| Title: | Alternative Continuous and Discrete Distributions |
| Version: | 0.1.1 |
| Maintainer: | Ramazan Akman <ramazanakman12345@gmail.com> |
| Description: | The aim is to develop an R package, which is the 'new.dist' package, for the probability (density) function, the distribution function, the quantile function and the associated random number generation function for discrete and continuous distributions, which have recently been proposed in the literature. This package implements the following distributions: The Power Muth Distribution, a Bimodal Weibull Distribution, the Discrete Lindley Distribution, The Gamma-Lomax Distribution, Weighted Geometric Distribution, a Power Log-Dagum Distribution, Kumaraswamy Distribution, Lindley Distribution, the Unit-Inverse Gaussian Distribution, EP Distribution, Akash Distribution, Ishita Distribution, Maxwell Distribution, the Standard Omega Distribution, Slashed Generalized Rayleigh Distribution, Two-Parameter Rayleigh Distribution, Muth Distribution, Uniform-Geometric Distribution, Discrete Weibull Distribution. |
| License: | GPL-3 |
| URL: | https://github.com/akmn35/new.dist, https://akmn35.github.io/new.dist/ |
| BugReports: | https://github.com/akmn35/new.dist/issues |
| Imports: | VGAM, expint, pracma |
| Suggests: | knitr, rmarkdown, roxygen2, stats, testthat (≥ 3.0.0) |
| VignetteBuilder: | knitr |
| Config/testthat/edition: | 3 |
| Encoding: | UTF-8 |
| RoxygenNote: | 7.2.3 |
| NeedsCompilation: | no |
| Packaged: | 2023-12-09 16:36:08 UTC; Ramazan |
| Author: | Ramazan Akman [cre, ctb] (https://www.researchgate.net/profile/Ramazan-Akman), Coşkun Kuş [aut, ctb] (https://www.selcuk.edu.tr/Person/Detail/coskun), Ihab Abusaif [aut, ctb] (https://www.researchgate.net/profile/Ihab-Abusaif) |
| Repository: | CRAN |
| Date/Publication: | 2023-12-09 16:50:02 UTC |
EP distribution
Description
Density, distribution function, quantile function and random generation for the EP distribution.
Usage
dEPd(x, lambda, beta, log = FALSE)
pEPd(q, lambda, beta, lower.tail = TRUE, log.p = FALSE)
qEPd(p, lambda, beta, lower.tail = TRUE)
rEPd(n, lambda, beta)
Arguments
x, q |
vector of quantiles. |
lambda, beta |
are parameters. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The EP distribution with parameters \lambda and \beta,
has density
f\left( x\right) =\frac{\lambda \beta }
{\left( 1-e^{-\lambda }\right) } e^{-\lambda -\beta x+\lambda e^{-\beta x}},
where
x>\mathbb{R}_{+},~\beta ,\lambda \in \mathbb{R}_{+}.
Value
dEPd gives the density, pEPd gives the distribution
function, qEPd gives the quantile function and rEPd generates
random deviates.
References
Kuş, C., 2007, A new lifetime distribution, Computational Statistics & Data Analysis, 51 (9), 4497-4509.
Examples
library(new.dist)
dEPd(1, lambda=2, beta=3)
pEPd(1,lambda=2,beta=3)
qEPd(.8,lambda=2,beta=3)
rEPd(10,lambda=2,beta=3)
Lindley Distribution
Description
Density, distribution function, quantile function and random generation for the Lindley distribution.
Usage
dLd(x, theta, log = FALSE)
pLd(q, theta, lower.tail = TRUE, log.p = FALSE)
qLd(p, theta, lower.tail = TRUE)
rLd(n, theta)
Arguments
x, q |
vector of quantiles. |
theta |
a parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Lindley distribution with a parameter \theta, has density
f\left( x\right) =\frac{\theta ^{2}}{1+\theta }\left( 1+x\right)
e^{-\theta~x},
where
x>0,~\theta >0.
Value
dLd gives the density, pLd gives the distribution
function, qLd gives the quantile function and rLd generates
random deviates.
References
Akgül, F. G., Acıtaş, Ş. ve Şenoğlu, B., 2018, Inferences on stress–strength reliability based on ranked set sampling data in case of Lindley distribution, Journal of statistical computation and simulation, 88 (15), 3018-3032.
Examples
library(new.dist)
dLd(1,theta=2)
pLd(1,theta=2)
qLd(.8,theta=1)
rLd(10,theta=1)
Ram Awadh Distribution
Description
Density, distribution function, quantile function and random generation for
a Ram Awadh distribution with parameter scale.
Usage
dRA(x, theta = 1, log = FALSE)
pRA(q, theta = 1, lower.tail = TRUE, log.p = FALSE)
qRA(p, theta = 1, lower.tail = TRUE)
rRA(n, theta = 1)
Arguments
x, q |
vector of quantiles. |
theta |
a scale parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
Ram Awadh distribution with scale parameter
\theta, has density
f\left( x\right) =\frac{\theta ^{6}}{\theta ^{6}+120}
\left( \theta+x^{5}\right) e^{-\theta x},
where
x>0,~\theta >0.
Value
dRA gives the density, pRA gives the distribution
function, qRA gives the quantile function and rRA
generates random deviates.
References
Shukla, K. K., Shanker, R. ve Tiwari, M. K., 2022, A new one parameter discrete distribution and its applications, Journal of Statistics and Management Systems, 25 (1), 269-283.
Examples
library(new.dist)
dRA(1,theta=2)
pRA(1,theta=2)
qRA(.1,theta=1)
rRA(10,theta=1)
Bimodal Weibull Distribution
Description
Density, distribution function, quantile function and random generation for
a Bimodal Weibull distribution with parameters shape and scale.
Usage
dbwd(x, alpha, beta = 1, sigma, log = FALSE)
pbwd(q, alpha, beta = 1, sigma, lower.tail = TRUE, log.p = FALSE)
qbwd(p, alpha, beta = 1, sigma, lower.tail = TRUE)
rbwd(n, alpha, beta = 1, sigma)
Arguments
x, q |
vector of quantiles. |
alpha |
a shape parameter. |
beta |
a scale parameter. |
sigma |
a control parameter that controls the uni- or bimodality of the distribution. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
A Bimodal Weibull distribution with shape parameter \alpha,
scale parameter \beta,and the control parameter
\sigma that determines the uni- or bimodality of the
distribution, has density
f\left( x\right) =\frac{\alpha }{\beta Z_{\theta }}
\left[ 1+\left( 1-\sigma~x\right) ^{2}\right] \left( \frac{x}{\beta }
\right) ^{\alpha -1}\exp \left( -\left( \frac{x}{\beta }\right) ^{\alpha }
\right),
where
Z_{\theta }=2+\sigma ^{2}\beta ^{2}\Gamma
\left( 1+\left( 2/\alpha \right)\right) -2\sigma \beta \Gamma
\left( 1+\left( 1/\alpha \right) \right)
and
x\geq 0,~\alpha ,\beta >0~ and ~\sigma \in\mathbb{R}.
Value
dbwd gives the density, pbwd gives the distribution
function, qbwd gives the quantile function and rbwd generates
random deviates.
References
Vila, R. ve Niyazi Çankaya, M., 2022, A bimodal Weibull distribution: properties and inference, Journal of Applied Statistics, 49 (12), 3044-3062.
Examples
library(new.dist)
dbwd(1,alpha=2,beta=3,sigma=4)
pbwd(1,alpha=2,beta=3,sigma=4)
qbwd(.7,alpha=2,beta=3,sigma=4)
rbwd(10,alpha=2,beta=3,sigma=4)
Discrete Lindley Distribution
Description
Density, distribution function, quantile function and random generation for the discrete Lindley distribution.
Usage
ddLd1(x, theta, log = FALSE)
pdLd1(q, theta, lower.tail = TRUE, log.p = FALSE)
qdLd1(p, theta, lower.tail = TRUE)
rdLd1(n, theta)
Arguments
x, q |
vector of quantiles. |
theta |
a parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Discrete Lindley distribution with a parameter \theta, has density
f\left( x\right) =\frac{\lambda ^{x}}{1-\log \lambda }
\left( \lambda \log\lambda +\left( 1-\lambda \right)
\left( 1-\log \lambda^{x+1}\right)\right),
where
x=0,1,...,~\theta >0~and~\lambda =e^{-\theta }.
Value
ddLd1 gives the density, pdLd1 gives the distribution
function, qdLd1 gives the quantile function and rdLd1 generates
random deviates.
References
Gómez-Déniz, E. ve Calderín-Ojeda, E., 2011, The discrete Lindley distribution: properties and applications.Journal of statistical computation and simulation, 81 (11), 1405-1416.
Examples
library(new.dist)
ddLd1(1,theta=2)
pdLd1(2,theta=1)
qdLd1(.993,theta=2)
rdLd1(10,theta=1)
Discrete Lindley Distribution
Description
Density, distribution function, quantile function and random generation for the discrete Lindley distribution.
Usage
ddLd2(x, theta, log = FALSE)
pdLd2(q, theta, lower.tail = TRUE, log.p = FALSE)
qdLd2(p, theta, lower.tail = TRUE)
rdLd2(n, theta)
Arguments
x, q |
vector of quantiles. |
theta |
a parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
the discrete Lindley distribution with a parameter \theta,
has density
f\left( x\right) =\frac{\lambda ^{x}}{1+\theta }
\left( \theta \left(1-2\lambda \right) +\left( 1-\lambda \right)
\left( 1+\theta x\right)\right),
where
x=0,1,2,...~,\lambda =\exp \left( -\theta \right) ~and~\theta >0.
Value
ddLd2 gives the density, pdLd2 gives the distribution
function, qdLd2 gives the quantile function and rdLd2 generates
random deviates.
References
Bakouch, H. S., Jazi, M. A. ve Nadarajah, S., 2014, A new discrete distribution, Statistics, 48 (1), 200-240.
Examples
library(new.dist)
ddLd2(2,theta=2)
pdLd2(1,theta=2)
qdLd2(.5,theta=2)
rdLd2(10,theta=1)
Gamma-Lomax Distribution
Description
Density, distribution function, quantile function and random generation for
the gamma-Lomax distribution with parameters shapes and scale.
Usage
dgld(x, a, alpha, beta = 1, log = FALSE)
pgld(q, a, alpha, beta = 1, lower.tail = TRUE, log.p = FALSE)
qgld(p, a, alpha, beta = 1, lower.tail = TRUE)
rgld(n, a, alpha, beta = 1)
Arguments
x, q |
vector of quantiles. |
a, alpha |
are shape parameters. |
beta |
a scale parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Gamma-Lomax distribution shape parameters
a and \alpha, and scale parameter is \beta,
has density
f\left( x\right) =\frac{\alpha \beta ^{\alpha }}
{\Gamma \left( a\right)\left( \beta +x\right) ^{\alpha +1}}\left\{ -\alpha
\log \left( \frac{\beta }{\beta +x}\right) \right\} ^{a-1},
where
x>0,~a,\alpha ,\beta >0.
Value
dgld gives the density, pgld gives the distribution
function, qgld gives the quantile function and rgld generates
random deviates.
References
Cordeiro, G. M., Ortega, E. M. ve Popović, B. V., 2015, The gamma-Lomax distribution, Journal of statistical computation and simulation, 85 (2), 305-319.
Ristić, M. M., & Balakrishnan, N. (2012), The gamma-exponentiated exponential distribution. Journal of statistical computation and simulation , 82(8), 1191-1206.
Examples
library(new.dist)
dgld(1, a=2, alpha=3, beta=4)
pgld(1, a=2,alpha=3,beta=4)
qgld(.8, a=2,alpha=3,beta=4)
rgld(10, a=2,alpha=3,beta=4)
Kumaraswamy Distribution
Description
Density, distribution function, quantile function and random generation for
Kumaraswamy distribution with shape parameters.
Usage
dkd(x, lambda, alpha, log = FALSE)
pkd(q, lambda, alpha, lower.tail = TRUE, log.p = FALSE)
qkd(p, lambda, alpha, lower.tail = TRUE)
rkd(n, lambda, alpha)
Arguments
x, q |
vector of quantiles. |
alpha, lambda |
are non-negative shape parameters. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
Kumaraswamy distribution with non-negative shape
parameters \alpha and \lambda has density
f\left( x\right) =\alpha \lambda x^{\lambda -1}\left( 1-x^{\lambda }
\right)^{\alpha -1},
where
0<x<1,~~\alpha ,\lambda >0.
Value
dkd gives the density, pkd gives the distribution
function, qkd gives the quantile function and rkd generates
random deviates.
References
Kohansal, A. ve Bakouch, H. S., 2021, Estimation procedures for Kumaraswamy distribution parameters under adaptive type-II hybrid progressive censoring, Communications in Statistics-Simulation and Computation, 50 (12), 4059-4078.
Examples
library("new.dist")
dkd(0.1,lambda=2,alpha=3)
pkd(0.5,lambda=2,alpha=3)
qkd(.8,lambda=2,alpha=3)
rkd(10,lambda=2,alpha=3)
Maxwell Distribution
Description
Density, distribution function, quantile function and random generation for
Maxwell distribution with parameter scale.
Usage
dmd(x, theta = 1, log = FALSE)
pmd(q, theta = 1, lower.tail = TRUE, log.p = FALSE)
qmd(p, theta = 1, lower.tail = TRUE)
rmd(n, theta = 1)
Arguments
x, q |
vector of quantiles. |
theta |
a scale parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
Maxwell distribution with scale parameter \theta,
has density
f\left( x\right) =\frac{4}{\sqrt{\pi }}
\frac{1}{\theta ^{3/2}}x^{2}e^{-x^{2}/\theta },
where
0\leq x<\infty ,~~\theta >0.
Value
dmd gives the density, pmd gives the distribution
function, qmd gives the quantile function and rmd generates
random deviates.
References
Krishna, H., Vivekanand ve Kumar, K., 2015, Estimation in Maxwell distribution with randomly censored data, Journal of statistical computation and simulation, 85 (17), 3560-3578.
Examples
library(new.dist)
dmd(1,theta=2)
pmd(1,theta=2)
qmd(.4,theta=5)
rmd(10,theta=1)
Muth Distribution
Description
Density, distribution function, quantile function and random generation for on the Muth distribution.
Usage
domd(x, alpha, log = FALSE)
pomd(q, alpha, lower.tail = TRUE, log.p = FALSE)
qomd(p, alpha, lower.tail = TRUE)
romd(n, alpha)
Arguments
x, q |
vector of quantiles. |
alpha |
a parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Muth distribution with a parameter \alpha, has
density
f\left( x\right) =\left( e^{\alpha x}-
\alpha \right) e^{\alpha x-\left(1/\alpha \right) \left( e^{\alpha x}-
1\right) },
where
x>0,~\alpha \in \left( 0,1\right].
Value
domd gives the density, pomd gives the distribution
function, qomd gives the quantile function and romd generates
random deviates.
References
Jodrá, P., Jiménez-Gamero, M. D. ve Alba-Fernández, M. V., 2015, On the Muth distribution, Mathematical Modelling and Analysis, 20 (3), 291-310.
Examples
library(new.dist)
domd(1,alpha=.2)
pomd(1,alpha=.2)
qomd(.8,alpha=.1)
romd(10,alpha=1)
Power Log Dagum Distribution
Description
Density, distribution function, quantile function and random generation for a Power Log Dagum distribution.
Usage
dpldd(x, alpha, beta, theta, log = FALSE)
ppldd(q, alpha, beta, theta, lower.tail = TRUE, log.p = FALSE)
qpldd(p, alpha, beta, theta, lower.tail = TRUE)
rpldd(n, alpha, beta, theta)
Arguments
x, q |
vector of quantiles. |
alpha, beta, theta |
are parameters. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
A Power Log Dagum Distribution with parameters \alpha, \beta and
\theta, has density
f\left( x\right) =\alpha
\left( \beta +\theta \left\vert x\right\vert^{\beta -1}
\right) e^{-\left( \beta x+sign\left( x\right)
\left( \theta/\beta \right) \left\vert
x\right\vert ^{\beta }\right) ~}~\left(1+e^{-\left( \beta x+sign
\left( x\right)\left( \theta /\beta \right)
\left\vert x\right\vert ^{\beta }\right) }
\right) ^{-\left( \alpha +1\right)},
where
x\in \mathbb{R},~\beta \in \mathbb{R},~\alpha >0~and~\theta \geq 0
Value
dpldd gives the density, ppldd gives the distribution
function, qpldd gives the quantile function and rpldd generates
random deviates.
Note
The distributions hazard function
h\left( x\right) =\frac{\alpha
\left( \beta +\theta \left\vert x\right\vert^{\beta -1}
\right) e^{-\left( \beta x+sign\left( x\right) \left( \theta/\beta \right)
\left\vert x\right\vert ^{\beta }\right) }\left( 1+e^{-\left(\beta x+sign
\left( x\right) \left( \theta /\beta \right) \left\vert x
\right\vert ^{\beta }\right) }\right) ^{-\left(\alpha +1\right) }}
{1-\left( 1+e^{-\left( \beta x+sign\left( x\right) \left( \theta /
\beta \right) \left\vert x\right\vert ^{\beta }\right) }
\right) ^{-\alpha }} .
References
Bakouch, H. S., Khan, M. N., Hussain, T. ve Chesneau, C., 2019, A power log-Dagum distribution: estimation and applications, Journal of Applied Statistics, 46 (5), 874-892.
Examples
library(new.dist)
dpldd(1, alpha=2, beta=3, theta=4)
ppldd(1,alpha=2,beta=3,theta=4)
qpldd(.8,alpha=2,beta=3,theta=4)
rpldd(10,alpha=2,beta=3,theta=4)
Slashed Generalized Rayleigh Distribution
Description
Density, distribution function, quantile function and random generation for
the Slashed generalized Rayleigh distribution with parameters shape,
scale and kurtosis.
Usage
dsgrd(x, theta, alpha, beta, log = FALSE)
psgrd(q, theta, alpha, beta, lower.tail = TRUE, log.p = FALSE)
qsgrd(p, theta, alpha, beta, lower.tail = TRUE)
rsgrd(n, theta, alpha, beta)
Arguments
x, q |
vector of quantiles. |
theta |
a scale parameter. |
alpha |
a shape parameter. |
beta |
a kurtosis parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Slashed Generalized Rayleigh distribution with shape parameter
\alpha, scale parameter \theta and kurtosis
parameter \beta, has density
f\left( x\right) =\frac{\beta x^{-\left( \beta+1\right)}}{\Gamma \left(
\alpha+1\right) \theta ^{\beta/2}}\Gamma \left( \frac{2\alpha +\beta +2}{2}
\right)F\left( \theta x^{2};\frac{2\alpha +\beta +2}{2},1\right),
where F(.;a,b) is the cdf of the Gamma (a,b) distribution, and
x>0,~\theta >0,~\alpha >-1~and~\beta >0
Value
dsgrd gives the density, psgrd gives the distribution
function, qsgrd gives the quantile function and rsgrd generates
random deviates.
References
Iriarte, Y. A., Vilca, F., Varela, H. ve Gómez, H. W., 2017, Slashed generalized Rayleigh distribution, Communications in Statistics- Theory and Methods, 46 (10), 4686-4699.
Examples
library(new.dist)
dsgrd(2,theta=3,alpha=1,beta=4)
psgrd(5,theta=3,alpha=1,beta=4)
qsgrd(.4,theta=3,alpha=1,beta=4)
rsgrd(10,theta=3,alpha=1,beta=4)
Standard Omega Distribution
Description
Density, distribution function, quantile function and random generation for the Standard Omega distribution.
Usage
dsod(x, alpha, beta, log = FALSE)
psod(q, alpha, beta, lower.tail = TRUE, log.p = FALSE)
qsod(p, alpha, beta, lower.tail = TRUE)
rsod(n, alpha, beta)
Arguments
x, q |
vector of quantiles. |
alpha, beta |
are parameters. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Standard Omega distribution with parameters
\alpha and \beta, has density
f\left( x\right) =\alpha \beta x^{\beta -1}\frac{1}{1-x^{2\beta }}
\left( \frac{1+x^{\beta }}{1-x^{\beta }}\right) ^{-\alpha /2},
where
0<x<1,~\alpha ,\beta >0.
Value
dsod gives the density, psod gives the distribution
function, qsod gives the quantile function and rsod generates
random deviates.
References
Birbiçer, İ. ve Genç, A. İ., 2022, On parameter estimation of the standard omega distribution. Journal of Applied Statistics, 1-17.
Examples
library(new.dist)
dsod(0.4, alpha=1, beta=2)
psod(0.4, alpha=1, beta=2)
qsod(.8, alpha=1, beta=2)
rsod(10, alpha=1, beta=2)
Power Muth Distribution
Description
Density, distribution function, quantile function and random generation for
the Power Muth distribution with parameters shape and scale.
Usage
dtpmd(x, beta = 1, alpha, log = FALSE)
ptpmd(q, beta = 1, alpha, lower.tail = TRUE, log.p = FALSE)
qtpmd(p, beta = 1, alpha, lower.tail = TRUE)
rtpmd(n, beta = 1, alpha)
Arguments
x, q |
vector of quantiles. |
beta |
a scale parameter. |
alpha |
a shape parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Power Muth distribution with shape parameter \alpha and
scale parameter \beta has density
f\left( x\right) =\frac{\alpha }{\beta ^\alpha }x^{\alpha -1}
\left( e^{\left(x/\beta \right) ^{\alpha }}-1\right)
\left( e^{\left( x/\beta \right) ^{\alpha }-
\left( e^{\left( x/\beta \right) ^{\alpha }}-1\right) }\right),
where
x>0,~\alpha ,\beta>0.
Value
dtpmd gives the density, ptpmd gives the distribution
function, qtpmd gives the quantile function and rtpmd generates
random deviates.
Note
Hazard function;
h\left( \beta ,\alpha \right) =\frac{\alpha }{\beta ^{\alpha }}
\left(e^{\left( x/\beta \right) ^{\alpha }}-1\right) x^{\alpha -1}
References
Jodra, P., Gomez, H. W., Jimenez-Gamero, M. D., & Alba-Fernandez, M. V. (2017). The power Muth distribution . Mathematical Modelling and Analysis, 22(2), 186-201.
Examples
library(new.dist)
dtpmd(1, beta=2, alpha=3)
ptpmd(1,beta=2,alpha=3)
qtpmd(.5,beta=2,alpha=3)
rtpmd(10,beta=2,alpha=3)
Two-Parameter Rayleigh Distribution
Description
Density, distribution function, quantile function and random generation
for the Two-Parameter Rayleigh distribution with parameters location
and scale.
Usage
dtprd(x, lambda = 1, mu, log = FALSE)
ptprd(q, lambda = 1, mu, lower.tail = TRUE, log.p = FALSE)
qtprd(p, lambda = 1, mu, lower.tail = TRUE)
rtprd(n, lambda = 1, mu)
Arguments
x, q |
vector of quantiles. |
lambda |
a scale parameter. |
mu |
a location parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Two-Parameter Rayleigh distribution with scale parameter
\lambda and location parameter \mu, has density
f\left( x\right) =2\lambda \left( x-\mu \right) e^{-\lambda
\left( x-\mu\right) ^{2}},
where
x>\mu ,~\lambda >0.
Value
dtprd gives the density, ptprd gives the distribution
function, qtprd gives the quantile function and rtprd generates
random deviates.
References
Dey, S., Dey, T. ve Kundu, D., 2014, Two-parameter Rayleigh distribution: different methods of estimation, American Journal of Mathematical and Management Sciences, 33 (1), 55-74.
Examples
library(new.dist)
dtprd(5, lambda=4, mu=4)
ptprd(2,lambda=2,mu=1)
qtprd(.5,lambda=2,mu=1)
rtprd(10,lambda=2,mu=1)
Uniform-Geometric Distribution
Description
Density, distribution function, quantile function and random generation for the Uniform-Geometric distribution.
Usage
dugd(x, theta, log = FALSE)
pugd(q, theta, lower.tail = TRUE, log.p = FALSE)
qugd(p, theta, lower.tail = TRUE)
rugd(n, theta)
Arguments
x, q |
vector of quantiles. |
theta |
a parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Uniform-Geometric distribution with shape parameter \theta, has
density
f\left( x\right) =\theta \left( 1-\theta \right) ^{x-1}LerchPhi
\left[ \left(1-\theta \right) ,1,x\right],
where
LerchPhi\left( z,a,v\right) =\sum_{n=0}^{\infty }\frac{z^{n}}
{\left(v+n\right) ^{a}}
and
x=1,2,...~,~~0<\theta <1.
Value
dugd gives the density, pugd gives the distribution
function, qugd gives the quantile function and rugd generates
random deviates.
References
Akdoğan, Y., Kuş, C., Asgharzadeh, A., Kınacı, İ., & Sharafi, F. (2016). Uniform-geometric distribution. Journal of Statistical Computation and Simulation, 86(9), 1754-1770.
Examples
library(new.dist)
dugd(1, theta=0.5)
pugd(1,theta=.5)
qugd(0.6,theta=.1)
rugd(10,theta=.1)
Unit Inverse Gaussian Distribution
Description
Density, distribution function, quantile function and random generation for
the Unit Inverse Gaussian distribution mean and scale.
Usage
duigd(x, mu, lambda = 1, log = FALSE)
puigd(q, mu, lambda = 1, lower.tail = TRUE, log.p = FALSE)
quigd(p, mu, lambda = 1, lower.tail = TRUE)
ruigd(n, mu, lambda = 1)
Arguments
x, q |
vector of quantiles. |
mu |
a mean parameter. |
lambda |
a scale parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Unit Inverse Gaussian distribution scale
parameter \lambda and mean
parameter \mu, has density
f\left( x\right) =\sqrt{\frac{\lambda }{2\pi }}
\frac{1}{x^{3/2}}e^{-\frac{ \lambda }{2\mu ^{2}x}\left( x-\mu \right) ^{2}},
where
x>0,~\mu ,\lambda >0.
Value
duigd gives the density, puigd gives the distribution
function, quigd gives the quantile function and ruigd generates
random deviates.
References
Ghitany, M., Mazucheli, J., Menezes, A. ve Alqallaf, F., 2019, The unit-inverse Gaussian distribution: A new alternative to two-parameter distributions on the unit interval, Communications in Statistics-Theory and Methods, 48 (14), 3423-3438.
Examples
library(new.dist)
duigd(1, mu=2, lambda=3)
puigd(1,mu=2,lambda=3)
quigd(.1,mu=2,lambda=3)
ruigd(10,mu=2,lambda=3)
Weighted Geometric Distribution
Description
Density, distribution function, quantile function and random generation for the Weighted Geometric distribution.
Usage
dwgd(x, alpha, lambda, log = FALSE)
pwgd(q, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
qwgd(p, alpha, lambda, lower.tail = TRUE)
rwgd(n, alpha, lambda)
Arguments
x, q |
vector of quantiles. |
alpha, lambda |
are parameters. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Weighted Geometric distribution with parameters \alpha and
\lambda, has density
f\left( x\right) =\frac{\left( 1-\alpha \right)
\left( 1-\alpha ^{\lambda+1}\right) }{1-\alpha ^{\lambda }}\alpha ^{x-1}
\left( 1-\alpha ^{\lambda x}\right),
where
x\in \mathbb {N} =1,2,...~,~\lambda >0~and~0<\alpha <1.
Value
dwgd gives the density, pwgd gives the distribution
function, qwgd gives the quantile function and rwgd generates
random deviates.
References
Najarzadegan, H., Alamatsaz, M. H., Kazemi, I. ve Kundu, D., 2020, Weighted bivariate geometric distribution: Simulation and estimation, Communications in Statistics-Simulation and Computation, 49 (9), 2419-2443.
Examples
library(new.dist)
dwgd(1,alpha=.2,lambda=3)
pwgd(1,alpha=.2,lambda=3)
qwgd(.98,alpha=.2,lambda=3)
rwgd(10,alpha=.2,lambda=3)