The aim is to develop an R package, which is new.dist package, for the probability (density) function, the distribution function, the quantile function and the associated random number generation function for discrete and continuous distributions, which have recently been proposed in the literature. This package implements the following distributions: The Power Muth Distribution, A bimodal Weibull Distribution, The Discrete Lindley Distribution 1, The Discrete Lindley Distribution 2, The Gamma-Lomax Distribution, Weighted Geometric Distribution, A Power Log-Dagum Distribution, Kumaraswamy Distribution, Lindley Distribution, Ram Awadh Distribution, The Unit-Inverse Gaussian Distribution, EP Distribution, Akash Distribution, Ishita Distribution, Maxwell Distribution, The Standard Omega Distribution, Slashed Generalized Rayleigh Distribution, Two-Parameter Rayleigh Distribution, Muth Distribution, Uniform-Geometric Distribution, Discrete Weibull Distribution.
You can install the development version of new.dist from [GitHub][https://github.com/] with:
# install.packages("devtools")
devtools::install_github("akmn35/new.dist")new.dist Density, distribution function, quantile
function and random generation for parameter estimation of
distributions.
dbwd Density function for Bimodal Weibull distribution
with shape (alpha) and scale (beta) parameters.
library(new.dist)
dbwd(1,alpha=2,beta=3,sigma=4)
#> [1] 0.01594262pbwd Distribution function for Bimodal Weibull
distribution with shape (alpha) and scale (beta) parameters.
library(new.dist)
pbwd(1,alpha=2,beta=3,sigma=4)
#> [1] 0.003859685qbwd Quantile function for Bimodal Weibull distribution
with shape (alpha) and scale (beta) parameters.
library(new.dist)
qbwd(.7,alpha=2,beta=3,sigma=4)
#> [1] 4.759942rbwd Random generation for a Bimodal Weibull
distribution with shape (alpha) and scale (beta) parameters.
library(new.dist)
rbwd(5,alpha=2,beta=3,sigma=4)
#> [1] 5.787403 3.062926 2.560047 3.406179 2.344262dsgrd Density function for a Slashed Generalized
Rayleigh distribution with shape (alpha), scale (theta) and
kurtosis(beta) parameters.
library(new.dist)
dsgrd(2,theta=3,alpha=1,beta=4)
#> [1] 0.08314235psgrd Distribution function for a Slashed Generalized
Rayleigh distribution with shape (alpha), scale (theta) and kurtosis
(beta) parameters.
library(new.dist)
psgrd(5,theta=3,alpha=1,beta=4)
#> [1] 0.9989333qsgrd Quantile function for a Slashed Generalized
Rayleigh distribution with shape (alpha), scale (theta) and kurtosis
(beta) parameters.
library(new.dist)
qsgrd(.4,theta=3,alpha=1,beta=4)
#> [1] 0.8358487rsgrd Random generation for a Slashed Generalized
Rayleigh distribution with shape (alpha), scale (theta) and kurtosis
(beta) parameters.
library(new.dist)
rsgrd(5,theta=3,alpha=1,beta=4)
#> [1] 0.9162424 2.2939520 0.9160551 0.7168782 1.2676308dsod Density function for a the Standard Omega
distribution with alpha and beta parameters.
library(new.dist)
dsod(0.4, alpha=1, beta=2)
#> [1] 0.6986559psod Distribution function for a the Standard Omega
distribution with alpha and beta parameters.
library(new.dist)
psod(0.4, alpha=1, beta=2)
#> [1] 0.1490371qsod Quantile function for a the Standard Omega
distribution with alpha and beta parameters.
library(new.dist)
qsod(.8, alpha=1, beta=2)
#> [1] 0.9607689rsod Random generation for a the Standard Omega
distribution with alpha and beta parameters.
library(new.dist)
rsod(5, alpha=1, beta=2)
#> [1] 0.9626043 0.6029560 0.8908171 0.9719128 0.6324489dugd Density function for the Uniform-Geometric
distribution with theta parameter.
library(new.dist)
dugd(1, theta=0.5)
#> [1] 0.6931472pugd Distribution function for the Uniform-Geometric
distribution with theta parameter.
library(new.dist)
pugd(1,theta=.5)
#> [1] 0.6931472qugd Quantile function for the Uniform-Geometric
distribution with theta parameter.
library(new.dist)
qugd(0.6,theta=.1)
#> [1] 4rugd Random generation for the Uniform-Geometric
distribution with theta parameter.
library(new.dist)
rugd(5,theta=.1)
#> [1] 1 13 13 5 9dtpmd Density function for the Power Muth distribution
with shape (beta) and scale (alpha) parameters.
library(new.dist)
dtpmd(1, beta=2, alpha=3)
#> [1] 0.04952547ptpmd Distribution function for the Power Muth
distribution shape (beta) and scale (alpha) parameters.
library(new.dist)
ptpmd(1,beta=2,alpha=3)
#> [1] 0.008115344qtpmd Quantile function for the Power Muth distribution
with shape (beta) and scale (alpha) parameters.
library(new.dist)
qtpmd(.5,beta=2,alpha=3)
#> [1] 1.990084rtpmd Random generation for the Power Muth distribution
with shape (beta) and scale (alpha) parameters.
library(new.dist)
rtpmd(5,beta=2,alpha=3)
#> [1] 1.806067 1.668991 1.865928 1.775550 1.721437dtprd Density function for the Two-Parameter Rayleigh
distribution with location (mu) and scale (lambda) parameters.
library(new.dist)
dtprd(5, lambda=4, mu=4)
#> [1] 0.1465251ptprd Distribution function for Two-Parameter Rayleigh
distribution with location (mu) and scale (lambda) parameters.
library(new.dist)
ptprd(2,lambda=2,mu=1)
#> [1] 0.8646647qtprd Quantile function for Two-Parameter Rayleigh
distribution with location (mu) and scale (lambda) parameters.
library(new.dist)
qtprd(.5,lambda=2,mu=1)
#> [1] 1.588705rtprd Random generation for Two-Parameter Rayleigh
distribution with location (mu) and scale (lambda) parameters.
library(new.dist)
rtprd(5,lambda=2,mu=1)
#> [1] 2.137743 1.385888 1.788912 1.696368 1.783938duigd Density function for the Unit Inverse Gaussian
distribution with mean (mu) and scale (lambda) parameters.
library(new.dist)
duigd(1, mu=2, lambda=3)
#> [1] 0.4749088puigd Distribution function for the Unit Inverse
Gaussian distribution with mean (mu) and scale (lambda) parameters.
library(new.dist)
puigd(1,mu=2,lambda=3)
#> [1] 0.2873867quigd Quantile function for the Unit Inverse Gaussian
distribution with mean (mu) and scale (lambda) parameters.
library(new.dist)
quigd(.1,mu=2,lambda=3)
#> [1] 0.6104128ruigd Random generation for the Unit Inverse Gaussian
distribution with mean (mu) and scale (lambda) parameters.
library(new.dist)
ruigd(5,mu=2,lambda=3)
#> [1] 1.7037855 2.8067345 0.8597714 0.7931621 1.0315418dwgd Density function for the Weighted Geometric
distribution with alpha and lambda parameters.
library(new.dist)
dwgd(1,alpha=.2,lambda=3)
#> [1] 0.79872pwgd Distribution function for the Weighted Geometric
distribution with alpha and lambda parameters.
library(new.dist)
dwgd(1,alpha=.2,lambda=3)
#> [1] 0.79872qwgd Quantile function for the Weighted Geometric
distribution with alpha and lambda parameters.
library(new.dist)
qwgd(.98,alpha=.2,lambda=3)
#> [1] 3rwgd Random generation for the Weighted Geometric
distribution with alpha and lambda parameters.
library(new.dist)
rwgd(5,alpha=.2,lambda=3)
#> [1] 1 1 3 1 2ddLd1 Density function for the Discrete Lindley
distribution 1 with theta parameter.
library(new.dist)
ddLd1(1,theta=2)
#> [1] 0.1828223pdLd1 Distribution function for the Discrete Lindley
distribution 1 with theta parameter.
library(new.dist)
ddLd1(1,theta=2)
#> [1] 0.1828223qdLd1 Quantile function for the Discrete Lindley
distribution 1 with theta parameter.
library(new.dist)
qdLd1(.993,theta=2)
#> [1] 3rdLd1 Random generation for the Discrete Lindley
distribution 1 with theta parameter.
library(new.dist)
rdLd1(5,theta=1)
#> [1] 0 2 0 2 0dmd Density function for Maxwell distribution with scale
(theta) parameter.
library(new.dist)
dmd(1,theta=2)
#> [1] 0.4839414pmd Distribution function for a Maxwell distribution
with scale (theta) parameter.
library(new.dist)
pmd(1,theta=2)
#> [1] 0.198748qmd Quantile function for a Maxwell distribution with
scale (theta) parameter.
library(new.dist)
qmd(.4,theta=5)
#> [1] 2.161694rmd Random generation for a Maxwell distribution with
scale (theta) parameter.
library(new.dist)
rmd(5,theta=1)
#> [1] 0.9270855 2.2550202 1.2018527 0.9012689 1.6375431dkd Density function for Kumaraswamy distribution with
shape (alpha, lambda) parameters.
library(new.dist)
dkd(0.1,lambda=2,alpha=3)
#> [1] 0.58806pkd Distribution function for Kumaraswamy distribution
with shape (alpha, lambda) parameters.
library(new.dist)
dkd(0.1,lambda=2,alpha=3)
#> [1] 0.58806qkd Quantile function for Kumaraswamy distribution with
shape (alpha, lambda) parameters.
library(new.dist)
pkd(0.5,lambda=2,alpha=3)
#> [1] 0.578125rkd Random generation for Kumaraswamy distribution with
shape (alpha, lambda) parameters.
library(new.dist)
rkd(5,lambda=2,alpha=3)
#> [1] 0.6415521 0.5272059 0.2329670 0.4351743 0.5657495dgld Density function for the Gamma-Lomax distribution
with shape (a, alpha) and scale (beta) parameters.
library(new.dist)
dgld(1,a=2,alpha=3,beta=4)
#> [1] 0.2056491pgld Distribution function for the Gamma-Lomax
distribution with shape (a, alpha) and scale (beta) parameters.
library(new.dist)
dgld(1,a=2,alpha=3,beta=4)
#> [1] 0.2056491qgld Quantile function for the Gamma-Lomax distribution
with shape (a, alpha) and scale (beta) parameters.
library(new.dist)
qgld(.8,a=2,alpha=3,beta=4)
#> [1] 6.852518rgld Random generation for the Gamma-Lomax distribution
with shape (a, alpha) and scale (beta) parameters.
library(new.dist)
rgld(5,a=2,alpha=3,beta=4)
#> [1] 2.8217781 5.5886484 8.4958716 0.9864014 2.1699043ddLd2 Density function for a Discrete Lindley
distribution 2 with theta parameter.
library(new.dist)
ddLd2(2,theta=2)
#> [1] 0.03530023pdLd2 Distribution function for a Discrete Lindley
distribution 2 with theta parameter.
library(new.dist)
pdLd2(1,theta=2)
#> [1] 0.9572635qdLd2 Quantile function for a Discrete Lindley
distribution 2 with theta parameter.
library(new.dist)
qdLd2(.5,theta=2)
#> [1] 0rdLd2 Random generation for a Discrete Lindley
distribution 2 with theta parameter.
library(new.dist)
rdLd2(5,theta=1)
#> [1] 3 0 1 0 0dEPd Density function for the EP distribution with
lambda and beta parameters.
library(new.dist)
dEPd(1, lambda=2, beta=3)
#> [1] 0.05165063pEPd Distribution function for the EP distribution with
lambda and beta parameters.
library(new.dist)
pEPd(1, lambda=2, beta=3)
#> [1] 0.9836125qEPd Quantile function for the EP distribution with
lambda and beta parameters.
library(new.dist)
qEPd(.8,lambda=2,beta=3)
#> [1] 0.295895rEPd Random generation for the EP distribution with
lambda and beta parameters.
library(new.dist)
rEPd(5,lambda=2,beta=3)
#> [1] 0.08754699 0.01152708 0.27621565 0.12618652 0.18547342dRA Density function for a Ram Awadh distribution with
scale (theta) parameter.
library(new.dist)
dRA(1,theta=2)
#> [1] 0.1412194pRA Distribution function for a Ram Awadh distribution
with scale (theta) parameter.
library(new.dist)
pRA(1,theta=2)
#> [1] 0.3115553qRA Quantile function for a Ram Awadh distribution with
scale (theta) parameter.
library(new.dist)
dRA(.8,theta=2)
#> [1] 0.163461rRA Random generation for a Ram Awadh distribution with
scale (theta) parameter.
library(new.dist)
rRA(5,theta=2)
#> [1] 0.9774141 2.8355960 1.9192415 4.0137512 2.5296763domd Density function for the Muth distribution with
alpha parameter.
library(new.dist)
domd(1,alpha=.2)
#> [1] 0.4123689pomd Distribution function for the Muth distribution
with alpha parameter.
library(new.dist)
pomd(1,alpha=.2)
#> [1] 0.596272qomd Quantile function for the Muth distribution with
alpha parameter.
library(new.dist)
qomd(.8,alpha=.2)
#> [1] 1.637047romd Random generation for the Muth distribution with
alpha parameter.
library(new.dist)
romd(5,alpha=.2)
#> [1] 2.291542 1.144422 1.345481 2.172140 1.377844dpldd Density function for a Power Log Dagum
distribution with alpha, beta and theta parameters.
library(new.dist)
dpldd(1, alpha=2, beta=3, theta=4)
#> [1] 0.1766842ppldd Distribution function for a Power Log Dagum
distribution with alpha, beta and theta parameters.
library(new.dist)
ppldd(1, alpha=2, beta=3, theta=4)
#> [1] 0.9742603qpldd Quantile function for a Power Log Dagum
distribution with alpha, beta and theta parameters.
library(new.dist)
qpldd(.8, alpha=2, beta=3, theta=4)
#> [1] 0.6109249rpldd Random generation for a Power Log Dagum
distribution with alpha, beta and theta parameters.
library(new.dist)
rpldd(5, alpha=2, beta=3, theta=4)
#> [1] 0.05775973 -0.28725832 0.53623427 0.64797737 0.01620600dLd Density function for Lindley distribution with theta
parameter.
library(new.dist)
dLd(1,theta=2)
#> [1] 0.3608941pLd Distribution function for Lindley distribution with
theta parameter.
library(new.dist)
pLd(1,theta=2)
#> [1] 0.7744412qLd Quantile function for Lindley distribution with
theta parameter.
library(new.dist)
qLd(.5,theta=2)
#> [1] 0.4872058rLd Random generation for Lindley distribution with
theta parameter.
library(new.dist)
rLd(5,theta=1)
#> [1] 0.3935864 1.7494001 0.2860219 1.1050805 1.8812775Department of Statistics, Faculty of Science, Selcuk University,
42250, Konya, Turkey
Email:coskun@selcuk.edu.tr
Akdoğan, Y., Kuş, C., Asgharzadeh, A., Kınacı, İ., & Sharafi, F. (2016). Uniform-geometric distribution. Journal of Statistical Computation and Simulation, 86(9), 1754-1770.
Akgül, F. G., Acıtaş, Ş. ve Şenoğlu, B., 2018, Inferences on stress–strength reliability based on ranked set sampling data in case of Lindley distribution, Journal of statistical computation and simulation, 88 (15), 3018-3032.
Bakouch, H. S., Khan, M. N., Hussain, T. ve Chesneau, C., 2019, A power log-Dagum distribution: estimation and applications, Journal of Applied Statistics, 46 (5), 874-892.
Bakouch, H. S., Jazi, M. A. ve Nadarajah, S., 2014, A new discrete distribution, Statistics, 48 (1), 200-240.
Birbiçer, İ. ve Genç, A. İ., 2022, On parameter estimation of the standard omega distribution. Journal of Applied Statistics, 1-17.
Cordeiro, G. M., Ortega, E. M. ve Popović, B. V., 2015, The gamma-Lomax distribution, Journal of statistical computation and simulation, 85 (2), 305-319.
Dey, S., Dey, T. ve Kundu, D., 2014, Two-parameter Rayleigh distribution: different methods of estimation, American Journal of Mathematical and Management Sciences, 33 (1), 55-74.
Ghitany, M., Mazucheli, J., Menezes, A. ve Alqallaf, F., 2019, The unit-inverse Gaussian distribution: A new alternative to two-parameter distributions on the unit interval, Communications in Statistics-Theory and Methods, 48 (14), 3423-3438.
Gómez-Déniz, E. ve Calderín-Ojeda, E., 2011, The discrete Lindley distribution: properties and applications.Journal of statistical computation and simulation, 81 (11), 1405-1416.
Iriarte, Y. A., Vilca, F., Varela, H. ve Gómez, H. W., 2017, Slashed generalized Rayleigh distribution, Communications in Statistics-Theory and Methods, 46 (10), 4686-4699.
Jodra, P., Gomez, H. W., Jimenez-Gamero, M. D., & Alba-Fernandez, M. V. (2017). The power Muth distribution . Mathematical Modelling and Analysis, 22(2), 186-201.
Jodrá, P., Jiménez-Gamero, M. D. ve Alba-Fernández, M. V., 2015, On the Muth distribution, Mathematical Modelling and Analysis, 20 (3), 291-310.
Kohansal, A. ve Bakouch, H. S., 2021, Estimation procedures for Kumaraswamy distribution parameters under adaptive type-II hybrid progressive censoring, Communications in Statistics-Simulation and Computation, 50 (12), 4059-4078.
Krishna, H., Vivekanand ve Kumar, K., 2015, Estimation in Maxwell distribution with randomly censored data, Journal of statistical computation and simulation, 85 (17), 3560-3578.
Kuş, C., 2007, A new lifetime distribution, Computational Statistics & Data Analysis, 51 (9), 4497-4509.
Najarzadegan, H., Alamatsaz, M. H., Kazemi, I. ve Kundu, D., 2020, Weighted bivariate geometric distribution: Simulation and estimation, Communications in Statistics-Simulation and Computation, 49 (9), 2419-2443.
Ristić, M. M., & Balakrishnan, N. (2012), The gamma-exponentiated exponential distribution. Journal of statistical computation and simulation, 82(8), 1191-1206.
Shukla, K. K., Shanker, R. ve Tiwari, M. K., 2022, A new one parameter discrete distribution and its applications, Journal of Statistics and Management Systems, 25 (1), 269-283.
Vila, R. ve Niyazi Çankaya, M., 2022, A bimodal Weibull distribution: properties and inference,Journal of Applied Statistics, 49 (12), 3044-3062.