[IndOutliers,], col = "red")

plane Fighter plane dataset

Description

The fighter plane dataset of Thakoor and Gao (2005) describes 7 shapes: of the Mirage, Eurofighter,
F-14 with wings closed, F-14 with wings opened, Harrier, F-22 and F-15. Each class contains
30 shape samples obtained from digital pictures, which Thakoor and Gao (2005) then reduced to
univariate functions.

Usage

data(plane)

Format

A list of arrays corresponding to each plane. For each plane, a three-dimensional ¢ by n by p = 1
array is available. The index ¢ corresponds to the different measurement points, the index n to the
different observations.

Details

When using this data set please cite both Thakoor et al. (2005) and Hubert et al. (2017).

plotContours

Source

Thakoor N., Gao J. (2005). Shape classifier based on generalized probabilistic descent method with
hidden Markov descriptor. Tenth IEEE International Conference on Computer Vision (ICCV 2005),

Vol. 1: 495-502.

Chen Y., Keogh E., Hu B., Begum N., Bagnall A., Mueen A., Batista G.J. (2015). The UCR time
series classification archive. [http://www.cs.ucr.edu/~eamonn/time_series_data]

References

Hubert M., Rousseeuw P.J., Segaert P. (2017). Multivariate and functional classification using depth

and distance. Advances in Data Analysis and Classification, 11, 445-466.

Examples

data(plane)
par(mfrow = c(2,1))
matplot(y = plane$planel[,,1],
type ="1", col = "black"”, 1ty =1,
xlab = "", ylab = "", main = "plane 1")
matplot(y = plane$plane2[,,1],
type = "1", col "black”, 1ty =1,

xlab = "", ylab = "", main = "plane 2")
par(mfrow = c(1,1))
plotContours Draws depth contours of bivariate data

Description

Draws the depth contours of bivariate data computed with depthContour.

Usage

plotContours(x, depthContour, data = TRUE)

Arguments

X An n by 2 data matrix.

depthContour The result of a call to depthContour.

data Logical value indicating whether the data x should be plotted.

Details

The plot is made using ggplot2. The plot itself is returned by the function and is fully customisable

using standard ggplot2 commands.

58 projdepth

Author(s)
P. Segaert

References

Ruts I., Rousseeuw P.J. (1996). Computing depth contours of bivariate point clouds. Computational
Statistics & Data Analysis, 23, 153-168.

See Also

depthContour

Examples

Compute and plot some halfspace depth contours of a two-dimensional dataset.
The returned object is a ggplot2 object that may be edited
using standard ggplot2 commands.
data(cardata99)
Result <- depthContour(x = cardata9e,
alpha = ¢(0.125, 0.25))
plot <- plotContours(x = cardata90, depthContour = Result)
plot + ylab("Engine displacement”) + xlab("Weight in pounds™)

One may consider different depth functions such as projection depth
by changing the input parameter 'type' in the depthcontour function.
Result <- depthContour(x = cardata9e,

alpha = c(0.35, 0.55),

type = "projdepth")
plotContours(x = cardata9@, depthContour = Result)

projdepth Projection depth of points relative to a dataset

Description

Computes the projection depth of p-dimensional points z relative to a p-dimensional dataset x.

Usage

projdepth(x, z = NULL, options = list())

Arguments
X An n by p data matrix with observations in the rows and variables in the columns.
z An optional m by p matrix containing rowwise the points z; for which to com-
pute the projection depth. If z is not specified, it is set equal to x.
options A list of options to pass to the underlying outlyingness routine.

See outlyingness for the full list of options.

projdepth 59

Details

Projection depth is based on the Stahel-Donoho outlyingness (SDO) and is computed as 1/(1 +
SDO,). It is mostly suited to measure the degree of outlyingness of multivariate points with respect
to a data cloud from an elliptical distribution.

It is first checked whether the data lie in a subspace of dimension smaller than p. If so, a warning is
given, as well as the dimension of the subspace and a direction which is orthogonal to it.

See outlyingness for more details on the computation of the SDO. To visualize the depth of
bivariate data one can apply the mrainbowplot function. It plots the data colored according to their
depth.

The output values of this function are based on the output of the outlyingness function. More
details can be found there.

Value

A list with components:

depthX Vector of length n giving the projection depth of the observations in x.
depthz Vector of length m giving the projection depth of the points in z.
cutoff Points whose projection depth is smaller than this cutoff can be considered as

outliers. Equivalently the outliers are those points whose Stahel-Donoho outly-
ingness exceed the corresponding cutoff.

flagX Observations of x whose projection depth is smaller than the cutoff receive a
flag FALSE, regular observations receive a flag TRUE.

flagz Points of z whose projection depth is smaller than the cutoff receive a flag equal
to FALSE, otherwise they receive a flag TRUE.

singularSubsets
When the input parameter type is equal to "Affine"”, the number of p-subsets
that span a subspace of dimension smaller than p — 1. In that case the orthogonal
direction can not be uniquely determined. This is an indication that the data are
not in general position. When the input parameter type is equal to "Rotation”
it is possible that two randomly selected points of the data coincide due to ties
in the data. In this case this value signals how many times this happens.

dimension When the data x are lying in a lower dimensional subspace, the dimension of
this subspace.

hyperplane When the data x are lying in a lower dimensional subspace, a direction orthog-
onal to this subspace. When a direction v is found such that the robust scale of
zv is equal to zero, this equals v.

inSubspace When a direction v is found such that the robust scale of xwv is zero, the obser-
vations from x which belong to the hyperplane orthogonal to v receive a value
TRUE. The other observations receive a value FALSE.
Author(s)

P. Segaert

60 projmedian

References

Zuo Y. (2003). Projection-based depth functions and associated medians. The Annals of Statistics,
31, 1460-1490.

See Also

outlyingness, projmedian, mrainbowplot, adjoOutl, dirOutl

Examples

Compute the projection depth of a simple two-dimensional dataset.
Outliers are plotted in red.

if (requireNamespace("robustbase”, quietly = TRUE)) {
BivData <- log(robustbase::Animals2)
} else {
BivData <- matrix(rnorm(120), ncol = 2)
BivData <- rbind(BivData, matrix(c(6,6, 6, -2), ncol = 2))
}

Result <- projdepth(x = BivData)
IndOutliers <- which(!Result$flagX)
plot(BivData)
points(BivData[IndOutliers,], col = "red")

A multivariate rainbowplot may be obtained using mrainbowplot.
plot.options = list(legend.title = "PD")
mrainbowplot(x = BivData,

depths = Result$depthX, plot.options = plot.options)

Options for the underlying outlyingness routine may be passed
using the options argument.
Result <- projdepth(x = BivData,
options = list(type = "Affine”,
ndir = 1000,
stand = "MedMad”,
h = nrow(BivData)

)

projmedian Location estimates based on projection depth

Description

Computes a projection depth based location estimate of a p-dimensional dataset x.

projmedian 61

Usage

projmedian(x, projection.depths = NULL, options = NULL)

Arguments

X An n by p data matrix with observations in the rows and variables in the columns.

projection.depths
Vector containing the projection depth of the observations in x.

options A list of options to pass to the projdepth routine. See projdepth for more
details.

Details

The algorithm depends on the function projdepth to compute the projection depth of the obser-
vations in x. If these depth values have already been computed, they can be passed as an optional
argument to save computing time. If not, the projection depth values will be computed and the user
can pass a list with options to the projdepth function.

It is first checked whether the data lie in a subspace of dimension smaller than p. If so, a warning is
given, as well as the dimension of the subspace and a direction which is orthogonal to it.

Value

A list with components:

max The point of x with maximal projection depth. If multiple points have maximum
depth, their center of gravity is returned.

Huber A weighted center of gravity of all observations. The weights are defined by
the Huber function with parameter alpha =1/ (1+sqrt(qchisq(@.95, p)))
Observations for which the projection depth is more than alpha receive weight 1,
other points receive weight (sqrt(qchisq(@.95, p)) / outlyingness)*2.

Author(s)

P. Segaert

References
Maronna, R.A., Yohai, V.J. (1995). The behavior of the Stahel-Donoho robust multivariate estima-
tor. Journal of the American Statistical Association, 90, 330-341.

See Also

outlyingness, projdepth, adjoOutl, dirOutl

62 rdepth

Examples

Compute a location estimate of a two-dimensional dataset.
if (requireNamespace("robustbase”, quietly = TRUE)) {

BivData <- log(robustbase::Animals2)
} else {

BivData <- matrix(rnorm(120), ncol = 2)

BivData <- rbind(BivData, matrix(c(6, 6, 6, -2), ncol = 2))
3

result <- projmedian(x = BivData)

plot(BivData, pch = 16)

points(result$max, col = "red”, pch = 18, cex = 1.5)
points(result$Huber, col = "blue", pch = 3, cex = 1.5)

Options for the underlying projdepth routine may be passed
using the options argument.
result <- projmedian(x = BivData,
options = list(type = "Rotation”,
ndir = 100,
stand = "unimcd”,
h = 0.75*nrow(BivData)))

plot(BivData, pch = 16)
points(result$max, col = "red”, pch = 18, cex = 1.5)
points(result$Huber, col = "blue", pch = 3, cex = 1.5)

One may also compute the depth values of the observations in the data
separately. This avoids having to recompute them when computing the median.
depth.result <- projdepth(x = BivData)
result <- projmedian(x = BivData,
projection.depths = depth.result$depthX)

rdepth Regression depth of hyperplanes

Description

Computes the regression depth of several hyperplanes with respect to a multiple regression dataset
with p explanatory variables. The computation is exact for p <= 3. An approximate algorithm is
used for p > 3.

Usage
rdepth(x, z = NULL, ndir = NULL)

Arguments

X An n by p + 1 regression dataset.
The first p columns are the explanatory variables. The last column corresponds
to the response variable.

rdepth 63

z An m by p+ 1 matrix containing rowwise the hyperplanes for which to compute
the regression depth. The first column should contain the intercepts.
If z is not specified, it is set equal to x.

ndir Controls the number of directions when the approximate algorithm is used. De-
faults to 250p.

Details

Regression depth has been introduced in Rousseeuw and Hubert (1999). To compute the regression
depth of a hyperplane, different algorithms are used. When p <= 3 it can be computed exactly. In
higher dimensions an approximate algorithm is used (Rousseeuw and Struyf 1998).

It is first checked whether the data x lie in a subspace of dimension smaller than p + 1. If so, a
warning is given, as well as the dimension of the subspace and a direction which is orthogonal to it.

Value

A list with components:

depthz A vector containing the regression depth of the hyperplanes in z.

singularSubsets
A vector of length m.
For each hyperplane, it contains the number of singular subsamples when the
approximate algorithm is used. The actual number of directions used in the
algorithm therefore equals ndir-singularSubsets.

dimension When the data x are lying in a lower dimensional subspace, the dimension of
this subspace.

hyperplane When the data x are lying in a lower dimensional subspace, a direction orthog-
onal to this subspace.

Author(s)

P. Segaert using Fortran code by P.J. Rousseeuw, 1. Ruts and A. Struyf

References

Rousseeuw P.J., Hubert M. (1999). Regression depth. Journal of the American Statistical Associa-
tion, 94, 388—402.

Rousseeuw P.J., Struyf A. (1998). Computing location depth and regression depth in higher dimen-
sions. Statistics and Computing, 45, 193-203.

See Also

rdepthmedian, cmltest

64 rdepthmedian

Examples

Illustrate the concept of regression depth in the case of simple
linear regression.

data(stars)

Compute the least squares fit. Due to outliers

this fit will be bad and thus should result in a small
regression depth.

temp <- 1lsfit(x = stars[,1], y = stars[,2])$coefficients
intercept <- temp[1]

slope <- temp[2]

plot(stars, ylim = c(4,7))

abline(a = intercept, b = slope)

abline(a = -9.2, b = 3.2, col = "red")

Let us compare the regression depth of the least squares fit
with the depth of the better fitting red regression line.
z <- rbind(cbind(intercept, slope),
cbind(-9.2, 3.2))
result <- rdepth(x = stars, z = z)
result$depthz
text(x = 3.8, y = 5.3, labels = round(result$depthz[1], digits =2))
text(x = 4.45, y = 4.8, labels = round(result$depthz[2], digits =2), col = "red")

Compute the depth of some other regression lines to illustrate the concept.
Note that the stars data set has 47 observations and 1/47 = 0.0212766.
z <- rbind(cbind(6.2, @),
cbind(6.5, 0))
result <- rdepth(x = stars, z = z)
abline(a = 6.2, b = @, col = "blue")

abline(a = 6.5, b = @, col = "darkgreen")

text(x = 3.8, y = 6.25, labels = round(result$depthz[1], digits = 2),
col = "blue”)

text(x = 4, y = 6.55, labels = round(result$depthz[2], digits = 2),
col = "darkgreen")

One point needs to removed to make the blue line a nonfit. The green line is
clearly a nonfit.

rdepthmedian Hyperplane of maximal regression depth

Description

Computes the deepest regression, i.e. the hyperplane with maximal regression depth given a re-
gression dataset with p explanatory variables. The computation is exact for simple regression, and
approximate otherwise.

Usage

rdepthmedian(x, maxit = NULL)

rdepthmedian

Arguments

X

maxit

Details

65

An n by p + 1 regression data matrix.
The first p columns are the explanatory variables. The last column corresponds
to the response variable.

The maximum number of iterations.
Defaults to 100.

In simple regression the deepest regression fit can be computed exactly by considering all lines
through two data points and taking the one with maximal regression depth. If several lines have the
same maximal regression depth, their average is taken.

When p > 1, the approximate MEDSWEEDP algorithm is applied (Van Aelst et al, 2002).

It is first checked whether the data lie in a subspace of dimension smaller than p+1. If so, a warning
is given, as well as the dimension of the subspace and a direction which is orthogonal to it.

Value

A list with components:

deepest

depth
niter

dimension

hyperplane

Author(s)

A (p + 1) vector containing the estimates of the deepest regression fit. The last
p values are the slopes, the first value corresponds to the intercept.

The depth of the deepest regression hyperplane.
The number of performed iterations used in the medsweep algorithm.

When the data x are lying in a lower dimensional subspace, the dimension of
this subspace.

When the data x are lying in a lower dimensional subspace, a direction orthog-
onal to this subspace.

P. Segaert using Fortran code by S. Van Aelst

References

Van Aelst S., Rousseeuw P.J., Hubert M., Struyf A. (2002). The deepest regression method. Journal
of Multivariate Analysis, 81, 138—166.

See Also

rdepth, cmltest

66 sdepth

Examples

Illustrate the concept of deepest regression line in the case of simple
linear regression.

data(stars)

plot(stars, pch=16)

result <- rdepthmedian(x = stars)

abline(result$deepest, col="blue"”, 1lwd=2)

x <= matrix(rnorm(3000), ncol = 3) + 10
rdepthmedian(x = x)

sdepth Simplicial depth of points relative to a dataset

Description
Computes the simplicial depth of p-dimensional points z relative to a p-dimensional dataset x. Only
dimension p <= 2 is supported.

Usage
sdepth(x, z = NULL)

Arguments
X An n by p data matrix with observations in the rows and variables in the columns.
z An optional m by p matrix containing rowwise the points z; for which to com-
pute the simplicial depth. If z is not specified, it is set equal to x.
Details

The simplicial depth has been introduced by Liu (1990). The simplicial depth of a point z; is defined
as the number of simplices with vertices in x that contain z;. Exact computation of the simplicial
depth for bivariate data is performed by means of the algorithm described in Rousseeuw and Ruts
(1996). To visualize the depth of bivariate data one can apply the mrainbowplot function. It plots
the data with coloring according to their depth.

It is first checked whether the data lie in a subspace of dimension smaller than p. If so, a warning is
given, as well as the dimension of the subspace and a direction which is orthogonal to it.

Value

A list with components:

depthZ Vector of length m giving the simplicial depth of the points in z.

dimension When the data x are lying in a lower dimensional subspace, the dimension of
this subspace.

hyperplane When the data x are lying in a lower dimensional subspace, a direction orthog-
onal to this subspace.

sprojdepth 67

Author(s)

P. Segaert, based on Fortran code by P.J. Rousseeuw, I. Ruts and A. Struyf.

References

Liu R. (1990). On a notion of data depth based on random simplices. The Annals of Statistics, 18,
405-414.

Rousseeuw P.J., Ruts I. (1996). AS 307: Bivariate location depth. Applied Statistics, 45, 516-526.

See Also

mrainbowplot

Examples

data(bloodfat)
Result <- sdepth(x = bloodfat)
mrainbowplot(bloodfat, depth = Result$depthz)

sprojdepth Skewness-adjusted projection depth of points relative to a dataset

Description

Computes the skewness-adjusted projection depth of p-dimensional points z relative to a p-dimensional
dataset x.

Usage

sprojdepth(x, z = NULL, options = NULL)

Arguments
X An n by p data matrix with observations in the rows and variables in the columns.
z An optional m by p matrix containing rowwise the points z; for which to com-
pute the projection depth. If z is not specified, it is set equal to x.
options A list of options to pass to the underlying adjOutl routine. See adjOutl for the

full list of options.

68 sprojdepth

Details

Skewness-adjusted projection depth is based on the adjusted outlyingness and is computed as
1/(1 + AO). As adjusted outlyingness extends the Stahel-Donoho outlyingness towards skewed
distributions, the skewness-adjusted projection depth is suited for both elliptical distributions and
skewed multivariate data.

It is first checked whether the data is found to lie in a subspace of dimension lower than p. If so, a
warning is given, as well as the dimension of the subspace and a direction which is orthogonal to it.

See adjoOutl for more details on the computation of the AO. To visualize the depth of bivariate data
one can apply the mrainbowplot function. It plots the data colored according to their depth.

The output values of this function are based on the output of the adjOutl function. More details
can be found there.

Value

A list with components:

depthX Vector of length n giving the skewness-adjusted projection depth of the obser-
vations in X.

depthZ Vector of length m giving the skewness-adjusted projection depth of the points
in z.

cutoff Points whose skew-adjusted projection depth is smaller than this cutoff can be
considered as outliers.

flagX Observations of x whose adjusted outlyingness exceeds the cutoff receive a flag
FALSE, regular observations receive a flag TRUE.

flagz Points of z whose adjusted outlyingness exceeds the cutoff receive a flag equal
to FALSE, otherwise they receive a flag TRUE.

singularSubsets

When the input parameter type is equal to "Affine"”, the number of p-subsets
that span a subspace of dimension smaller than p— 1. In that case the orthogonal
direction can not be uniquely determined. This is an indication that the data are
not in general position. When the input parameter type is equal to "Rotation”
it is possible that two randomly selected points of the data coincide due to ties
in the data. In this case this value signals how many times this is the case.

dimension When the data x are lying in a lower dimensional subspace, the dimension of
this subspace.

hyperplane When the data x are lying in a lower dimensional subspace, a direction orthog-
onal to this subspace. When a direction v is found such that the robust skew-
adjusted scale of zv is equal to zero, this equals v.

inSubspace When a direction v is found such that AO(xv) is ill-defined, the observations
from x which belong to the hyperplane orthogonal to v receive a value TRUE.
The other observations receive a value FALSE.

Author(s)
P. Segaert with original code from M. Maechler, G. Brys, K. Vakili

sprojmedian 69

References

Hubert M., Van der Veeken S. (2008). Outlier detection for skewed data. Journal of Chemometrics,
22, 235-246.

Hubert M, Rousseeuw P.J., Segaert P. (2015). Multivariate functional outlier detection. Statistical
Methods & Applications, 24, 177-202.

See Also

adjoutl, sprojmedian, mrainbowplot, dirOutl, outlyingness

Examples

Compute the skewness-adjusted projection depth
of a two-dimensional dataset.

data(bloodfat)
Result <- sprojdepth(x = bloodfat)

A multivariate rainbowplot may be obtained using mrainbowplot.
plot.options = list(legend.title = "SPD")
mrainbowplot(x = bloodfat,

depths = Result$depthX, plot.options = plot.options)

Options for the underlying outlyingness routine may be passed
using the options argument.
Result <- sprojdepth(x = bloodfat,

options = list(type = "Affine"”,

ndir = 1000,
seed = 12345
)
)
sprojmedian Location estimates based on skewness-adjusted projection depth

Description

Computes a skewness-adjusted projection depth based location estimate of a p-dimensional dataset
X.

Usage

sprojmedian(x, sprojection.depths = NULL, options = NULL)

70 sprojmedian

Arguments

X An n by p data matrix with observations in the rows and variables in the columns.
sprojection.depths

Vector containing the skewness-adjusted projection depth values of the observa-
tions in X.

options A list of options to pass to the sprojdepth routine. See sprojdepth for more
details.

Details

The algorithm depends on the function sprojdepth to compute the skewness-adjusted projection
depth values of the observations in x. If these depth have already been computed they can be passed
as an optional argument to save computing time. If not, the skewness-adjusted projection depth
values will be computed and the user can pass a list with options to the sprojdepth function.

It is first checked whether the data lie in a subspace of dimension smaller than p. If so, a warning is
given, as well as the dimension of the subspace and a direction which is orthogonal to it.
Value

A list with component:

max The point of x with maximal skewness-adjusted projection depth. If multiple
points have maximum depth, their center of gravity is returned.

Author(s)
P. Segaert

References

Hubert M., Van der Veeken S. (2008). Outlier detection for skewed data. Journal of Chemometrics,
22, 235-246.

Hubert M., Rousseeuw P.J., Segaert P. (2015). Multivariate functional outlier detection. Statistical
Methods & Applications, 24, 177-202.
See Also

adjoutl, sprojdepth, dirOutl, outlyingness

Examples

Compute a location estimate of a two-dimensional dataset.
data(bloodfat)

result <- sprojmedian(x = bloodfat)
plot(bloodfat, pch = 16)
points(result$max, col = "red”, pch = 18, cex = 1.5)

stars 71

Options for the underlying sprojdepth routine may be passed
using the options argument.
result <- sprojmedian(x = bloodfat,

options = list(type = "Rotation”,

ndir = 1000
)
)
plot(bloodfat, pch = 16)
points(result$max, col = "red”, pch = 18, cex = 1.5)

One may also compute the depth values of the observations in the data
separately. This avoids having to recompute them when computing the median.
depth.result <- sprojdepth(x = bloodfat)
result <- sprojmedian(x = bloodfat,
sprojection.depths = depth.result$depthX)

stars stars data

Description

Data corresponding to a Hertzsprung-Russel diagram of the star cluster CYG OB1 containing 47
stars in the direction of Cygnus. A typical Hertzsprung-Russel diagram shows the logarithm of the
temperature in reverse order from high to low.

The data has been taken from Humphreys (1978) by C. Doom who calibrated them according to
Vansina and De Greve (1982).
Usage

data(stars)

Format
A data frame containing the following variables:

LogTemp Logarithm of the effective temperature at the star’s surface.
LogLight Logarithm of a star’s light intensity.

Source

Humphreys R.M. (1978). Studies of luminous stars in nearby galaxies. 1. Supergiants and O stars
in the milky way. Astrophysics Journal Supplementary Series, 38, 309-350.

References
Vansima F.,, De Greve J.P. (1982). Close binary systems before and after mass transfer. Astrophysics
and Space Science, 87, 377-401.
Rousseeuw P.J., Leroy A. (1987). Robust Regression and Outlier Detection. New York: Wiley.

Hand D.J., Daly F., Lunn A., McConway A. (1994). A Handbook of Small Data Sets. Londen:
Chapman and Hall, dataset 367.

72 symtest

Examples

data(stars)
plot(stars, xlim = rev(range(stars[,11)))

symtest Test for angular symmetry around a specified center for bivariate data

Description

A test based on halfspace depth for angular symmetry of the bivariate data set x around the point z.
The test is only valid when x contains no duplicates.

Usage

symtest(x, z, options=list())

Arguments
X An n by 2 data matrix.
z A vector of length 2.
options A list of options to pass to hdepth.
See hdepth for more information.
Details

The following hypothesis test is performed:

Hy: The data come from a continuous distribution P which is angularly symmetric about z.

The test statistic being used is the halfspace depth of z with respect to x. Under the null hypothesis
the halfspace depth of z equals 1/2. The distribution of the teststatistic under Hy is F, (k) =
P(hdepth(P, z) < k). The p-value of the test is F, (k) with k = hdepth(x, z).

Value

pval The p-value of the hypothesis test.

Author(s)

P. Segaert

References

Rousseeuw P.J, Struyf A. (2002). A depth test for symmetry. In: Goodness-of-Fit Tests and Model
Validity, Birkhduser Boston, pages 401-412.

tablets 73

Examples

Perform the test on a simple data example.

data(cardata9e)

deepest <- hdepthmedian(cardata90)$median

symtest(x = cardata9e0[!duplicated(cardata90), 1, z = deepest)
plot(cardata9e)

points(deepest[1], deepest[2], pch=18, col="red", cex=1.2)

tablets Near Infrared Spectroscopy responses for a batch of pills

Description

The original data set consists of Near Infrared Spectroscopy (NIR) data of a batch of pills with
different levels of the active compound. This data set considers 70 observations weighing 90 mg
and 20 observations weighing 250 mg and also differ in the amount of active compound.

The data correspond to the form discussed in Hubert et al. (2015), see below.

Usage

data(tablets)

Format

A three dimensional ¢ = 404 by n = 90 by p = 3 array, with ¢ the number of observed time points,
n the number of functional observations and p the number of measurements for every functional
observation at every wavelength.

Details

For each wavelength and each curve, a three-dimensional vector of observations is available. The
second coordinate corresponds to the original data, the first coordinate corresponds to the mean of
the corresponding curve. The last component corresponds to the derivative of the original curve
data.

When using this data, please cite both of the references listed below.

Source

Dyrby M., Engelsen S.B., Norgaard L., Bruhn M., Nielsen L. (2002). Chemometric quantitation
of the active substance in a pharmaceutical tablet Using near infrared (NIR) transmittance and NIR
FT-Raman spectra. Applied Spectroscopy, 56, 579-585.

References

Hubert M., Rousseeuw P.J., Segaert P. (2015). Multivariate functional outlier detection (with re-
joinder). Statistical Methods & Applications, 24, 177-202.

74 wine

Examples

data(tablets)
par(mfrow = c(3,1))

matplot(tablets[,,1], type = "1", 1ty = 1, col = "black")
matplot(tablets[,,2], type = "1", 1ty = 1, col = "black")
matplot(tablets[,,3], type = "1", 1ty = 1, col = "black”)
par(mfrow = c(1,1))
wine Proton Nuclear Magnetic Resonance spectra of 40 different wine sam-

ples

Description

The original data set consists of Proton Nuclear Magnetic Resonance (NMR) spectra of 40 different
wine samples in the spectral region from 6.00ppm to 0.50ppm. This data set corresponds to the
region between wavelengths 5.62ppm and 5.37ppm only for which ¢ = 397 measurements are
available for each curve. The data has been analyzed in Hubert et al. (2015), see below.

Usage

data(wine)

Format

A three dimensional ¢ = 397 by n = 40 by p = 1 array, with ¢ the number of observed time points,
n the number of functional observations and p the number of measurements for every functional
observation at every wavelength.

Details

When using this data set, please cite both of the references below.

Source

Larsen F,, van den Berg F., Engelsen S. (2006). An exploratory chemometric study of NMR spectra
of table wines. Journal of Chemometrics, 20, 198-208.

References
Hubert M., Rousseeuw P.J., Segaert P. (2015). Multivariate functional outlier detection (with re-
joinder). Statistical Methods & Applications, 24, 177-202.

Examples

data(wine)
matplot(wine[,,1], type = "1", 1ty = 1, col = "black")

Index

* Graphical sdepth, 66
bagplot, 9 sprojdepth, 67
fHeatmap, 30 sprojmedian, 69
fom, 31 symtest, 72
mrainbowplot, 49 * regression
plotContours, 57 cmltest, 15

x datasets rdepth, 62
bloodfat, 11 rdepthmedian, 64

cardata9o, 12
characterA, 13
characterl, 14
geological, 36

adjbox, 5
adjoutl, 3, 24, 28, 30, 35, 55, 60, 61, 69, 70
adjOutlyingness, 5

gléss,37 bagdistance, 6, 21, 35, 40
mri, 50 bagplot, 8,9, 17, 18, 40
octane, 51 bloodfat, 11
plane, 56
stars, 71 cardata9e, 12
tablets, 73 charactera, 13
wine, 74 characterlI, 14
* functional cmltest, 15, 63, 65
distSpace, 25 compBagplot, 10, 16
foutl, 33 covMcd, 53
mfd, 44
mfdmedian, 47 depthContour, 8, 19, 45, 46, 58
+ multivariate dirOutl, 5, 22, 28, 30, 35, 55, 60, 61, 69, 70
adjoutl, 3 distSpace, 25
bagdistance, 6 dprojdepth, 10, 18, 24,27, 30, 46, 48
compBagplot, 16 dprojmedian, 24, 28, 29
depthContour, 19
diroutl, 22 fHeatmap, 30, 45, 46

fom, 31, 35

distSpace, 25
foutl, 32, 33, 33

dprojdepth, 27

dprojmedian, 29 geological, 36

hdepth, 37 glass, 37
hdepthmedian, 41

medcouple, 43 hdepth, 8, 10, 18, 37, 46, 48
outlyingness, 52 hdepthmedian, 40, 41
projdepth, 58

projmedian, 60 medcouple, 43

75

76 INDEX

mfd, 44, 48

mfdmedian, 47
mrainbowplot, 28, 40, 49, 60, 67, 69
mri, 50

octane, 51
outlyingness, 5, 24, 28, 30, 35, 52, 60, 61,
69, 70

plane, 56

plotContours, 21, 57
projdepth, 10, 18, 46, 48, 55, 58, 61
projmedian, 47, 55, 60, 60

rdepth, 15, 62, 65
rdepthmedian, 15, 63, 64

sdepth, 46, 48, 66
sprojdepth, 5, 10, 18, 46, 48, 67, 70
sprojmedian, 5, 69, 69

stars, 71

symtest, 72

tablets, 73

wine, 74

	adjOutl
	bagdistance
	bagplot
	bloodfat
	cardata90
	characterA
	characterI
	cmltest
	compBagplot
	depthContour
	dirOutl
	distSpace
	dprojdepth
	dprojmedian
	fHeatmap
	fom
	fOutl
	geological
	glass
	hdepth
	hdepthmedian
	medcouple
	mfd
	mfdmedian
	mrainbowplot
	mri
	octane
	outlyingness
	plane
	plotContours
	projdepth
	projmedian
	rdepth
	rdepthmedian
	sdepth
	sprojdepth
	sprojmedian
	stars
	symtest
	tablets
	wine
	Index

