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multivariance-package multivariance: Measuring Multivariate Dependence Using Distance
Multivariance

Description

The multivariance package provides basic functions to calculate distance multivariance and related
quantities. To test independence use multivariance.test, it provides an interface (via its argu-
ments) to all the tests based on distance (m-/total-)multivariance. The package offers also several
other functions related to distance multivariance, e.g. a detection and visualization of dependence
structures dependence.structure. See below for details on the full content of the package.

Details

Distance multivariance is a multivariate dependence measure, which can be used to detect depen-
dencies between an arbitrary number of random vectors each of which can have a distinct dimen-
sion. The necessary functions are implemented in this package, and examples are given. For the
theoretic background we refer to the papers [1,2,3,4,5,6]. Paper [3] includes a summary of the first
two. It is the recommended starting point for users with an applied interest. Paper [4] is concerned
with new (faster) p-value estimates for the independence tests, [5] introduces the copula versions of
distance multivariance, [6] discusses the quantification of dependence using distance multicorrela-
tions.

The (current) code is speed improved in comparison to the former releases. Certainly there is
still room for improvement and development. Questions, comments and remarks are welcome:
<bjoern.boettcher@tu-dresden.de>

For infos on the latest changes and/or updates to the package use news(package="multivariance").

To cite this package use the standard citation for R packages, i.e., the output of citation("multivariance").

Multivariance

multivariance computes the distance multivariance

total.multivariance computes the total distance multivariance

m.multivariance computes the m-multivariance (introduced in [3])

It might be convenient to compute these simultaneously using multivariances.all.

copula.multivariance computes the copula versions of the above (introduced in [5])

multicorrelation computes the multicorrelations (discussed specifically in [6])

Functions to use and interpret multivariance

rejection.level computes a (conservative) rejection level for a given significance level. This can
be used for a conservative interpretation of distance multivariance. The counterpart is multivariance.pvalue,
which computes a conservative p-value for a given distance multivariance. Both methods are
distribution-free.
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resample.rejection.level and resample.pvalue are the distribution dependent versions of the
above. They are approximately sharp, but computational more expensive. Any resampling is done
by resample.multivariance.

Using the methods developed in [4] approximate p-value estimates are provided by pearson.pvalue.
This method is much faster than the resampling method.

multivariance.test provides the corresponding tests of independence. The former provides out-
put as common for tests in R.

cdm and cdms compute the doubly centered distance matrix and matrices, respectively. These can
be used to speed up repeated computations of distance multivariance.

In [4] various methods to estimate the moments of the test statistic under H0 were developed,
these are (implicitly) implemented in this package only for the moments used in pearson.pvalue.
Further and explicit functions can be added upon request. Please feel free to contact the author.

emp.transf computes the Monte Carlo empirical transform of the data. This data yields the copula
version of distance multivariance. Hereto note, that values become randomized due to the "Monte
Carlo empirical transform", i.e., the copula versions yield in a finite sample setting not identical
values for repeated runs.

For planing of large projects or studies it might be convenient to estimate the computation time of
multivariance via multivariance.timing.

Dependence structures

dependence.structure performs the dependence structure detection algorithm as described in [3].

find.cluster is the basic building block of dependence.structure. It is recommended to use
dependence.structure.

Examples

coins and tetrahedron generate samples of pairwise independent random variables, with depen-
dence of higher order.

dep_struct_iterated_13_100, dep_struct_ring_15_100, dep_struct_several_26_100 and
dep_struct_star_9_100 are example data sets for the dependence structure detection. These
might also serve as benchmark examples.

anscombe.extended provides an extension of Anscombe’s Quartett. It illustrates that a large value
of Pearson’s correlation can occur for very different dependencies and that this is not a small-sample
problem. These dependencies are at least partly differentiated by values of distance multicorrela-
tion.

References

[1] B. Böttcher, M. Keller-Ressel, R.L. Schilling, Detecting independence of random vectors: gen-
eralized distance covariance and Gaussian covariance. Modern Stochastics: Theory and Applica-
tions, Vol. 5, No. 3(2018) 353-383. https://www.vmsta.org/journal/VMSTA/article/127/
info

[2] B. Böttcher, M. Keller-Ressel, R.L. Schilling, Distance multivariance: New dependence mea-
sures for random vectors. The Annals of Statistics, Vol. 47, No. 5 (2019) 2757-2789. doi: 10.1214/
18AOS1764

https://www.vmsta.org/journal/VMSTA/article/127/info
https://www.vmsta.org/journal/VMSTA/article/127/info
https://doi.org/10.1214/18-AOS1764
https://doi.org/10.1214/18-AOS1764
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[3] B. Böttcher, Dependence and Dependence Structures: Estimation and Visualization using the
Unifying Concept of Distance Multivariance. Open Statistics, Vol. 1, No. 1 (2020) 1-46. doi: 10.1515/
stat20200001

[4] G. Berschneider, B. Böttcher, On complex Gaussian random fields, Gaussian quadratic forms
and sample distance multivariance. Preprint. https://arxiv.org/abs/1808.07280

[5] B. Böttcher, Copula versions of distance multivariance and dHSIC via the distributional trans-
form – a general approach to construct invariant dependence measures. Statistics, (2020) 1-18.
doi: 10.1080/02331888.2020.1748029

[6] B. Böttcher, Notes on the interpretation of dependence measures – Pearson’s correlation, dis-
tance correlation, distance multicorrelations and their copula versions. Preprint. https://arxiv.
org/abs/2004.07649

anscombe.extended Extended Anscombe’s Quartett

Description

The dataset extends ’anscombe’ provided in the standard R-package ’datasets’. All examples feature
the same correlation of 0.82, but different types of dependencies. The main aim was to extend
the classical examples, which have sample size 11, to larger sample sizes. This illustrates that the
implied problems of Pearson’s correlation are not small sample problems! Distance multicorrelation
(which coincides in this case with distance correlation) yields different values for the datasets.

Usage

anscombe.extended

Format

list with elements:

• anscombe.extended$N11 matrix with 11 samples for 5 examples the first 4 are the classical
Anscombe Quartett, the fifth is a monoton relation which also features the same correlation.

• anscombe.extended$N100 same as above but 100 samples

• anscombe.extended$N1000 same as above but 1000 samples

Details

Note: Anscombe’s quartett features further identical parameters besides Pearson’s correlation. The
extended set is only concerned with correlation.

References

This example was introduced in the reference [6] given on the main help page of this package:
multivariance-package.

https://doi.org/10.1515/stat-2020-0001
https://doi.org/10.1515/stat-2020-0001
https://arxiv.org/abs/1808.07280
https://doi.org/10.1080/02331888.2020.1748029
https://arxiv.org/abs/2004.07649
https://arxiv.org/abs/2004.07649
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Examples

# Code which generates plots of all included data:
op = par(mfrow = c(3,5),mar = c(0.5,0.5,3,0.5))
for (name in c("N11","N100","N1000")) {
for (i in 1:5) {
x = anscombe.extended[[name]][,2*i-1]
y = anscombe.extended[[name]][,2*i]
plot(x,y,main = paste0("cor = ",round(cor(x,y),2),

"\n Mcor = ",round(multicorrelation(cbind(x,y),type = "pairwise",squared = FALSE),2),
"\n CMcor = ",round(copula.multicorrelation(cbind(x,y),type = "pairwise",squared = FALSE),2)),

axes = FALSE,xlab ="",ylab = "", cex.main=1)
# for two variables 'pairwise' coincides with
# both values of 'total.upper.lower'.
box()

}
}
par(op)

cdm computes a doubly centered distance matrix

Description

computes the doubly centered distance matrix

Usage

cdm(
x,
normalize = TRUE,
psi = NULL,
p = NULL,
isotropic = FALSE,
external.dm.fun = NULL

)

Arguments

x matrix, each row of the matrix is treated as one sample

normalize logical, indicates if the matrix should be normalized

psi if it is NULL, the euclidean distance will be used. In the case of isotropic =
TRUE: a real valued negative definite function of one variable (accepting vectors
as arguments; returning a vector of the same length). In the case of isotropic
= FALSE: a real valued function of two variables (or vectors) to compute the
distance of two samples based on a continuous negative definite function.
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p numeric, if it is a value between 1 and 2 then the Minkowski distance with
parameter p is used.

isotropic logical, indicates if psi of the Euclidean distance matrix should be computed,
i.e., if an isotropic distance should be used.

external.dm.fun

here one can supply an external function, which computes the distance matrix
given x.

Details

The doubly centered distance matrices are required for the computation of (total / m-) multivariance.

If normalize = TRUE then the value of multivariance is comparable and meaningful. It can be
compared to the rejection.level or its p-value multivariance.pvalue can be computed.

More details: If normalize = TRUE the matrix is scaled such that the multivariance based on it,
times the sample size, has in the limit - in the case of independence - the distribution of an L^2
norm of a Gaussian process with known expectation.

As default the Euclidean distance is used. The parameters psi, p, isotropic and external.dm.fun
can be used to select a different distance. In particular, external.dm.fun can be used to provide
any function which calculates a distance matrix for the rows of a given matrix.

References

For the theoretic background see the references given on the main help page of this package:
multivariance-package.

Examples

x = coins(100)
cdm(x) # fast euclidean distances
cdm(x,psi = function(x,y) sqrt(sum((x-y)^2))) # this is identical to the previous (but slower)

# the function cdm does the following three lines in a faster way
N = nrow(x)
C = diag(N) - matrix(1/N,nrow = N,ncol = N)
A = - C %*% as.matrix(stats::dist(x,method="euclidean")) %*% C #'
all(abs(A- cdm(x,normalize = FALSE)) < 10^(-12))

cdms computes the doubly centered distance matrices

Description

computes the doubly centered distance matrices

Usage

cdms(x, vec = 1:ncol(x), membership = NULL, ...)
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Arguments

x matrix, each row is a sample

vec vector which indicates which columns are treated as one sample

membership depreciated. Now use vec.

... these are passed to cdm

Value

It returns a list of distance matrices.

clean.graph cleanup dependence structure graph

Description

Given a dependence structure graph: vertices representing the multivariances of only two vertices
can be turned into an edge labeled with the label of the vertex. Moreover, only subsets of the graph
can be selected.

Usage

clean.graph(
g,
only.level = NULL,
simplify.pairs = TRUE,
drop.label.pairs = FALSE

)

Arguments

g graph, created by dependence.structure

only.level integer vector, if provided all edges and dependency nodes corresponding to
dependence orders not given in ’only.level’ are removed

simplify.pairs boolean, if true dependency nodes which are only connected to two variables
are turned into edges

drop.label.pairs

boolean, if true the labels for edges indicating pairwise dependence are removed

Details

Note: The option ’only.level’ works only properly for a full dependence structure graph, in the
case of a clustered dependence structure graph dependency nodes representing a cluster might be
removed.
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Value

graph

Examples

N = 200
y = coins(N,2)
x = cbind(y,y,y)

ds = dependence.structure(x,structure.type = "clustered")
plot(clean.graph(ds$graph))
plot(clean.graph(ds$graph,only.level = 2))
plot(clean.graph(ds$graph,only.level = 3)) # of limited use for a clustered graph,
# i.e., here the three-dependence node without edges indicates that
# all edges were connected to clusters

ds = dependence.structure(x,structure.type = "full")
plot(clean.graph(ds$graph))
plot(clean.graph(ds$graph,drop.label.pairs = TRUE))
plot(clean.graph(ds$graph,only.level = 2))
plot(clean.graph(ds$graph,only.level = 2,drop.label.pairs = TRUE))
plot(clean.graph(ds$graph,only.level = 3))

coins dependence example: k-independent coin sampling

Description

This function creates samples which are dependent but k-independent.

Usage

coins(N = 1000, k = 2, type = "even")

Arguments

N number of samples

k each k-tuple will be independent

type one of "even" or "odd"

Details

Throw k independent fair coins. Now consider the k+1 events: The first shows head, the second
shows head,... the k-th shows head, there is an even (or odd as selected via type) number of heads.
Each row contains the state of these k+1 events.
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Value

It returns the samples as rows of an N by k+1 matrix. The columns are dependent but k-independent.

References

For the theoretic background see the reference [3] given on the main help page of this package:
multivariance-package.

Examples

coins(200,4)

copula.multicorrelation

coupla versions of distance multicorrelation

Description

Formally it is nothing but distance multicorrelation applied to the Monte Carlo emprical transform
of the data. Hence its values vary for repeated runs.

Usage

copula.multicorrelation(x, vec = 1:ncol(x), ...)

CMcor(x, vec = 1:ncol(x), ...)

Arguments

x either a data matrix or a list of doubly centered distance matrices

vec if x is a matrix, then this indicates which columns are treated together as one
sample; if x is a list, these are the indexes for which the multivariance is calcu-
lated. The default is all columns and all indexes, respectively.

... are passed to multicorrelation

References

For the theoretic background see the reference [5] given on the main help page of this package:
multivariance-package.

See Also

multicorrelation
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copula.multicorrelation.test

independence tests using the copula versions of distance multivariance

Description

Formally it is nothing but tests for distance multivariance applied to the Monte Carlo emprical
transform of the data. Hence its values vary for repeated runs.

Usage

copula.multicorrelation.test(x, vec = 1:ncol(x), ...)

Arguments

x matrix, each row is a sample

vec vector which indicates which columns are treated as one sample

... these are passed to cdm

References

For the theoretic background see the reference [5] given on the main help page of this package:
multivariance-package.

copula.multivariance copula version of distance multivariance

Description

Formally it is nothing but distance multivariance applied to the Monte Carlo emprical transform of
the data. Hence its values vary for repeated runs.

Usage

copula.multivariance(x, vec = 1:ncol(x), type = "total", ...)

Arguments

x either a data matrix or a list of doubly centered distance matrices

vec if x is a matrix, then this indicates which columns are treated together as one
sample; if x is a list, these are the indexes for which the multivariance is calcu-
lated. The default is all columns and all indexes, respectively.

type default: "total.lower.upper", for details and other options see below

... these are passed to cdms (which is only invoked if x is a matrix)
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References

For the theoretic background see the reference [5] given on the main help page of this package:
multivariance-package.

dependence.structure determines the dependence structure

Description

Determines the dependence structure as described in [3].

Usage

dependence.structure(
x,
vec = 1:ncol(x),
verbose = TRUE,
detection.aim = NULL,
type = "conservative",
structure.type = "clustered",
c.factor = 2,
list.cdm = NULL,
alpha = 0.05,
p.adjust.method = "holm",
stop.too.many = NULL,
...

)

Arguments

x matrix, each row of the matrix is treated as one sample

vec vector, it indicates which columns are initially treated together as one sample

verbose boolean, if TRUE details are printed during the detection and whenever a cluster
is newly detected the (so far) detected dependence structure is plotted.

detection.aim =NULL or a list of vectors which indicate the expected detection, see below for
more details

type the method used for the detection, one of ’conservative’,’resample’,’pearson_approx’
or ’consistent’

structure.type either the ’clustered’ or the ’full’ structure is detected

c.factor numeric, larger than 0, a constant factor used in the case of ’type = "consistent"’

list.cdm not required, the list of doubly centered distance matrices corresponding to x
speeds up the computation if given

alpha numeric between 0 and 1, the significance level used for the tests
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p.adjust.method

a string indicating the p-value adjustment for multiple testing, see p.adjust.methods

stop.too.many numeric, upper limit for the number of tested tuples. A warning is issued if it is
used. Use stop.too.many = NULL for no limit.

... these are passed to find.cluster

Details

Performs the detection of the dependence structure as described in [3]. In the clustered struc-
ture variables are clustered and treated as one variable as soon as a dependence is detected, the
full structure treats always each variable separately. The detection is either based on tests with
significance level alpha or a consistent estimator is used. The latter yields (in the limit for in-
creasing sample size) under very mild conditions always the correct dependence structure (but the
convergence might be very slow).

If fixed.rejection.level is not provided, the significance level alpha is used to determine which
multivariances are significant using the distribution-free rejection level. As default the Holm method
is used for p-value correction corresponding to multiple testing.

The resulting graph can be simplified (pairwise dependence can be represented by edges instead of
vertices) using clean.graph.

Advanced: The argument detection.aim is currently only implemented for structure.type =
clustered. It can be used to check, if an expected dependence structure was detected. This
might be useful for simulation studies to determine the empirical power of the detection algorithm.
Hereto detection.aim is set to a list of vectors which indicate the expected detected dependence
structures (one for each run of find.cluster). The vector has as first element the k for which
k-tuples are detected (for this aim the detection stops without success if no k-tuple is found), and
the other elements, indicate to which clusters all present vertices belong after the detection, e.g.
c(3,2,2,1,2,1,1,2,1) expects that 3-tuples are detected and in the graph are 8 vertices (includ-
ing those representing the detected 3 dependencies), the order of the 2’s and 1’s indicate which
vertices belong to which cluster. If detection.aim is provided, the vector representing the actual
detection is printed, thus one can use the output with copy-paste to fix successively the expected
detection aims.

Note that a failed detection might invoke the warning:

run$mem == detection.aim[[k]][-1] :
longer object length is not a multiple of shorter object length

Value

returns a list with elements:

multivariances calculated multivariances,

cdms calculated doubly centered distance matrices,

graph graph representing the dependence structure,

detected boolean, this is only included if a detection.aim is given,

number.of.dep.tuples vector, with the number of dependent tuples for each tested order. For the
full dependence structure a value of -1 indicates that all tuples of this order are already lower
order dependent, a value of -2 indicates that there were more than stop.too.many tuples,
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structure.type either clustered or full,

type the type of p-value estimation or consistent estimation used,

total.number.of.tests numeric vector, with the number of tests for each group of tests,

typeI.error.prob estimated probability of a type I error,

alpha significance level used if a p-value estimation procedure is used,

c.factor factor used if a consistent estimation procedure is used,

parameter.range significance levels (or ’c.factor’ values) which yield the same detection result.

References

For the theoretic background see the reference [3] given on the main help page of this package:
multivariance-package.

Examples

# structures for the datasets included in the package
dependence.structure(dep_struct_several_26_100)
dependence.structure(dep_struct_star_9_100)
dependence.structure(dep_struct_iterated_13_100)
dependence.structure(dep_struct_ring_15_100)

# basic examples:

x = coins(100) # 3-dependent
dependence.structure(x)

colnames(x) = c("A","B","C")
dependence.structure(x) # names of variables are used as labels

dependence.structure(coins(100),vec = c(1,1,2))
# 3-dependent rv of which the first two rv are used together as one rv, thus 2-dependence.

dependence.structure(x,vec = c(1,1,2)) # names of variables are used as labels

dependence.structure(cbind(coins(200),coins(200,k=5)),verbose = TRUE)
#1,2,3 are 3-dependent, 4,..,9 are 6-dependent

# similar to the the previous example, but
# the pair 1,3 is treated as one sample,
# anagously the pair 2,4. In the resulting structure one does not
# see anymore that the dependence of 1,2,3,4 with the rest is due
# to 4.
dependence.structure(cbind(coins(200),coins(200,k=5)),

vec = c(1,2,1,2,3,4,5,6,7),verbose = TRUE)

### Advanced:
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# How to check the empirical power of the detection algorithm?
# Use a dataset for which the structure is detected, e.g. dep_struct_several_26_100.
# run:
dependence.structure(dep_struct_several_26_100,

detection.aim = list(c(ncol(dep_struct_several_26_100))))
# The output provides the first detection aim. Now we run the same line with the added
# detection aim
dependence.structure(dep_struct_several_26_100,detection.aim = list(c(3,1, 1, 1, 2, 2, 2, 3, 4,

5, 6, 7, 8, 8, 8, 9, 9, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1, 2, 8, 9),
c(ncol(dep_struct_several_26_100))))

# and get the next detection aim ... thus we finally obtain all detection aims.
# now we can run the code with new sample data ....
N = 100
dependence.structure(cbind(coins(N,2),tetrahedron(N),coins(N,4),tetrahedron(N),

tetrahedron(N),coins(N,3),coins(N,3),rnorm(N)),
detection.aim = list(c(3,1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 7, 8, 8, 8,

9, 9, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1, 2, 8, 9),
c(4,1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11,
11, 12, 1, 2, 8, 9, 10, 11),

c(5, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 1,
2, 4, 5, 6, 7, 3),

c(5, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 1,
2, 4, 5, 6, 7, 3)))$detected

# ... and one could start to store the results and compute the rate of successes.

# ... or one could try to check how many samples are necessary for the detection:
re = numeric(100)
for (i in 2:100) {

re[i] =
dependence.structure(dep_struct_several_26_100[1:i,],verbose = FALSE,

detection.aim = list(c(3,1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 7, 8,
8, 8, 9, 9, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1, 2, 8, 9),
c(4,1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11,

11, 11, 12, 1, 2, 8, 9, 10, 11),
c(5, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,

8, 1, 2, 4, 5, 6, 7, 3),
c(5, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,

8, 1, 2, 4, 5, 6, 7, 3)))$detected
print(paste("First", i,"samples. Detected?", re[i]==1))

}
cat(paste("Given the 1 to k'th row the structure is not detected for k =",which(re == FALSE),"\n"))

dep_struct_iterated_13_100

example dataset for dependence.structure

Description

It was generated by
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set.seed(532333356)
N = 100
x = matrix(sample.int(2,10*N,replace = TRUE)-1,ncol = 10)
for (i in c(2,5,9)) x = cbind(x,(rowSums(as.matrix(x[,1:(i-1)]))
dep_struct_iterated_13_100 = x
save(dep_struct_iterated_13_100,file ="dep_struct_iterated_13_100.rda")

Usage

dep_struct_iterated_13_100

Format

matrix 13 variables (columns), 100 independent samples (rows)

Details

To avoid irritation, note that the seed is just a simple integer hash value of the variable name.

dep_struct_ring_15_100

example dataset for dependence.structure

Description

It was generated by

set.seed(436646700)
N = 100
n= 15
x=matrix(sample.int(2,N*n,replace = TRUE)-1,nrow =N)
x[,4] = rowSums(x[,1:3])
x[,7] = rowSums(x[,4:6])
x[,10] = rowSums(x[,7:9])
x[,13] = rowSums(x[,10:12])
x[,15] = rowSums(x[,c(13,14,1)])
dep_struct_ring_15_100 = x
save(dep_struct_ring_15_100,file ="dep_struct_ring_15_100.rda")

Usage

dep_struct_ring_15_100

Format

matrix 15 variables (columns), 100 independent samples (rows)
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Details

To avoid irritation, note that the seed is just a simple integer hash value of the variable name.

dep_struct_several_26_100

example dataset for dependence.structure

Description

It was generated by

set.seed(1348879148)
N = 100
dep_struct_several_26_100 = cbind(coins(N,2),tetrahedron(N),coins(N,4),

tetrahedron(N),tetrahedron(N),coins(N,3),coins(N,3),rnorm(N))
save(dep_struct_several_26_100,file ="dep_struct_several_26_100.rda")

Usage

dep_struct_several_26_100

Format

matrix 26 variables (columns), 100 independent samples (rows)

Details

To avoid irritation, note that the seed is just a simple integer hash value of the variable name.

dep_struct_star_9_100 example dataset for dependence.structure

Description

It was generated by

set.seed(222454572)
N = 100
y = coins(N,2)
dep_struct_star_9_100 = cbind(y,y,y)
save(dep_struct_star_9_100,file ="dep_struct_star_9_100.rda")

Usage

dep_struct_star_9_100
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Format

matrix 9 variables (columns), 100 independent samples (rows)

Details

To avoid irritation, note that the seed is just a simple integer hash value of the variable name.

emp.transf Monte Carlo empirical transform

Description

Transforms a matrix (rows: samples, columns: variables) into a matrix of uniform samples with the
same dependence structure via the Monte Carlo empirical transform.

Usage

emp.transf(x, continuous = FALSE)

Arguments

x data matrix (rows: samples, columns: variables)

continuous boolean, if TRUE it provides the classical (non-Monte-Carlo) transformation
by the empirical distribution function, which is a reasonable choice for data of
continuous distributions.

References

For the theoretic background see the reference [5] given on the main help page of this package:
multivariance-package.

fastdist fast Euclidean distance matrix

Description

fast Euclidean distance matrix

Usage

fastdist(x)

Arguments

x matrix with sample rows for which the distance matrix is computed (to use with
vectors, use as.matrix(x))
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Examples

#require(microbenchmark)
#x = rnorm(100)
#microbenchmark(fastdist(as.matrix(x)),as.matrix(dist(x)))

fastEuclideanCdm fast centered Euclidean distance matrix

Description

fast centered Euclidean distance matrix

Usage

fastEuclideanCdm(x, normalize)

Arguments

x matrix with sample rows for which the distance matrix is computed (to use with
vectors, use as.matrix(x))

normalize boolean. If TRUE the matrix will be normalized to mean 1.

find.cluster cluster detection

Description

Performs the detection of dependence structures algorithm until a cluster is found. This function is
the basic building block dependence.structure. Advanced users, might use it directly.

Usage

find.cluster(
x,
vec = 1:ncol(x),
list.cdm = cdms(x, vec = vec),
mem = as.numeric(1:max(vec)),
cluster.to.vertex = 1:max(mem),
vertex.to.cdm = 1:max(mem),
previous.n.o.cdms = rep(0, max(mem)),
all.multivariances = numeric(0),
g = igraph::add.vertices(igraph::graph.empty(, directed = FALSE), max(mem), label =
sapply(1:max(mem), function(r) paste(colnames(x, do.NULL = FALSE, prefix = "")[vec ==
r], collapse = ",")), shape = "circle"),

fixed.rejection.level = NA,
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alpha = 0.05,
p.adjust.method = "holm",
verbose = TRUE,
kvec = 2:max(mem),
parameter.range = NULL,
type = "conservative",
stop.too.many = NULL,
...

)

Arguments

x matrix with the samples

vec vector, it indicates which columns are initially treated together as one sample

list.cdm list of doubly centered distance matrices

mem numeric vector, its length is the number of vertices, its content is the number
of the corresponding cluster for the current iteration, i.e., vertex i belongs to
cluster mem[i]

cluster.to.vertex

vector, contains the cluster to vertex relations, i.e., cluster.to.vertex[i] is
the index of the vertex which represents cluster i

vertex.to.cdm vector, contains the vertex to doubly centered distance matrix relations, i.e.,
vertex.to.cdm[i] is the index of the doubly centered distance matrix in list.cdm
which corresponds to vertex i

previous.n.o.cdms

vector, number of the doubly centered distance matrices in the previous iteration
(it is used to ensure that previously check tuples are not checked again)

all.multivariances

vector, which contains all distance multivariances which have been calculated
so far. Only used to finally return all distance multivariances which have been
calculated.

g dependence structure graph
fixed.rejection.level

vector, if not NA the fixed.rejection.level[k] is used for the k-tuples, in-
stead of a level derived from the significance level alpha

alpha numeric, significance level used for the (distribution-free) tests
p.adjust.method

name of the method used to adjust the p-values for multiple testing, see p.adjust
for all possible options.

verbose boolean, if TRUE details during the detection are printed and whenever a cluster
is newly detected the (so far) detected dependence structure is plotted.

kvec vector, k-tuples are only checked for each k in kvec, i.e., for kvec = 2:4 only
2,3 and 4-tuples would be check and then the algorithm stops.

parameter.range

numeric matrix, which hosts the range of significance levels or ’c.factor’
which yield the same detected structure
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type the method for the detection, one of ’conservative’,’resample’,’pearson_approx’
or ’consistent’.

stop.too.many numeric, upper limit for the number of tested tuples. A warning is issued if it is
used. Use stop.too.many = NULL for no limit.

... are passed to resample.multivariance in the case of ’type = resample’

Details

For further details see dependence.structure.

independence.test test for independence

Description

Depreciated. Use multivariance.test instead. It provides all options and returns test result in a
standard R format.

Usage

independence.test(
x,
vec = 1:ncol(x),
alpha = 0.05,
type = "distribution_free",
verbose = TRUE,
...

)

Arguments

x either a data matrix or a list of doubly centered distance matrices

vec if x is a matrix, then this indicates which columns are treated together as one
sample; if x is a list, these are the indexes for which the multivariance is calcu-
lated. The default is all columns and all indexes, respectively.

alpha significance level

type one of "pearson_approx","distribution_free","resample"

verbose logical, if TRUE meaningful text output is generated.

... these are passed to cdms (which is only invoked if x is a matrix)
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Details

This computes a test of independence for the columns of a sample matrix (required for the resam-
pling test) or for given doubly centered distance matrices (only possible for the distribution-free
test).

The "pearson_approx" and "resample" are approximately sharp. The latter is based on a resam-
pling approach and thus much slower. The "distribution_free" test might be very conservative.
The doubly centered distance matrices can be prepared by cdms. But note that for the test based on
Pearson’s approximation and for the resampling test, the data matrix has to be given.

Value

Returns TRUE if the hypothesis of independence is NOT rejected, otherwise FALSE.

References

For the theoretic background see the references given on the main help page of this package:
multivariance-package.

Examples

independence.test(coins(100)) #dependent sample which is 2-independent
independence.test(coins(100),type = "resample") #dependent sample which is 2-independent

independence.test(coins(100)[,2:3]) # independent sample
independence.test(coins(100)[,2:3],type = "resample") # independent sample

independence.test(coins(10),type = "resample") #dependent sample which is 2-independent
independence.test(coins(10)[,2:3],type = "resample") #dependent sample which is 2-independent

layout_on_circles special igraph layout for the dependence structure visualization

Description

It places the variable nodes on an outer circle and the dependency nodes on an inner circle

Usage

layout_on_circles(g, n = sum(is.na(igraph::V(g)$level)))

Arguments

g graph

n number of vertices on outer circle
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Details

This is the standard layout for the full dependence structure, since in this case there often too many
nodes which make the other (usual) layout incomprehensible.

Examples

N = 200
y = coins(N,2)
x = cbind(y,y,y)

g = dependence.structure(x,structure.type = "clustered",verbose = FALSE)$graph
plot(g)
plot(g,layout = layout_on_circles(g))

m.multivariance m distance multivariance

Description

Computes m distance multivariance.

Usage

m.multivariance(
x,
vec = NA,
m = 2,
Nscale = TRUE,
Escale = TRUE,
squared = TRUE,
...

)

Arguments

x either a data matrix or a list of doubly centered distance matrices
vec if x is a matrix, then this indicates which columns are treated together as one

sample; if x is a list, these are the indexes for which the multivariance is calcu-
lated. The default is all columns and all indexes, respectively.

m =2 or 3 the m-multivariance will be computed.
Nscale if TRUE the multivariance is scaled up by the sample size (and thus it is exactly

as required for the test of independence)
Escale if TRUE then it is scaled by the number of multivariances which are theoretically

summed up (in the case of independence this yields for normalized distance
matrices an estimator with expectation 1)

squared if FALSE it returns the actual multivariance, otherwise the squared multivariance
(less computation)

... these are passed to cdms (which is only invoked if x is a matrix)
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Details

m-distance multivariance is per definition the scaled sum of certain distance multivariances, and it
characterize m-dependence.

As a rough guide to interpret the value of total distance multivariance note:

• Large values indicate dependence.

• If the random variables are (m-1)-independent and Nscale = TRUE, values close to 1 and
smaller indicate m-independence, larger values indicate dependence. In fact, in the case of
independence the test statistic is a Gaussian quadratic form with expectation 1 and samples of
it can be generated by resample.multivariance.

• If the random variables are (m-1)-independent and Nscale = FALSE, small values (close to 0)
indicate m-independence, larger values indicate dependence.

Since random variables are always 1-independent, the case m=2 characterizes pairwise indepen-
dence.

Finally note, that due to numerical (in)precision the value of m-multivariance might become nega-
tive. In these cases it is set to 0. A warning is issued, if the value is negative and further than the
usual (used by all.equal) tolerance away from 0.

References

For the theoretic background see the reference [3] given on the main help page of this package:
multivariance-package.

Examples

x = matrix(rnorm(3*30),ncol = 3)

# the following values are identical
m.multivariance(x,m =2)
1/choose(3,2)*(multivariance(x[,c(1,2)]) +

multivariance(x[,c(1,3)]) +
multivariance(x[,c(2,3)]))

# the following values are identical
m.multivariance(x,m=3)
multivariance(x)

# the following values are identical
1/4*(3*(m.multivariance(x,m=2)) + m.multivariance(x,m=3))
total.multivariance(x, Nscale = TRUE)
1/4*(multivariance(x[,c(1,2)], Nscale = TRUE) +

multivariance(x[,c(1,3)], Nscale = TRUE) +
multivariance(x[,c(2,3)], Nscale = TRUE) + multivariance(x, Nscale = TRUE))
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multicorrelation distance multicorrelation

Description

Computes various types of sample distance multicorrelation as defined and discussed in [3,4,6].

Usage

multicorrelation(
x,
vec = 1:ncol(x),
type = "total.upper.lower",
multicorrelation.type = "normalized",
estimator.type = "bias.corrected",
squared = TRUE,
...

)

Mcor(
x,
vec = 1:ncol(x),
type = "total.upper.lower",
multicorrelation.type = "normalized",
estimator.type = "bias.corrected",
squared = TRUE,
...

)

Arguments

x either a data matrix or a list of doubly centered distance matrices

vec if x is a matrix, then this indicates which columns are treated together as one
sample; if x is a list, these are the indexes for which the multivariance is calcu-
lated. The default is all columns and all indexes, respectively.

type default: "total.lower.upper", for details and other options see below

multicorrelation.type

one of "normalized","unnormalized"

estimator.type one of "biased","bias.corrected"

squared if FALSE it returns the actual multivariance, otherwise the squared multivariance
(less computation)

... these are passed to cdms (which is only invoked if x is a matrix)
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Details

There exist many variants of distance multicorrelation as discussed in [6] – and only in specific
cases a direct comparison of the values is meaningful.

The implemented options are:

• total.upper.lower normalized bias.corrected: default; bounded by 1; fast; population
limit characterizes independence by 0

• pairwise normalized bias.corrected: bounded by 1; fast; population limit characterizes
pairwise independence by 0

• total.upper normalized biased: biased versions of the above

• total.lower normalized biased

• pairwise normalized biased

• multi normalized biased: population limit characterizes only in case of lower indepen-
dence the independence of all variables by 0

• m.multi.3 normalized biased: population limit characterizes only in case of pairwise inde-
pendence the 3-independence of all variables by 0

• pairwise unnormalized biased population limit characterizes pairwise independence by 0
and relation by similarity transforms by 1

• multi unnormalized biased: population limit characterizes only in case of lower indepen-
dence the independence of all variables by 0 and relation by similarity transforms by 1

• m.multi.3 unnormalized biased: population limit characterizes only in case of pairwise
independence the 3-independence of all variables by 0 and relation by similarity transforms
by 1

Further details:

The "bias.corrected" versions require a data matrix, since they compute bias corrected centered
distance matricies.

For "multi" the unnormalized and normalized version coincide if an even number of variables is
considered. They usually differ if an odd number of variables is considered. If all variables are
related by similarity transforms the unnormalized "unnormalized" multicorrelations are 1.

For "pairwise" an alias is "m.multi.2".

For total multicorrelation there is currently only a feasible empirical estimator for a lower or upper
bound. These are upper and lower bounds for in the population setting. When using bias cor-
rected estimators these are in general no proper bounds, but their range can be used as values for
comparisons.

Value

Value of the multicorrelation(s).

References

For the theoretic background see the references [2,3,6] given on the main help page of this package:
multivariance-package.
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Examples

y = rnorm(100)
x = cbind(y,y*2,(y-2)/3,y+1,y*5) # all variables are related by similarity transforms

# compute all types of correlations for x:
for (ty in c("total.lower","total.upper","pairwise","m.multi.3","multi"))
for (mty in c("normalized"))
print(paste(format(multicorrelation(
x,type=ty,multicorrelation.type = mty,estimator.type = "biased")
,digits=3,nsmall = 3,width = 7),mty,ty,"correlation - biased estimate"))

for (ty in c("total.upper.lower","pairwise"))
for (mty in c("normalized"))
print(paste(format(multicorrelation(
x,type=ty,multicorrelation.type = mty,estimator.type = "bias.corrected")
,digits=3,nsmall = 3,width = 7),mty,ty,"correlation - bias corrected estimate"))

for (ty in c("m.multi.2","m.multi.3","multi"))
for (mty in c("unnormalized"))
print(paste(format(multicorrelation(
x,type=ty,multicorrelation.type = mty,estimator.type = "biased")
,digits=3,nsmall = 3,width = 7),mty,ty,"correlation - biased estimate"))

multivariance distance multivariance

Description

Computes the distance multivariance, either for given data or a given list of doubly centered distance
matrices.

Usage

multivariance(
x,
vec = NA,
Nscale = TRUE,
correlation = FALSE,
squared = TRUE,
...

)

Arguments

x either a data matrix or a list of doubly centered distance matrices

vec if x is a matrix, then this indicates which columns are treated together as one
sample; if x is a list, these are the indexes for which the multivariance is calcu-
lated. The default is all columns and all indexes, respectively.
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Nscale if TRUE the multivariance is scaled up by the sample size (and thus it is exactly
as required for the test of independence)

correlation depreciated, please use the function multicorrelation instead.

squared if FALSE it returns the actual multivariance, otherwise the squared multivariance
(less computation)

... these are passed to cdms (which is only invoked if x is a matrix)

Details

If x is a matrix and vec is not given, then each column is treated as a separate sample. Otherwise
vec has to have as many elements as x has columns and values starting from 1 up to the number
of ’variables’, e.g. if x is an N by 5 matrix and vec = c(1,2,1,3,1) then the multivariance of the
1-dimensional variables represented by column 2 and 4 and the 3-dimensional variable represented
by the columns 1,3,5 is computed.

As default it computes the normalized Nscaled squared multivariance, for a multivariance without
normalization the argument normalize = FALSE has to be passed to cdms.

correlation = TRUE yields values between 0 and 1. These can be interpreted similarly to classical
correlations, see also multicorrelation.

As a rough guide to interpret the value of distance multivariance note:

• If the random variables are not (n-1)-independent, large values indicate dependence, but small
values are meaningless. Thus in this case use total.multivariance.

• If the random variables are (n-1)-independent and Nscale = TRUE, values close to 1 and smaller
indicate independence, larger values indicate dependence. In fact, in the case of independence
the test statistic is a Gaussian quadratic form with expectation 1 and samples of it can be
generated by resample.multivariance.

• If the random variables are (n-1)-independent and Nscale = FALSE, small values (close to 0)
indicate independence, larger values indicate dependence.

Finally note, that due to numerical (in)precision the value of multivariance might become negative.
In these cases it is set to 0. A warning is issued, if the value is negative and further than the usual
(used by all.equal) tolerance away from 0.

References

For the theoretic background see the references given on the main help page of this package:
multivariance-package.

Examples

multivariance(matrix(rnorm(100*3),ncol = 3)) #independent sample
multivariance(coins(100)) #dependent sample which is 2-independent

x = matrix(rnorm(100*2),ncol = 2)
x = cbind(x,x[,2])
multivariance(x) #dependent sample which is not 2-independent (thus small values are meaningless!)
multivariance(x[,1:2]) #these are independent
multivariance(x[,2:3]) #these are dependent
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multivariance(x[,2:3],correlation = TRUE)

multivariance.pvalue transform multivariance to p-value

Description

Computes a conservative p-value for the hypothesis of independence for a given multivariance /
m-multivariance / total multivariance.

Usage

multivariance.pvalue(x)

Arguments

x value of a normalized multivariance scaled by the sample size (i.e., computed
with Nscale = TRUE)

Details

This is based on a distribution-free approach. The p-value is conservative, i.e. it might be much
smaller. This is the counterpart to rejection.level. For a less conservative approach see resample.pvalue
or pearson.pvalue.

p-values larger than 0.215 might be incorrect, since the distribution-free estimate on which the
computation is based only holds up to 0.215.

References

For the theoretic background see the references given on the main help page of this package:
multivariance-package.

multivariance.test independence tests based on (total-/2-/3-) multivariance

Description

This performs the (specified by type and p.value.type) independence test for the columns of a
sample matrix.
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Usage

multivariance.test(
x,
vec = 1:ncol(x),
type = "total",
p.value.type = "pearson_approx",
verbose = TRUE,
...

)

Arguments

x matrix, each row is a sample
vec vector which indicates which columns are treated as one sample
type one of "independence", "pairwise independence", "multi", "total", "m.multi.2",

"m.multi.3"

p.value.type one of "pearson_approx", "distribution_free", "resample", "pearson_unif"
verbose logical, if TRUE meaningful text output is generated.
... these are passed to cdm

Details

For the use of vec see the examples below and the more detailed explanation of this argument for
multivariance.

The types "independence" and "total" are identical: an independence test is performed.

Also the types "pairwise independence" and "m.multi.2" are identical: a test of pairwise inde-
pendence is performed.

The type "m.multi.3", performs a test for 3-independence, assuming pairwise independence. The
type "multi" performs a test for n-independence, assuming (n-1)-independence.

There are several ways (determined by p.value.type) to estimate the p-value: The "pearson_approx"
and "resample" are approximately sharp. The latter is based on a resampling approach and thus
much slower. The "distribution_free" test might be very conservative, its p-value estimates are
only valid for p-values lower than 0.215 - values above should be interpreted as "values larger than
0.215". Finally, "pearson_unif" uses fixed parameters in Pearson’s estimate, it is only applicable
for univariate uniformly distributed marginals

All tests are performed using the standard euclidean distance. Other distances can be supplied via
the ..., see cdm for the accepted arguments.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic,
p.value the p-value of the test statistic,
method a character string indicating the type of test performed,
data.name a character string giving the name(s) of the data.
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References

For the theoretic background see the references given on the main help page of this package:
multivariance-package.

Examples

# an independence test
multivariance.test(dep_struct_several_26_100,p.value.type = "distribution_free") # conservative
multivariance.test(dep_struct_several_26_100,p.value.type = "resample") #sharp but slow
multivariance.test(dep_struct_several_26_100,p.value.type = "pearson_approx") #

# as an example, all tests for one data set:
coins100 = coins(100)
for (ty in c("total","m.multi.2","m.multi.3","multi"))
for (pvt in c("distribution_free","resample","pearson_approx"))
print(multivariance.test(coins100,type=ty,p.value.type = pvt))

# using the vec argument:
x = matrix(rnorm(50*6),ncol = 10) # a 50x6 data matrix
vec = c(1,2,3,4,5,6) # each column is treated as one variable
multivariance.test(x,vec,p.value.type = "distribution_free") # is the same as the default

vec = c(1,2,2,1,3,1)
# column 1,4,6 are treated as one variable
# column 2,3 are treated as one variable
# column 5 is treated as one variable
multivariance.test(x,vec,p.value.type = "distribution_free")

multivariance.timing estimate of the computation time

Description

Estimates the computation time. This is relative rough. First run with determine.parameters
= TRUE (which takes a while). Then use the computed parameters to determine the computation
time/or sample size.

Usage

multivariance.timing(
N = NULL,
n,
sectime = NULL,
coef.cdm = 15.2,
coef.prod = 2.1,
coef.sum = 1.05,
determine.parameters = FALSE

)
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Arguments

N number of samples. If NULL and sectime is given, then N is computed.

n number of variables

sectime desired computation time in seconds. If NULL then the required computation
time is computed.

coef.cdm computation time parameter for the doubly centered distance matrices

coef.prod computation time parameter for matrix products

coef.sum computation time parameter for matrix sums

determine.parameters

if TRUE then the parameters for the current computer are determined. This might
take a while (3 loops to N=1000).

Details

When detecting the parameters, the median of the computation times is used.

Examples

Ns = (1:100)*10
ns = 1:100
fulltime = outer(Ns,ns,FUN = function(N,n) multivariance.timing(N,n))
contour(Ns,ns,fulltime,xlab = "N",ylab = "n",
main = "computation time of multivariance in secs",
sub = "using default parameters -
use 'determine.parameters = TRUE' to compute machine specific values")

# Run to determine the parameters of your system:
# multivariance.timing(determine.parameters = TRUE)

multivariances.all simultaneous computation of multivariance and total/ 2-/ 3-
multivariance

Description

Computes simultaneously multivariance, total multivariance, 2-multivariance and 3-multivariance.

Usage

multivariances.all(x, vec = NA, Nscale = TRUE, squared = TRUE, ...)
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Arguments

x either a data matrix or a list of doubly centered distance matrices

vec if x is a matrix, then this indicates which columns are treated together as one
sample; if x is a list, these are the indexes for which the multivariance is calcu-
lated. The default is all columns and all indexes, respectively.

Nscale if TRUE the multivariance is scaled up by the sample size (and thus it is exactly
as required for the test of independence)

squared if FALSE it returns the actual multivariance, otherwise the squared multivariance
(less computation)

... these are passed to cdms (which is only invoked if x is a matrix)

Details

The computation is faster than the separate computations.

Value

Returns a vector with multivariance, total.multivariance, 2-multivariance and 3-multivariance

See Also

multivariance, total.multivariance, m.multivariance

Examples

x = coins(100,k = 3)
multivariances.all(x)
# yields the same as:
multivariance(x)
total.multivariance(x)
m.multivariance(x,m=2)
m.multivariance(x,m=3)

pearson.pvalue fast p-value approximation

Description

Computes the p-value of a sample using Pearson’s approximation of Gaussian quadratic forms with
the estimators developed by Berschneider and Böttcher in [4].

Usage

pearson.pvalue(x, vec = NA, type = "multi", ...)
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Arguments

x matrix, the rows should be iid samples
vec vector, which indicates which columns of x are treated together as one sample.

The default case treats each column as a separate sample.
type one of "multi","total","m.multi.2","m.multi.3","all"
... these are passed to cdms

Details

This is the method recommended in [4], i.e., using Pearson’s quadratic form estimate with the
unbiased finite sample estimators for the mean and variance of normalized multivariance together
with the unbiased estimator for the limit skewness.

References

For the theoretic background see the reference [4] given on the main help page of this package:
multivariance-package.

pearson.qf approximate distribution function of a Gaussian quadratic form

Description

Approximation of the of the value of the distribution function of a Gaussian quadratic form based
on its first three moments.

Usage

pearson.qf(x, moment, lower.tail = TRUE, verbose = FALSE)

Arguments

x value at which the distribution function is to be evaluated
moment vector with the mean, variance and skewness of the quadratic form
lower.tail logical, indicating of the lower or upper tail of the distribution function should

be calculated
verbose logical, if TRUE a warning is issued if negative moments are sanitized to 0.

Details

This is Pearson’s approximation for Gaussian quadratic forms as stated in [4] (equation (4.65) in
arXiv:1808.07280v2)

References

For the theoretic background see the reference [4] given on the main help page of this package:
multivariance-package.
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rejection.level rejection level for the test statistic

Description

Under independence the probability for the normalized and Nscaled (squared) multivariance to
be above this level is less than alpha. The same holds for the normalized, Nscaled and Escaled
(squared) total multivariance and m-multivariance.

Usage

rejection.level(alpha)

Arguments

alpha level of significance

Details

This is based on a distribution-free approach. The value might be very conservative. This is the
counterpart to multivariance.pvalue. For a less conservative approach see resample.rejection.level.

The estimate is only valid for alpha smaller than 0.215.

Examples

rejection.level(0.05) #the rejection level, for comparison with the following values
total.multivariance(matrix(rnorm(100*3),ncol = 3)) #independent sample
total.multivariance(coins(100)) #dependent sample which is 2-independent

# and the p values are (to compare with alpha)
multivariance.pvalue(total.multivariance(matrix(rnorm(100*3),ncol = 3))) #independent sample
multivariance.pvalue(total.multivariance(coins(100))) #dependent sample which is 2-independent

## Not run:
# visualization of the rejection level
curve(rejection.level(x),xlim = c(0.001,0.215),xlab = "alpha")

## End(Not run)
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resample.multivariance

resampling (total /m-) multivariance

Description

The distribution of the test statistic under the hypothesis of independence is required for the inde-
pendence tests. This function generates approximate samples of this distribution either by sampling
without replacement (permutations) or by sampling with replacement (bootstrap).

Usage

resample.multivariance(
x,
vec = 1:ncol(x),
times = 300,
type = "multi",
resample.type = "permutation",
...

)

Arguments

x matrix, the rows should be iid samples

vec vector, which indicates which columns of x are treated together as one sample

times integer, number of samples to generate

type one of "multi","total","m.multi.2","m.multi.3","all"

resample.type one of "permutation", "bootstrap". The samples are generated without re-
placement (permutations) or with replacement (bootstrap).

... is passed to cdms, multivariance, total.multivariance, m.multivariance,
respectively.

Details

The resampling is done by sampling from the original data either without replacement ("permutation")
or with replacement ("bootstrap"). Using resampling without replacement is (much) faster (due
to special identities which only hold in this case).

For convenience also the actual (total /m-) multivariance is computed and its p-value.

Value

A list with elements

resampled the (total/m-)multivariances of the resampled data,

original the (total/m-)multivariance of the original data,

p.value the p-value of the original data, computed using the resampled data
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References

For the theoretic background see the reference [3] given on the main help page of this package:
multivariance-package.

Examples

re.m = resample.multivariance(matrix(rnorm(30*2),nrow = 30),
type= "multi",times = 300)$resampled

curve(ecdf(re.m)(x), xlim = c(0,4),main = "empirical distribution of the test statistic under H_0")

resample.pvalue p-value via resampling

Description

Use a resampling method to generate samples of the test statistic under the hypothesis of indepen-
dence. Based on these the p.value of a given value of a test statistic is computed.

Usage

resample.pvalue(value, ...)

Arguments

value numeric, the value of (total-/m-)multivariance for which the p-value shall be
computed

... passed to resample.multivariance. Required is the data matrix x.

Details

This function is useful if a p-value of a test statistic shall be computed based on the resampling val-
ues of the test statistic of a different sample. For the p-value based on the same sample resample.multivariance(...)$p.value
is sufficient.

Value

It returns 1 minus the value of the empirical distribution function of the resampling samples evalu-
ated at the given value.

References

For the theoretic background see the reference [3] given on the main help page of this package:
multivariance-package.
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Examples

x = coins(100)
resample.pvalue(multivariance(x),x=x,times = 300)
resample.pvalue(multivariances.all(x),x=x,times = 300,type = "all")

resample.rejection.level

rejection level via resampling

Description

Uses the resample method to sample from the test statistic under the hypothesis of independence.
The alpha quantile of these samples is returned.

Usage

resample.rejection.level(alpha = 0.05, ...)

Arguments

alpha numeric, the significance value

... passed to resample.multivariance. Required is the data matrix x.

References

For the theoretic background see the reference [3] given on the main help page of this package:
multivariance-package.

Examples

resample.rejection.level(0.05,matrix(rnorm(30*2),nrow = 30))
resample.rejection.level(0.05,matrix(rnorm(30*3),nrow = 30),vec = c(1,1,2))

sample.cdms resamples doubly centered distance matrices

Description

resamples doubly centered distance matrices

Usage

sample.cdms(list.cdm, replace = FALSE, incl.first = FALSE)
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Arguments

list.cdm a list of doubly centered distance matrices

replace boolean, sampling with or without replacement

incl.first boolean, if TRUE also the first component is resampled

Value

Returns a list of doubly centered distance matrices, each matrix corresponds to the resampled
columns of the corresponding sample, using resampling with replacement (bootstrap) or without
replacement (permutations).

sample.cols resample the columns of a matrix

Description

resample the columns of a matrix

Usage

sample.cols(x, vec = 1:ncol(x), replace = TRUE, incl.first = TRUE)

Arguments

x matrix

vec vector, indicates which columns belong together

replace boolean, sampling with or without replacement

incl.first boolean, if TRUE also the first component is resampled

Value

Returns a matrix with the same dimensions as x. The columns are resampled from the origi-
nal columns. The resampling is done with replacement (replace = TRUE) or without (replace =
FALSE). Columns which belong together (indicated by vec) are resampled identically, i.e., all values
in rows of these are kept together.

Examples

sample.cols(matrix(1:15,nrow = 5),vec = c(1,1,2))
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tetrahedron dependence example: tetrahedron sampling

Description

This function creates samples of a tetrahedron-dice colored r, g, b and rgb. Each sample indicates
if for the thrown dice the colors r, g and b are contained on the bottom side of the dice.

Usage

tetrahedron(N = 1000)

Arguments

N number of samples

Value

It returns the samples of the events r, g and b as rows of a N by 3 matrix (the first column corresponds
to r, the second to g,...). TRUE indicates that this color is on the bottom side of the dice. The
columns are dependent but 2-independent.

References

For the theoretic background see the reference [3] given on the main help page of this package:
multivariance-package.

Examples

tetrahedron(10)

total.multivariance total distance multivariance

Description

computes the total distance multivariance
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Usage

total.multivariance(
x,
vec = NA,
lambda = 1,
Nscale = TRUE,
Escale = TRUE,
squared = TRUE,
...

)

Arguments

x either a data matrix or a list of doubly centered distance matrices
vec if x is a matrix, then this indicates which columns are treated together as one

sample; if x is a list, these are the indexes for which the multivariance is calcu-
lated. The default is all columns and all indexes, respectively.

lambda a scaling parameter >0. Each k-tuple multivariance gets weight lambda^(n-k).
Nscale if TRUE the multivariance is scaled up by the sample size (and thus it is exactly

as required for the test of independence)
Escale if TRUE then it is scaled by the number of multivariances which are theoretically

summed up (in the case of independence this yields for normalized distance
matrices an estimator with expectation 1)

squared if FALSE it returns the actual multivariance, otherwise the squared multivariance
(less computation)

... these are passed to cdms (which is only invoked if x is a matrix)

Details

Total distance multivariance is per definition the scaled sum of certain distance multivariances, and
it characterize dependence.

As a rough guide to interpret the value of total distance multivariance note:

• Large values indicate dependence.
• For Nscale = TRUE values close to 1 and smaller indicate independence, larger values indicate

dependence. In fact, in the case of independence the test statistic is a Gaussian quadratic form
with expectation 1 and samples of it can be generated by resample.multivariance.

• For Nscale = FALSE small values (close to 0) indicate independence, larger values indicate
dependence.

Finally note, that due to numerical (in)precision the value of total multivariance might become
negative. In these cases it is set to 0. A warning is issued, if the value is negative and further than
the usual (used by all.equal) tolerance away from 0.

References

For the theoretic background see the references given on the main help page of this package:
multivariance-package.
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Examples

x = matrix(rnorm(100*3),ncol = 3)
total.multivariance(x) #for an independent sample
# the value coincides with
(multivariance(x[,c(1,2)],Nscale = TRUE) + multivariance(x[,c(1,3)],Nscale = TRUE)+
multivariance(x[,c(2,3)],Nscale = TRUE) + multivariance(x,Nscale = TRUE))/4

total.multivariance(coins(100)) #value for a dependent sample which is 2-independent
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