
Package ‘npcp’
October 18, 2024

Type Package

Title Some Nonparametric CUSUM Tests for Change-Point Detection in
Possibly Multivariate Observations

Version 0.2-6

Date 2024-10-18

Maintainer Ivan Kojadinovic <ivan.kojadinovic@univ-pau.fr>

Depends R (>= 3.5.0)

Imports stats, sandwich

Suggests copula

Description Provides nonparametric CUSUM tests for detecting changes
in possibly serially dependent univariate or low-dimensional
multivariate observations. Retrospective tests sensitive to changes
in the expectation, the variance, the covariance, the
autocovariance, the distribution function, Spearman's rho, Kendall's
tau, Gini's mean difference, and the copula are provided, as well as
a test for detecting changes in the distribution of independent
block maxima (with environmental studies in mind). The package also
contains a test sensitive to changes in the autocopula and a
combined test of stationarity sensitive to changes in the
distribution function and the autocopula. The latest additions are
an open-end sequential test based on the retrospective CUSUM
statistic that can be used for monitoring changes in the mean of
possibly serially dependent univariate observations, as well as
closed-end and open-end sequential tests based on empirical
distribution functions that can be used for monitoring changes in
the contemporary distribution of possibly serially dependent
univariate or low-dimensional multivariate observations.

License GPL (>= 3) | file LICENCE

LazyLoad yes

Encoding UTF-8

NeedsCompilation yes

Author Ivan Kojadinovic [aut, cre] (<https://orcid.org/0000-0002-2903-1543>),
Alex Verhoijsen [ctb] (<https://orcid.org/0000-0003-0649-2280>)

1

https://orcid.org/0000-0002-2903-1543
https://orcid.org/0000-0003-0649-2280

2 bOptEmpProc

Repository CRAN

Date/Publication 2024-10-18 08:00:02 UTC

Contents
bOptEmpProc . 2
cpAutocop . 4
cpBlockMax . 6
cpCopula . 8
cpDist . 10
cpRho . 13
cpU . 15
quantiles . 18
selectPoints . 19
seqClosedEndCpDist . 20
seqOpenEndCpDist . 24
seqOpenEndCpMean . 27
stDistAutocop . 30

Index 33

bOptEmpProc Bandwidth Parameter Estimation

Description

In the context of the standard CUSUM test based on the sample mean or in a particular empiri-
cal process setting, the following functions estimate the bandwidth parameter controlling the se-
rial dependence when generating dependent multiplier sequences using the ’moving average ap-
proach’; see Section 5 of the third reference. The function function bOpt() is called in the func-
tions cpMean(), cpVar(), cpGini(), cpAutocov(), cpCov(), cpTau() and detOpenEndCpMean()
when b is set to NULL. The function function bOptEmpProc() is called in the functions cpDist(),
cpCopula(), cpAutocop(), stDistAutocop() and simClosedEndCpDist() when b is set to NULL.

Usage

bOpt(influ, weights = c("parzen", "bartlett"))

bOptEmpProc(x, m=5, weights = c("parzen", "bartlett"),
L.method=c("max","median","mean","min"))

Arguments

influ a numeric containing the relevant influence coefficients, which, in the case of
the standard CUSUM test based on the sample mean, are simply the available
observations; see also the last reference.

x a data matrix whose rows are continuous observations.

bOptEmpProc 3

weights a string specifying the kernel for creating the weights used in the generation
of dependent multiplier sequences within the ’moving average approach’; see
Section 5 of the third reference.

m a strictly positive integer specifying the number of points of the uniform grid
on (0, 1)d (where d is ncol(x)) involved in the estimation of the bandwidth
parameter; see Section 5 of the third reference. The number of points of the grid
is given by m^ncol(x) so that m needs to be decreased as d increases.

L.method a string specifying how the parameter L involved in the estimation of the band-
width parameter is computed; see Section 5 of the third reference.

Details

The implemented approach results from an adaptation of the procedure described in the first two
references (see also the references therein). The use of theses functions in a context different from
that considered in the third or fourth reference may not be meaningful.

Acknowledgment: Part of the code of the function results from an adaptation of R code of C.
Parmeter and J. Racine, itself an adaptation of Matlab code by A. Patton.

Value

A strictly positive integer.

References

D.N. Politis and H. White (2004), Automatic block-length selection for the dependent bootstrap,
Econometric Reviews 23(1), pages 53-70.

D.N. Politis, H. White and A.J. Patton (2004), Correction: Automatic block-length selection for the
dependent bootstrap, Econometric Reviews 28(4), pages 372-375.

A. Bücher and I. Kojadinovic (2016), A dependent multiplier bootstrap for the sequential empirical
copula process under strong mixing, Bernoulli 22:2, pages 927-968, https://arxiv.org/abs/
1306.3930.

A. Bücher and I. Kojadinovic (2016), Dependent multiplier bootstraps for non-degenerate U-statistics
under mixing conditions with applications, Journal of Statistical Planning and Inference 170 pages
83-105, https://arxiv.org/abs/1412.5875.

See Also

cpDist(), cpCopula(), cpAutocop(), stDistAutocop(), cpMean(), cpVar(), cpGini(), cpAutocov(),
cpCov(), cpTau(), seqOpenEndCpMean and seqClosedEndCpDist.

https://arxiv.org/abs/1306.3930
https://arxiv.org/abs/1306.3930
https://arxiv.org/abs/1412.5875

4 cpAutocop

cpAutocop Test for Change-Point Detection in Univariate Observations Sensitive
to Changes in the Autocopula

Description

Nonparametric test for change-point detection particularly sensitive to changes in the autocopula
of univariate continuous observations. Approximate p-values for the test statistic are obtained by
means of a multiplier approach. Details can be found in the first reference.

Usage

cpAutocop(x, lag = 1, b = NULL, bivariate = FALSE,
weights = c("parzen", "bartlett"), m = 5,
N = 1000, init.seq = NULL, include.replicates = FALSE)

Arguments

x a one-column matrix containing continuous observations.

lag an integer specifying at which lag to consider the autocopula; the autocopula is
a (lag+1)-dimensional copula.

b strictly positive integer specifying the value of the bandwidth parameter deter-
mining the serial dependence when generating dependent multiplier sequences
using the ’moving average approach’; see Section 5 of the second reference. If
set to NULL, b will be estimated using the function bOptEmpProc(); see the first
reference.

bivariate a logical specifying whether the test should focus only on the bivariate mar-
gin of the (lag+1)-dimensional autocopula obtained from the first and the last
dimension.

weights a string specifying the kernel for creating the weights used in the generation
of dependent multiplier sequences within the ’moving average approach’; see
Section 5 of the second reference.

m a strictly positive integer specifying the number of points of the uniform grid on
(0, 1) involved in the estimation of the bandwidth parameter; see Section 5 of
the second reference.

N number of multiplier replications.

init.seq a sequence of independent standard normal variates of length N * (nrow(x) -
lag + 2 * (b - 1)) used to generate dependent multiplier sequences.

include.replicates

a logical specifying whether the object of class htest returned by the function
(see below) will include the multiplier replicates.

cpAutocop 5

Details

The approximate p-value is computed as

(0.5 +

N∑
i=1

1{Si≥S})/(N + 1),

where S and Si denote the test statistic and a multiplier replication, respectively. This ensures that
the approximate p-value is a number strictly between 0 and 1, which is sometimes necessary for
further treatments.

Value

An object of class htest which is a list, some of the components of which are

statistic value of the test statistic.

p.value corresponding approximate p-value.

cvm the values of the length(x)-lag-1 intermediate Cramér-von Mises change-
point statistics; the test statistic is defined as the maximum of those.

b the value of parameter b.

Note

This is a tests for a continuous univariate time series.

References

A. Bücher, J.-D. Fermanian and I. Kojadinovic (2019), Combining cumulative sum change-point
detection tests for assessing the stationarity of univariate time series, Journal of Time Series Analysis
40, pages 124-150, https://arxiv.org/abs/1709.02673.

A. Bücher and I. Kojadinovic (2016), A dependent multiplier bootstrap for the sequential empirical
copula process under strong mixing, Bernoulli 22:2, pages 927-968, https://arxiv.org/abs/
1306.3930.

See Also

cpAutocov() for a related test based on the autocovariance.

Examples

AR1 example
n <- 200
k <- n/2 ## the true change-point
x <- matrix(c(arima.sim(list(ar = -0.5), n = k),

arima.sim(list(ar = 0.5), n = n - k)))
cp <- cpAutocop(x)
cp
Estimated change-point
which(cp$cvm == max(cp$cvm))

https://arxiv.org/abs/1709.02673
https://arxiv.org/abs/1306.3930
https://arxiv.org/abs/1306.3930

6 cpBlockMax

AR2 example
n <- 200
k <- n/2 ## the true change-point
x <- matrix(c(arima.sim(list(ar = c(0,-0.5)), n = k),

arima.sim(list(ar = c(0,0.5)), n = n - k)))
cpAutocop(x)
cpAutocop(x, lag = 2)
cpAutocop(x, lag = 2, bivariate = TRUE)

cpBlockMax Nonparametric Tests for Change-Point Detection in the Distribution
of Independent Block Maxima

Description

Nonparametric tests for change-point detection in the distribution of independent block maxima
based either on the probability weighted moment method (see the second reference) or on the gen-
eralized probability weighted moment method (see the first reference) for estimating the parameters
of the generalized extreme value (GEV) distribution. It is assumed that the block maxima are in-
dependent and that their unknown distribution functions (d.f.s) are continuous, but not necessarily
that they are GEV distributed. Three statistics are computed. Under the assumption that the block
maxima are GEV distributed, these are statistics particularly sensitive to changes in the location,
scale and shape parameters of the GEV. Details can be found in third reference.

Usage

cpBlockMax(x, method = c("pwm", "gpwm"), r = 10)

Arguments

x a numeric vector representing independent block maxima whose unknown d.f.s
are assumed continuous.

method a string specifying how statistics will be defined; can be either "pwm" (the proba-
bility weighted moment method) or "gpwm" (the generalized probability weighted
moment method). The method "pwm" is suggested for climate block maxima
that are typically not too heavy tailed, more precisely, whose distributions are in
the maximum domains of attraction of GEV distributions with shape parameters
smaller than a half. The method "gpwm" should be preferred otherwise.

r strictly positive integer specifying the set of breakpoints that will be tested; more
precisely, starting from the initial sample of block maxima, the tests compare
subsamples formed by the k first maxima and n-k last maxima for k in the set
{r,...,n-r}, where n is the sample size.

Details

Approximate p-values are computed from the estimated asymptotic null distributions, which involve
the Kolmogorov distribution. The latter is dealt with reusing code from the ks.test() function;
credit to RCore.

cpBlockMax 7

Value

An object of class htest which is a list, some of the components of which are

statistic value of the three test statistics.

pvalues corresponding approximate p-values.

stats.loc the values of the n - (2 * r - 1) intermediate change-point statistics sensitive to
changes in the location; the first test statistic is defined as the maximum of those.

stats.scale the values of the n - (2 * r - 1) intermediate change-point statistics sensitive to
changes in the scale; the second test statistic is defined as the maximum of those.

stats.shape the values of the n - (2 * r - 1) intermediate change-point statistics sensitive to
changes in the shape; the third test statistic is defined as the maximum of those.

Note

The tests were derived under the assumption of block maxima with continuous d.f., which implies
that ties occur with probability zero. A way to deal with ties based on randomization is proposed in
the third reference.

References

J. Diebolt, A. Guillou, P. Naveau and P. Ribereau (2008), Improving probability-weighted moment
methods for the generalized extreme-value distribution, REVSTAT 6, pages 33-50.

J.R.M. Hosking, J.R. Wallis and E.F. Wood (1985), Estimation of the generalized extreme-value
distribution by the method of probability-weighted moments, Technometrics 27, pages 251-261.

I. Kojadinovic and P. Naveau (2017), Nonparametric tests for change-point detection in the distri-
bution of block maxima based on probability weighted moments, Extremes 20:2, pages 417-450,
https://arxiv.org/abs/1507.06121.

See Also

cpDist() for a related test based on the empirical d.f.

Examples

Not run:
require(evd)
n <- 100
k <- 50 ## the true change-point

Change in the shape parameter of a GEV
x <- rgev(k,loc=0,scale=1,shape=-0.8)
y <- rgev(k,loc=0,scale=1,shape=0.4)
cp <- cpBlockMax(c(x,y))
cp
Estimated change-point
which(cp$stats.shape == max(cp$stats.shape))

Change in the scale parameter of a GEV

https://arxiv.org/abs/1507.06121

8 cpCopula

x <- rgev(k,loc=0,scale=0.5,shape=0)
y <- rgev(k,loc=0,scale=1,shape=0)
cp <- cpBlockMax(c(x,y))
cp
Estimated change-point
which(cp$stats.scale == max(cp$stats.scale))

Change in the location parameter of a GEV
x <- rgev(k,loc=0,scale=1,shape=0)
y <- rgev(k,loc=0.5,scale=1,shape=0)
cp <- cpBlockMax(c(x,y))
cp
Estimated change-point
which(cp$stats.loc == max(cp$stats.loc))
End(Not run)

cpCopula Test for Change-Point Detection in Multivariate Observations Sensi-
tive to Changes in the Copula

Description

Nonparametric test for change-point detection particularly sensitive to changes in the copula of
multivariate continuous observations. The observations can be serially independent or dependent
(strongly mixing). Approximate p-values for the test statistic are obtained by means of a multiplier
approach. Details can be found in the first reference.

Usage

cpCopula(x, method = c("seq", "nonseq"), b = NULL,
weights = c("parzen", "bartlett"), m = 5,
L.method=c("max","median","mean","min"),
N = 1000, init.seq = NULL, include.replicates = FALSE)

Arguments

x a data matrix whose rows are multivariate continuous observations.
method a string specifying the simulation method for generating multiplier replicates of

the test statistic; can be either "seq" (the ’check’ approach in the first reference)
or "nonseq" (the ’hat’ approach in the first reference). The ’check’ approach
appears to lead to better behaved tests in the case of samples of moderate size.
The ’hat’ approach is substantially faster.

b strictly positive integer specifying the value of the bandwidth parameter deter-
mining the serial dependence when generating dependent multiplier sequences
using the ’moving average approach’; see Section 5 of the second reference.
The value 1 will create i.i.d. multiplier sequences suitable for serially indepen-
dent observations. If set to NULL, b will be estimated from x using the function
bOptEmpProc(); see the procedure described in Section 5 of the second refer-
ence.

cpCopula 9

weights a string specifying the kernel for creating the weights used in the generation
of dependent multiplier sequences within the ’moving average approach’; see
Section 5 of the second reference.

m a strictly positive integer specifying the number of points of the uniform grid
on (0, 1)d (where d is ncol(x)) involved in the estimation of the bandwidth
parameter; see Section 5 of the third reference. The number of points of the grid
is given by m^ncol(x) so that m needs to be decreased as d increases.

L.method a string specifying how the parameter L involved in the estimation of the band-
width parameter is computed; see Section 5 of the second reference.

N number of multiplier replications.
init.seq a sequence of independent standard normal variates of length N * (nrow(x) + 2

* (b - 1)) used to generate dependent multiplier sequences.
include.replicates

a logical specifying whether the object of class htest returned by the function
(see below) will include the multiplier replicates.

Details

The approximate p-value is computed as

(0.5 +

N∑
i=1

1{Si≥S})/(N + 1),

where S and Si denote the test statistic and a multiplier replication, respectively. This ensures that
the approximate p-value is a number strictly between 0 and 1, which is sometimes necessary for
further treatments.

Value

An object of class htest which is a list, some of the components of which are

statistic value of the test statistic.
p.value corresponding approximate p-value.
cvm the values of the nrow(x)-1 intermediate Cramér-von Mises change-point statis-

tics; the test statistic is defined as the maximum of those.
b the value of parameter b.

Note

These tests were derived under the assumption of continuous margins.

References

A. Bücher, I. Kojadinovic, T. Rohmer and J. Segers (2014), Detecting changes in cross-sectional de-
pendence in multivariate time series, Journal of Multivariate Analysis 132, pages 111-128, https:
//arxiv.org/abs/1206.2557.

A. Bücher and I. Kojadinovic (2016), A dependent multiplier bootstrap for the sequential empirical
copula process under strong mixing, Bernoulli 22:2, pages 927-968, https://arxiv.org/abs/
1306.3930.

https://arxiv.org/abs/1206.2557
https://arxiv.org/abs/1206.2557
https://arxiv.org/abs/1306.3930
https://arxiv.org/abs/1306.3930

10 cpDist

See Also

cpRho() for a related test based on Spearman’s rho, cpTau() for a related test based on Kendall’s
tau, cpDist() for a related test based on the multivariate empirical d.f., bOptEmpProc() for the
function used to estimate b from x if b = NULL.

Examples

Not run:
require(copula)
n <- 100
k <- 50 ## the true change-point
u <- rCopula(k, gumbelCopula(1.5))
v <- rCopula(n - k, gumbelCopula(3))
x <- rbind(u,v)
cp <- cpCopula(x, b = 1)
cp
Estimated change-point
which(cp$cvm == max(cp$cvm))
End(Not run)

cpDist Test for Change-Point Detection in Possibly Multivariate Observations
Sensitive to Changes in the Distribution Function

Description

Nonparametric test for change-point detection based on the (multivariate) empirical distribution
function. The observations can be continuous univariate or multivariate, and serially independent
or dependent (strongly mixing). Approximate p-values for the test statistics are obtained by means
of a multiplier approach. The first reference treats the serially independent case while details about
the serially dependent case can be found in second and third references.

Usage

cpDist(x, statistic = c("cvmmax", "cvmmean", "ksmax", "ksmean"),
method = c("nonseq", "seq"), b = NULL, gamma = 0,
delta = 1e-4, weights = c("parzen", "bartlett"),
m = 5, L.method=c("max","median","mean","min"),
N = 1000, init.seq = NULL, include.replicates = FALSE)

Arguments

x a data matrix whose rows are continuous observations.
statistic a string specifying the statistic whose value and p-value will be displayed; can

be either "cvmmax" or "cvmmean" (the maximum or average of the nrow(x)-1
intermediate Cramér-von Mises statistics), or "ksmax" or "ksmean" (the max-
imum or average of the nrow(x)-1 intermediate Kolmogorov-Smirnov statis-
tics); see Section 3 in the first reference. The four statistics and the correspond-
ing p-values are computed at each execution.

cpDist 11

method a string specifying the simulation method for generating multiplier replicates of
the test statistic; can be either "nonseq" (the ’check’ approach in the first refer-
ence) or "seq" (the ’hat’ approach in the first reference). The ’check’ approach
appears to lead to better behaved tests and is recommended.

b strictly positive integer specifying the value of the bandwidth parameter deter-
mining the serial dependence when generating dependent multiplier sequences
using the ’moving average approach’; see Section 5 of the second reference.
The value 1 will create i.i.d. multiplier sequences suitable for serially indepen-
dent observations. If set to NULL, b will be estimated from x using the function
bOptEmpProc(); see the procedure described in Section 5 of the second refer-
ence.

gamma parameter between 0 and 0.5 appearing in the definition of the weight function
used in the detector function.

delta parameter between 0 and 1 appearing in the definition of the weight function
used in the detector function.

weights a string specifying the kernel for creating the weights used in the generation
of dependent multiplier sequences within the ’moving average approach’; see
Section 5 of the second reference.

m a strictly positive integer specifying the number of points of the uniform grid
on (0, 1)d (where d is ncol(x)) involved in the estimation of the bandwidth
parameter; see Section 5 of the third reference. The number of points of the grid
is given by m^ncol(x) so that m needs to be decreased as d increases.

L.method a string specifying how the parameter L involved in the estimation of the band-
width parameter is computed; see Section 5 of the second reference.

N number of multiplier replications.

init.seq a sequence of independent standard normal variates of length N * (nrow(x) + 2
* (b - 1)) used to generate dependent multiplier sequences.

include.replicates

a logical specifying whether the object of class htest returned by the function
(see below) will include the multiplier replicates.

Details

The approximate p-value is computed as

(0.5 +

N∑
i=1

1{Si≥S})/(N + 1),

where S and Si denote the test statistic and a multiplier replication, respectively. This ensures that
the approximate p-value is a number strictly between 0 and 1, which is sometimes necessary for
further treatments.

Value

An object of class htest which is a list, some of the components of which are

statistic value of the test statistic.

12 cpDist

p.value corresponding approximate p-value.

cvm the values of the nrow(x)-1 intermediate Cramér-von Mises change-point statis-
tics.

ks the values of the nrow(x)-1 intermediate Kolmogorov-Smirnov change-point
statistics.

all.statistics the values of all four test statistics.

all.p.values the corresponding p-values.

b the value of parameter b.

Note

Note that when the observations are continuous univariate and serially independent, independent
realizations of the tests statistics under the null hypothesis of no change in the distribution can be
obtained by simulation; see Section 4 in the first reference.

References

M. Holmes, I. Kojadinovic and J-F. Quessy (2013), Nonparametric tests for change-point detection
à la Gombay and Horváth, Journal of Multivariate Analysis 115, pages 16-32.

A. Bücher and I. Kojadinovic (2016), A dependent multiplier bootstrap for the sequential empirical
copula process under strong mixing, Bernoulli 22:2, pages 927-968, https://arxiv.org/abs/
1306.3930.

A. Bücher, J.-D. Fermanian and I. Kojadinovic (2019), Combining cumulative sum change-point
detection tests for assessing the stationarity of univariate time series, Journal of Time Series Analysis
40, pages 124-150, https://arxiv.org/abs/1709.02673.

See Also

cpCopula() for a related test based on the empirical copula, cpRho() for a related test based on
Spearman’s rho, cpTau() for a related test based on Kendall’s tau, bOptEmpProc() for the function
used to estimate b from x if b = NULL, seqClosedEndCpDist for the corresponding sequential test.

Examples

A univariate example
n <- 100
k <- 50 ## the true change-point
y <- rnorm(k)
z <- rexp(n-k)
x <- matrix(c(y,z))
cp <- cpDist(x, b = 1)
cp

All statistics
cp$all.statistics
Corresponding p.values
cp$all.p.values

https://arxiv.org/abs/1306.3930
https://arxiv.org/abs/1306.3930
https://arxiv.org/abs/1709.02673

cpRho 13

Estimated change-point
which(cp$cvm == max(cp$cvm))
which(cp$ks == max(cp$ks))

A very artificial trivariate example
with a break in the first margin
n <- 100
k <- 50 ## the true change-point
y <- rnorm(k)
z <- rnorm(n-k, mean = 2)
x <- cbind(c(y,z),matrix(rnorm(2*n), n, 2))
cp <- cpDist(x, b = 1)
cp

All statistics
cp$all.statistics
Corresponding p.values
cp$all.p.values

Estimated change-point
which(cp$cvm == max(cp$cvm))
which(cp$ks == max(cp$ks))

cpRho Test for Change-Point Detection Based on Spearman’s Rho

Description

Nonparametric test for change-point detection particularly sensitive to changes in Spearman’s rho
in multivariate time series. The observations can be serially independent or dependent (strongly
mixing). Approximate p-values for the test statistic are obtained by means of a multiplier approach
or by estimating the asymptotic null distribution. Details can be found in first reference.

Usage

cpRho(x, method = c("mult", "asym.var"),
statistic = c("pairwise", "global"),
b = NULL, weights = c("parzen", "bartlett"),
N = 1000, init.seq = NULL, include.replicates = FALSE)

Arguments

x a data matrix whose rows are multivariate continuous observations.

method a string specifying the method for computing the approximate p-value for the
test statistic; can be either "mult" (the multiplier approach ’tilde’ in the first ref-
erence) or "asym.var" (the approach based on the estimation of the asymptotic
null distribution of the test statistic described in the first reference). The ’mult’
approach appears to lead to better behaved tests.

14 cpRho

statistic a string specifying the test statistic; can be either "pairwise" (the statistic Sn,3

in the first reference) or "global" (the statistic Sn,1 in the first reference).

b strictly positive integer specifying the value of the bandwidth parameter deter-
mining the serial dependence when generating dependent multiplier sequences
using the ’moving average approach’; see Section 5 of the second reference.
The value 1 will create i.i.d. multiplier sequences suitable for serially indepen-
dent observations. If set to NULL, b will be estimated from x using the procedure
described in the first reference.

weights a string specifying the kernel for creating the weights used in the generation
of dependent multiplier sequences within the ’moving average approach’; see
Section 5 of the second reference.

N number of multiplier replications.

init.seq a sequence of independent standard normal variates of length N * (nrow(x) + 2
* (b - 1)) used to generate dependent multiplier sequences.

include.replicates

a logical specifying whether the object of class htest returned by the function
(see below) will include the multiplier replicates, if generated.

Details

When method == "mult", the approximate p-value is computed as

(0.5 +

N∑
i=1

1{Si≥S})/(N + 1),

where S and Si denote the test statistic and a multiplier replication, respectively. This ensures that
the approximate p-value is a number strictly between 0 and 1, which is sometimes necessary for
further treatments.

When method == "asym.var", the approximate p-value is computed from the estimated asymptotic
null distribution, which involves the Kolmogorov distribution. The latter is dealt with reusing code
from the ks.test() function; credit to RCore.

Value

An object of class htest which is a list, some of the components of which are

statistic value of the test statistic.

p.value corresponding approximate p-value.

rho the values of the nrow(x)-1 intermediate change-point statistics; the test statis-
tic is defined as the maximum of those.

b the value of parameter b.

Note

These tests were derived under the assumption of continuous margins.

cpU 15

References

I. Kojadinovic, J-F. Quessy and T. Rohmer (2016), Testing the constancy of Spearman’s rho in
multivariate time series, Annals of the Institute of Statistical Mathematics 68:5, pages 929-954,
https://arxiv.org/abs/1407.1624.

A. Bücher and I. Kojadinovic (2016), A dependent multiplier bootstrap for the sequential empirical
copula process under strong mixing, Bernoulli 22:2, pages 927-968, https://arxiv.org/abs/
1306.3930.

See Also

cpTau() for a related test based on Kendall’s tau, cpDist() for a related test based on the multi-
variate empirical d.f., cpCopula() for a related test based on the empirical copula.

Examples

Not run:
require(copula)
n <- 100
k <- 50 ## the true change-point
u <- rCopula(k,gumbelCopula(1.5))
v <- rCopula(n-k,gumbelCopula(3))
x <- rbind(u,v)
cp <- cpRho(x, b = 1)
cp
Estimated change-point
which(cp$rho == max(cp$rho))
End(Not run)

cpU Some CUSUM Tests for Change-Point Detection Based on U-statistics

Description

Nonparametric CUSUM tests for change-point detection particularly sensitive to changes in certain
quantities that can be estimated using one-sample U-statistics of order one or two. So far, the
quantities under consideration are the expectation (thus corresponding to the standard CUSUM test
based on the sample mean), the variance, Gini’s mean difference, the autocovariance at a specified
lag, the covariance for bivariate data and Kendall’s tau for multivariate data. The observations can
be serially independent or dependent (strongly mixing). Approximate p-values for the test statistic
are obtained by means of a multiplier approach or by estimating the asymptotic null distribution.
Details can be found in the first reference.

Usage

cpMean(x, method = c("nonseq", "seq", "asym.var"),
b = NULL, weights = c("parzen", "bartlett"),
N = 1000, init.seq = NULL, include.replicates = FALSE)

https://arxiv.org/abs/1407.1624
https://arxiv.org/abs/1306.3930
https://arxiv.org/abs/1306.3930

16 cpU

cpVar(x, method = c("nonseq", "seq", "asym.var"),
b = NULL, weights = c("parzen", "bartlett"),
N = 1000, init.seq = NULL, include.replicates = FALSE)

cpGini(x, method = c("nonseq", "seq", "asym.var"),
b = NULL, weights = c("parzen", "bartlett"),
N = 1000, init.seq = NULL, include.replicates = FALSE)

cpAutocov(x, lag = 1, method = c("nonseq", "seq", "asym.var"),
b = NULL, weights = c("parzen", "bartlett"),
N = 1000, init.seq = NULL, include.replicates = FALSE)

cpCov(x, method = c("nonseq", "seq", "asym.var"),
b = NULL, weights = c("parzen", "bartlett"),
N = 1000, init.seq = NULL, include.replicates = FALSE)

cpTau(x, method = c("seq", "nonseq", "asym.var"),
b = NULL, weights = c("parzen", "bartlett"),
N = 1000, init.seq = NULL, include.replicates = FALSE)

Arguments

x a numeric vector or a data matrix containing continuous observations.
lag an integer specifying at which lag to consider the autocovariance.
method a string specifying the method for computing the approximate p-value for the

test statistic; can be either "seq" (the ’check’ approach in the first reference),
"nonseq" (the ’hat’ approach in the first reference), or "asym.var" (the ap-
proach based on the estimation of the asymptotic null distribution of the test
statistic described in the first reference). The ’seq’ approach appears overall to
lead to better behaved tests for cpTau(). More experiments are necessary for
the other functions.

b strictly positive integer specifying the value of the bandwidth parameter deter-
mining the serial dependence when generating dependent multiplier sequences
using the ’moving average approach’; see Section 5 of the second reference.
The value 1 will create i.i.d. multiplier sequences suitable for serially indepen-
dent observations. If set to NULL, b will be estimated from x using the procedure
described in the first reference.

weights a string specifying the kernel for creating the weights used in the generation
of dependent multiplier sequences within the ’moving average approach’; see
Section 5 of the second reference.

N number of multiplier replications.
init.seq a sequence of independent standard normal variates of length N * (nrow(x) + 2

* (b - 1)) used to generate dependent multiplier sequences.
include.replicates

a logical specifying whether the object of class htest returned by the function
(see below) will include the multiplier replicates, if generated.

cpU 17

Details

When method is either "seq" or "nonseq", the approximate p-value is computed as

(0.5 +

N∑
i=1

1{Si≥S})/(N + 1),

where S and Si denote the test statistic and a multiplier replication, respectively. This ensures that
the approximate p-value is a number strictly between 0 and 1, which is sometimes necessary for
further treatments.

When method = "asym.var", the approximate p-value is computed from the estimated asymptotic
null distribution, which involves the Kolmogorov distribution. The latter is dealt with reusing code
from the ks.test() function; credit to RCore.

Value

An object of class htest which is a list, some of the components of which are

statistic value of the test statistic.

p.value corresponding approximate p-value.

u the values of the nrow(x)-3 intermediate change-point statistics; the test statis-
tic is defined as the maximum of those.

b the value of parameter b.

References

A. Bücher and I. Kojadinovic (2016), Dependent multiplier bootstraps for non-degenerate U-statistics
under mixing conditions with applications, Journal of Statistical Planning and Inference 170, pages
83-105, https://arxiv.org/abs/1412.5875.

A. Bücher and I. Kojadinovic (2016), A dependent multiplier bootstrap for the sequential empirical
copula process under strong mixing, Bernoulli 22:2, pages 927-968, https://arxiv.org/abs/
1306.3930.

See Also

cpDist() for a related test based on the multivariate empirical d.f., cpCopula() for a related test
based on the empirical copula, cpAutocop() for a related test based on the empirical autocopula,
cpRho() for a related test based on Spearman’s rho, bOpt() for the function used to estimate b
from x if b = NULL and seqOpenEndCpMean for related sequential tests that can be used for online
monitoring.

Examples

The standard CUSUM test based on the sample mean
cp <- cpMean(c(rnorm(50), rnorm(50, mean=1)), b=1)
cp
Estimated change-point
which(cp$statistics == cp$statistic)

https://arxiv.org/abs/1412.5875
https://arxiv.org/abs/1306.3930
https://arxiv.org/abs/1306.3930

18 quantiles

Testing for changes in the autocovariance
n <- 200
k <- n/2 ## the true change-point
x <- c(arima.sim(list(ar = -0.5), n = k),

arima.sim(list(ar = 0.5), n = n - k))
cp <- cpAutocov(x)
cp
Estimated change-point
which(cp$u == cp$statistic)
Another example
x <- c(arima.sim(list(ar = c(0,-0.5)), n = k),

arima.sim(list(ar = c(0,0.5)), n = n - k))
cpAutocov(x)
cp <- cpAutocov(x, lag = 2)
cp
Estimated change-point
which(cp$u == cp$statistic)

Not run:
Testing for changes in Kendall's tau
require(copula)
n <- 100
k <- 50 ## the true change-point
u <- rCopula(k,gumbelCopula(1.5))
v <- rCopula(n-k,gumbelCopula(3))
x <- rbind(u,v)
cp <- cpTau(x)
cp
Estimated change-point
which(cp$u == cp$statistic)

Testing for changes in the covariance
cp <- cpCov(x)
cp
Estimated change-point
which(cp$u == cp$statistic)
End(Not run)

quantiles Estimated Quantiles for the Open-end Nonparametric Sequential
Change-Point Detection Tests

Description

Estimated quantiles for the open-end nonparametric sequential change-point detection tests de-
scribed in seqOpenEndCpMean and seqOpenEndCpDist. More details can be found in the references
below.

Usage

data("quantiles")

selectPoints 19

Format

list of 6 elements. The first 5 are arrays containing the estimated 90%, 95% and 99% quantiles
necessary for carrying out the sequential tests described in seqOpenEndCpMean. The last element is
a list containing the estimated 90%, 95% and 99% quantiles as well as other estimated parameters
necessary for carrying out the sequential test described in seqOpenEndCpDist.

References

J. Gösmann, T. Kley and H. Dette (2021), A new approach for open-end sequential change point
monitoring, Journal of Time Series Analysis 42:1, pages 63-84, https://arxiv.org/abs/1906.
03225.

M. Holmes and I. Kojadinovic (2021), Open-end nonparametric sequential change-point detection
based on the retrospective CUSUM statistic, Electronic Journal of Statistics 15:1, pages 2288-2335,
doi:10.1214/21EJS1840.

L. Horváth, M. Hušková, P. Kokoszka and J. Steinebach (2004). Monitoring changes in linear
models. Journal of Statistical Planning and Inference 126, pages 225-251.

M. Holmes, I. Kojadinovic and A. Verhoijsen (2022), Multi-purpose open-end monitoring proce-
dures for multivariate observations based on the empirical distribution function, 45 pages, https:
//arxiv.org/abs/2201.10311.

Examples

data("quantiles")
str(quantiles)

selectPoints A point selection procedure for multivariate data

Description

Returns a matrix of ‘representative’ points.

Usage

selectPoints(x, r, kappa = 1.5, plot = FALSE)

Arguments

x a numeric matrix with d columns whose rows represent multivariate observa-
tions.

r integer specifying the size of an initial uniformly-spaced grid ‘on the probability
scale’; an upper bound for the number of selected points is r^d.

kappa numeric constant required to be strictly greater than one involved in the point
selection procedure.

plot logical used only if d = 2 specifying whether a plot should be produced.

https://arxiv.org/abs/1906.03225
https://arxiv.org/abs/1906.03225
https://doi.org/10.1214/21-EJS1840
https://arxiv.org/abs/2201.10311
https://arxiv.org/abs/2201.10311

20 seqClosedEndCpDist

Details

The selection procedure is described in detail in Section 3.2 of the reference below. Set plot =
TRUE for visual feedback and information on the minimum number of ‘surrounding’ observations
required for a grid point to be selected. The initial grid ‘on the probability scale’ is in blue, while
the points selected by the procedure are in red.

Value

a matrix with d columns whose rows are the selected points.

References

M. Holmes, I. Kojadinovic, and A. Verhoijsen, Multi-purpose open-end monitoring procedures for
multivariate observations based on the empirical distribution function, 45 pages, https://arxiv.
org/abs/2201.10311.

See Also

selectPoints() is used in detOpenEndCpDist().

Examples

Generate data
set.seed(123)
x1 <- rnorm(1000, 0, 1)
x2 <- rnorm(1000, 0.7 * x1, sqrt((1 - 0.7^2)))
x <- cbind(x1, x2)

Point selection
selectPoints(x, r = 3, kappa = 1.5, plot = TRUE)
selectPoints(x, r = 3, kappa = 4, plot = TRUE)

selectPoints(x, r = 5, kappa = 1.5, plot = TRUE)
selectPoints(x, r = 5, kappa = 4, plot = TRUE)

seqClosedEndCpDist Closed-end Sequential Test for Change-Point Detection in Possibly
Multivariate Time Series Sensitive to Changes in the Contemporary
Distribution Function

Description

Closed-end nonparametric sequential test for change-point detection based on the (multivariate)
empirical distribution function. The observations can be continuous univariate or multivariate, and
serially independent or dependent (strongly mixing). To carry out the test, four steps are required.
The first step consists of simulating under the null many trajectories of the detector function. The
second step consists of estimating a piecewise constant threshold function from these trajectories.
The third step consists of computing the detector function from the data to be monitored. The fourth

https://arxiv.org/abs/2201.10311
https://arxiv.org/abs/2201.10311

seqClosedEndCpDist 21

and last step consists of comparing the detector function with the estimated threshold function.
Each of these steps corresponds to one of the functions in the usage section below. The current
implementation is preliminary and not optimized for real-time monitoring (but could still be used
for that). If the observations to be monitored are univariate and can be assumed serially independent,
the simulation of the trajectories of the detector functions can be carried out using Monte Carlo
simulation. In all other cases, the test relies on a dependent multiplier bootstrap. Details can be
found in the second reference.

Usage

simClosedEndCpDist(x.learn = NULL, m = NULL, n, gamma = 0.25, delta = 1e-4,
B = 1000, method = c("sim", "mult"), b = NULL,
weights = c("parzen", "bartlett"), g = 5,
L.method = c("max","median","mean","min"))

threshClosedEndCpDist(sims, p = 1, alpha = 0.05, type = 7)

detClosedEndCpDist(x.learn, x, gamma = 0.25, delta = 1e-4)

monClosedEndCpDist(det, thresh, statistic = c("mac", "mmc", "mmk", "mk", "mc"),
plot = TRUE)

Arguments

x.learn a data matrix whose rows are continuous observations, representing the learning
sample.

m a strictly positive integer specifying the size of the learning sample if x.learn is
not specified; the latter implies that the observations are univariate and assumed
to be independent; if m is not specified, it is taken equal to nrow(x.learn).

n a strictly positive integer specifying the monitoring horizon; the monitoring pe-
riod is m+1, ..., n.

gamma a real parameter between 0 and 0.5 appearing in the definition of the weight
function used in the detector function.

delta a real parameter between 0 and 1 appearing in the definition of the weight func-
tion used in the detector function.

B the number of trajectories of the detector function to simulate under the null.

method a string specifying the trajectory simulation method; can be either "sim" (Monte
Carlo simulation – only in the univariate case under the assumption of serial
independence) or "mult" (the dependent multiplier bootstrap).

b strictly positive integer specifying the value of the bandwidth parameter deter-
mining the serial dependence when generating dependent multiplier sequences
using the ’moving average approach’; see Section 5 of the first reference. The
value 1 will create i.i.d. multiplier sequences suitable for serially independent
observations. If set to NULL, b will be estimated from x.learn using the function
bOptEmpProc(); see the procedure described in Section 5 of the first reference.

22 seqClosedEndCpDist

weights a string specifying the kernel for creating the weights used in the generation
of dependent multiplier sequences within the ’moving average approach’; see
Section 5 of the first reference.

g a strictly positive integer specifying the number of points of the uniform grid
on (0, 1)d (where d is ncol(x)) involved in the estimation of the bandwidth
parameter; see Section 5 of the first reference. The number of points of the grid
is given by g^ncol(x) so that g needs to be decreased as d increases.

L.method a string specifying how the parameter L involved in the estimation of the band-
width parameter is computed; see Section 5 of the first reference.

sims an object of class sims.cpDist containing simulated trajectories of the detector
function under the null.

p a strictly positive integer specifying the number of steps of the piece constant
threshold function; p should not be taken too large (say, smaller than 4) if method
= "mult".

alpha the value of the desired significance level for the sequential test.

type an integer between 1 and 9 selecting one of the nine quantile algorithms detailed
in the help of the function quantile().

x a data matrix whose rows are continuous observations corresponding to the new
observations to be monitored for a change in contemporary distribution.

det an object of class det.cpDist representing a detector function computed using
detClosedEndCpDist().

thresh an object of class thresh.cpDist representing a threshold function estimated
using threshClosedEndCpDist().

statistic a string specifying the statistic/detector to be used for the monitoring; can be
either "mac", "mmc", "mmk", "mc" or "mk"; the last letter specifies whether it
is a Cramér-von Mises-like statistic (letter "c") or a Kolmogorov-Smirnov-like
statistic (letter "k"); the letters before specify the type of aggregation steps used
to compute the detectors ("m" for maximum, "a" for average); "mac" corre-
sponds to the detector Tm,q in the second reference, "mmc" to the detector Sm,q ,
"mmk" to the detector Rm,q , "mc" to the detector Qm and "mk" to the detector
Pm.

plot logical indicating whether the monitoring should be plotted.

Details

The testing procedure is described in detail in the second reference.

Value

All functions return lists whose components have explicit names. The function monClosedEndCpDist()
in particular returns a list whose components are

alarm a logical indicating whether the detector function has exceeded the threshold
function.

time.alarm an integer corresponding to the time at which the detector function has exceeded
the threshold function or NA.

seqClosedEndCpDist 23

times.max a vector of times at which the successive detectors "mmc" (if statistic = "mac"
or statistic = "mmc") or "mmk" (if statistic = "mmk") have reached their
maximum; a vector of NA’s if statistic = "mc" or statistic = "mk"; this se-
quence of times can be used to estimate the time of change from the time of
alarm.

time.change an integer giving the estimated time of change if alarm is TRUE; the latter is
simply the value in times.max which corresponds to time.alarm.

Note

This is a test for continuous (multivariate) time series.

References

A. Bücher and I. Kojadinovic (2016), A dependent multiplier bootstrap for the sequential empirical
copula process under strong mixing, Bernoulli 22:2, pages 927-968, https://arxiv.org/abs/
1306.3930.

I. Kojadinovic and G. Verdier (2021), Nonparametric sequential change-point detection for multi-
variate time series based on empirical distribution functions, Electronic Journal of Statistics 15(1),
pages 773-829, doi:10.1214/21EJS1798.

See Also

see cpDist() for the corresponding a posteriori (offline) test.

Examples

Not run:
Example of montoring for the period m+1, ..., n
m <- 100 # size of the learning sample
n <- 150 # monitoring horizon

The learning sample
set.seed(123)
x.learn <- matrix(rnorm(m))

New observations with a large change in mean
to simulate monitoring for the period m+1, ..., n
k <- 125 ## the true change-point
x <- matrix(c(rnorm(k-m), rnorm(n-k, mean = 2)))

Step 1: Simulation of B trajectories of the detector functions under the null
B <- 1e4

Under the assumption of serial independence
(no need to specify the learning sample)
traj.sim <- simClosedEndCpDist(m = m, n = n, B = B, method = "sim")

Without the assumption of serial independence
(the learning sample is compulsory; the larger it is, the better;
the monitoring horizon n should not be too large)

https://arxiv.org/abs/1306.3930
https://arxiv.org/abs/1306.3930
https://doi.org/10.1214/21-EJS1798

24 seqOpenEndCpDist

traj.mult <- simClosedEndCpDist(x.learn = x.learn, n = n, B = B, method = "mult")

Step 2: Compute threshold functions with p steps
p <- 2
tf.sim <- threshClosedEndCpDist(traj.sim, p = p)
p can be taken large if B is very large

tf.mult <- threshClosedEndCpDist(traj.mult, p = p) # p should not be taken too
large unless both m and B
are very large

Step 3: Compute the detectors for the monitoring period m+1, ... , n
det <- detClosedEndCpDist(x.learn = x.learn, x = x)

Step 4: Monitoring

Simulate the monitoring with the first threshold function
monClosedEndCpDist(det, tf.sim)

Simulate the monitoring with the second threshold function
monClosedEndCpDist(det, tf.mult)

Simulate the monitoring with the first threshold function
and another detector function
monClosedEndCpDist(det, tf.sim, statistic = "mmk")

Alternative steps 3 and 4:

Compute the detectors for the monitoring period m+1, ... , m+20 only
det <- detClosedEndCpDist(x.learn = x.learn, x = x[1:20,,drop = FALSE])

Simulate the monitoring with the first threshold function
monClosedEndCpDist(det, tf.sim)

Simulate the monitoring with the second threshold function
monClosedEndCpDist(det, tf.mult)

End(Not run)

seqOpenEndCpDist Open-end Nonparametric Sequential Change-Point Detection Test for
(Possibly) Multivariate Time Series Sensitive to Changes in the Distri-
bution Function

Description

Open-end nonparametric sequential test for change-point detection based on a retrospective CUSUM
statistic constructed from differences of empirical distribution functions. The observations can be
univariate or multivariate (low-dimensional), and serially dependent. To carry out the test, two

seqOpenEndCpDist 25

steps are required. The first step consists of computing a detector function. The second step con-
sists of comparing the detector function to a suitable constant threshold function. Each of these
steps corresponds to one of the functions in the usage section below. The current implementation
is preliminary and not optimized for real-time monitoring (but could still be used for that). Details
can be found in the first reference.

Usage

detOpenEndCpDist(x.learn, x, pts = NULL, r = NULL, sigma = NULL, kappa = 1.5, ...)

monOpenEndCpDist(det, alpha = 0.05, plot = TRUE)

Arguments

x.learn a numeric matrix representing the learning sample.

x a numeric matrix representing the observations collected after the beginning of
the monitoring.

pts a numeric matrix whose rows represent the evaluation points; if not provided by
user, chosen automatically from the learning sample using parameter r.

r integer greater or equal than 2 representing the number of evaluation points per
dimension to be chosen from the learning sample; used only if pts = NULL.

sigma a numeric matrix representing the covariance matrix to be used; if NULL, esti-
mated by sandwich::lrvar().

kappa constant involved in the point selection procedure; used only if the multivariate
case; should be larger than 1.

... optional arguments passed to sandwich::lrvar().

det an object of class det.OpenEndCpDist representing a detector function com-
puted using detOpenEndCpDist().

alpha the value of the desired significance level for the sequential test.

plot logical indicating whether the monitoring should be plotted.

Details

The testing procedure is described in detail in the first reference.

Value

Both functions return lists whose components have explicit names. The function monOpenEndCpDist()
in particular returns a list whose components are

alarm a logical indicating whether the detector function has exceeded the threshold
function.

time.alarm an integer corresponding to the time at which the detector function has exceeded
the threshold function or NA.

times.max a vector of times at which the successive detectors have reached their maximum;
this sequence of times can be used to estimate the time of change from the time
of alarm.

26 seqOpenEndCpDist

time.change an integer giving the estimated time of change if alarm is TRUE; the latter is
simply the value in times.max which corresponds to time.alarm.

statistic the value of statistic in the call of the function.

eta the value of eta in the call of the function.

p number of evaluations points of the empirical distribution functions.

pts evaluation points of the empirical distribution functions.

alpha the value of alpha in the call of the function.

sigma the value of sigma in the call of the function.

detector the successive values of the detector.

threshold the value of the constant threshold for the detector.

References

M. Holmes, I. Kojadinovic and A. Verhoijsen (2022), Multi-purpose open-end monitoring proce-
dures for multivariate observations based on the empirical distribution function, 45 pages, https:
//arxiv.org/abs/2201.10311.

M. Holmes and I. Kojadinovic (2021), Open-end nonparametric sequential change-point detection
based on the retrospective CUSUM statistic, Electronic Journal of Statistics 15:1, pages 2288-2335,
doi:10.1214/21EJS1840.

See Also

See detOpenEndCpMean() for the corresponding test sensitive to changes in the mean, selectPoints()
for the underlying point selection procedure used in the multivariate case and lrvar() for informa-
tion on the estimation of the underlying long-run covariance matrix.

Examples

Not run:
Example of open-end monitoring
m <- 800 # size of the learning sample
nm <- 5000 # number of collected observations after the start
n <- nm + m # total number of observations

set.seed(456)

Univariate, no change in distribution
r <- 5 # number of evaluation points
x <- rnorm(n)
Step 1: Compute the detector
det <- detOpenEndCpDist(x.learn = matrix(x[1:m]),

x = matrix(x[(m + 1):n]), r = r)
Step 2: Monitoring
mon <- monOpenEndCpDist(det = det, alpha = 0.05, plot = TRUE)

Univariate, change in distribution
k <- 2000 # m + k + 1 is the time of change
x[(m + k + 1):n] <- rt(nm - k, df = 3)

https://arxiv.org/abs/2201.10311
https://arxiv.org/abs/2201.10311
https://doi.org/10.1214/21-EJS1840

seqOpenEndCpMean 27

det <- detOpenEndCpDist(x.learn = matrix(x[1:m]),
x = matrix(x[(m + 1):n]), r = r)

mon <- monOpenEndCpDist(det = det, alpha = 0.05, plot = TRUE)

Bivariate, no change
d <- 2
r <- 4 # number of evaluation points per dimension
x <- matrix(rnorm(n * d), nrow = n, ncol = d)
det <- detOpenEndCpDist(x.learn = x[1:m,], x = x[(m + 1):n,], r = r)
mon <- monOpenEndCpDist(det = det, alpha = 0.05, plot = TRUE)

Bivariate, change in the mean of the first margin
x[(m + k + 1):n, 1] <- x[(m + k + 1):n, 1] + 0.3
det <- detOpenEndCpDist(x.learn = x[1:m,], x = x[(m + 1):n,], r = r)
mon <- monOpenEndCpDist(det = det, alpha = 0.05, plot = TRUE)

Bivariate, change in the dependence structure
x1 <- rnorm(n)
x2 <- c(rnorm(m + k, 0.2 * x1[1:(m + k)], sqrt((1 - 0.2^2))),

rnorm(nm - k, 0.7 * x1[(m + k + 1):n], sqrt((1 - 0.7^2))))
x <- cbind(x1, x2)
det <- detOpenEndCpDist(x.learn = x[1:m,], x = x[(m + 1):n,], r = r)
mon <- monOpenEndCpDist(det = det, alpha = 0.05, plot = TRUE)

End(Not run)

seqOpenEndCpMean Open-end Nonparametric Sequential Change-Point Detection Test for
Univariate Time Series Sensitive to Changes in the Mean

Description

Open-end nonparametric sequential test for change-point detection based on the retrospective CUSUM
statistic. The observations need to be univariate but can be serially dependent. To carry out the test,
two steps are required. The first step consists of computing a detector function. The second step
consists of comparing the detector function to a suitable constant threshold function. Each of these
steps corresponds to one of the functions in the usage section below. The current implementation
is preliminary and not optimized for real-time monitoring (but could still be used for that). Details
can be found in the third reference.

Usage

detOpenEndCpMean(x.learn, x, sigma = NULL, b = NULL,
weights = c("parzen", "bartlett"))

monOpenEndCpMean(det, statistic = c("t", "s", "r", "e", "cs"), eta = 0.001,
gamma = 0.45, alpha = 0.05, sigma = NULL, plot = TRUE)

28 seqOpenEndCpMean

Arguments

x.learn a numeric vector representing the learning sample.

x a numeric vector representing the observations collected after the beginning of
the monitoring for a change in mean.

sigma an estimate of the long-run variance of the time series of which x.learn is a
stretch. If set to NULL, sigma will be estimated using an approach similar to
those described in the fourth reference.

b strictly positive integer specifying the value of the bandwidth for the estimation
of the long-run variance if sigma is not provided. If set to NULL, b will be
estimated from x.learn using the function bOpt().

weights a string specifying the kernel for creating the weights used for the estimation
of the long-run variance if sigma is not provided; see Section 5 of the first
reference.

det an object of class det.cpMean representing a detector function computed using
detOpenEndCpMean().

statistic a string specifying the statistic/detector to be used for the monitoring; can be
either "t", "s", "r", "e" or "cs"; "t" corresponds to the detector Tm in the
third reference, "s" to the detector Sm, "r" to the detector Rm, "e" to the
detector Em and "cs" to so-called ordinary CUSUM detector denoted by Qm

in the third reference. Note that the detector Em was proposed in the second
reference.

eta a real parameter whose role is described in detail in the third reference.

gamma a real parameter that can improve the power of the sequential test at the begin-
ning of the monitoring; possible values are 0, 0.1, 0.25, 0.45, 0.65 and 0.85, but
not for all statistics; see the third reference.

alpha the value of the desired significance level for the sequential test.

plot logical indicating whether the monitoring should be plotted.

Details

The testing procedure is described in detail in the third reference. An alternative way of estimating
the long-run variance is to use the function lrvar() of the package sandwich and to pass it through
the argument sigma.

Value

Both functions return lists whose components have explicit names. The function monOpenEndCpMean()
in particular returns a list whose components are

alarm a logical indicating whether the detector function has exceeded the threshold
function.

time.alarm an integer corresponding to the time at which the detector function has exceeded
the threshold function or NA.

seqOpenEndCpMean 29

times.max a vector of times at which the successive detectors "r" (if statistic = "r",
statistic = "s" or statistic = "t") or "e" (if statistic = "e") have reached
their maximum; a vector of NA’s if statistic = "cs"; this sequence of times
can be used to estimate the time of change from the time of alarm.

time.change an integer giving the estimated time of change if alarm is TRUE; the latter is
simply the value in times.max which corresponds to time.alarm.

statistic the value of statistic in the call of the function.

eta the value of eta in the call of the function.

gamma the value of gamma in the call of the function.

alpha the value of alpha in the call of the function.

sigma the value of sigma in the call of the function.

detector the successive values of the chosen detector.

threshold the value of the constant threshold for the chosen detector.

References

A. Bücher and I. Kojadinovic (2016), A dependent multiplier bootstrap for the sequential empirical
copula process under strong mixing, Bernoulli 22:2, pages 927-968, https://arxiv.org/abs/
1306.3930.

J. Gösmann, T. Kley and H. Dette (2021), A new approach for open-end sequential change point
monitoring, Journal of Time Series Analysis 42:1, pages 63-84, https://arxiv.org/abs/1906.
03225.

M. Holmes and I. Kojadinovic (2021), Open-end nonparametric sequential change-point detection
based on the retrospective CUSUM statistic, Electronic Journal of Statistics 15:1, pages 2288-2335,
doi:10.1214/21EJS1840.

D.N. Politis and H. White (2004), Automatic block-length selection for the dependent bootstrap,
Econometric Reviews 23(1), pages 53-70.

See Also

See cpMean() for the corresponding a posteriori (offline) test and detOpenEndCpDist() for the
corresponding test for changes in the distribution function.

Examples

Not run:
Example of open-end monitoring
m <- 100 # size of the learning sample

The learning sample
set.seed(123)
x.learn <- rnorm(m)

New observations with a change in mean
to simulate monitoring for the period m+1, ..., n
n <- 5000
k <- 2500 ## the true change-point

https://arxiv.org/abs/1306.3930
https://arxiv.org/abs/1306.3930
https://arxiv.org/abs/1906.03225
https://arxiv.org/abs/1906.03225
https://doi.org/10.1214/21-EJS1840

30 stDistAutocop

x <- c(rnorm(k-m), rnorm(n-k, mean = 0.2))

Step 1: Compute the detector
det <- detOpenEndCpMean(x.learn = x.learn, x = x)

Step 2: Monitoring with the default detector
m1 <- monOpenEndCpMean(det)
str(m1)

Monitoring with another detector
m2 <- monOpenEndCpMean(det, statistic = "s", gamma = 0.85)
str(m2)

End(Not run)

stDistAutocop Combined Test of Stationarity for Univariate Continuous Time Series
Sensitive to Changes in the Distribution Function and the Autocopula

Description

A nonparametric test of stationarity for univariate continuous time series resulting from a combi-
nation à la Fisher of the change-point test sensitive to changes in the distribution function imple-
mented in cpDist() and the change-point test sensitive to changes in the autcopula implemented
in cpAutocop(). Approximate p-values are obtained by combining two multiplier resampling
schemes. Details can be found in the first reference.

Usage

stDistAutocop(x, lag = 1, b = NULL, pairwise = FALSE,
weights = c("parzen", "bartlett"), m = 5, N = 1000)

Arguments

x a one-column matrix containing continuous observations.

lag an integer specifying at which lag to consider the autocopula; the autcopula is a
(lag+1)-dimensional copula.

b strictly positive integer specifying the value of the bandwidth parameter deter-
mining the serial dependence when generating dependent multiplier sequences
using the ’moving average approach’; see Section 5 of the second reference. If
set to NULL, b will be estimated using the function bOptEmpProc(); see the first
reference.

pairwise a logical specifying whether the test should focus only on the bivariate margins
of the (lag+1)-dimensional autocopula.

weights a string specifying the kernel for creating the weights used in the generation
of dependent multiplier sequences within the ’moving average approach’; see
Section 5 of the second reference.

stDistAutocop 31

m a strictly positive integer specifying the number of points of the uniform grid on
(0, 1) involved in the estimation of the bandwidth parameter; see Section 5 of
the second reference.

N number of multiplier replications.

Details

The testing procedure is described in detail in the second section of the first reference.

Value

An object of class htest which is a list, some of the components of which are

statistic value of the test statistic.

p.value corresponding approximate p-value à Fisher.
component.p.values

p-values of the component tests arising in the combination.

b the value of parameter b.

Note

This is a test for continuous univariate time series.

References

A. Bücher, J.-D. Fermanian and I. Kojadinovic (2019), Combining cumulative sum change-point
detection tests for assessing the stationarity of univariate time series, Journal of Time Series Analysis
40, pages 124-150, https://arxiv.org/abs/1709.02673.

A. Bücher and I. Kojadinovic (2016), A dependent multiplier bootstrap for the sequential empirical
copula process under strong mixing, Bernoulli 22:2, pages 927-968, https://arxiv.org/abs/
1306.3930.

See Also

see cpDist() and cpAutocop() for the component tests.

Examples

AR1 example
n <- 200
k <- n/2 ## the true change-point
x <- matrix(c(arima.sim(list(ar = -0.1), n = k),

arima.sim(list(ar = 0.5), n = n - k)))
stDistAutocop(x)

AR2 example
n <- 200
k <- n/2 ## the true change-point
x <- matrix(c(arima.sim(list(ar = c(0,-0.1)), n = k),

arima.sim(list(ar = c(0,0.5)), n = n - k)))

https://arxiv.org/abs/1709.02673
https://arxiv.org/abs/1306.3930
https://arxiv.org/abs/1306.3930

32 stDistAutocop

Not run:
stDistAutocop(x)
stDistAutocop(x, lag = 2)
End(Not run)
stDistAutocop(x, lag = 2, pairwise = TRUE)

Index

∗ datasets
quantiles, 18

∗ htest
cpAutocop, 4
cpBlockMax, 6
cpCopula, 8
cpDist, 10
cpRho, 13
cpU, 15
seqClosedEndCpDist, 20
seqOpenEndCpDist, 24
seqOpenEndCpMean, 27
stDistAutocop, 30

∗ multivariate
bOptEmpProc, 2
cpCopula, 8
cpDist, 10
cpRho, 13
cpU, 15
selectPoints, 19
seqClosedEndCpDist, 20
seqOpenEndCpDist, 24

∗ nonparametric
bOptEmpProc, 2
cpAutocop, 4
cpBlockMax, 6
cpCopula, 8
cpDist, 10
cpRho, 13
cpU, 15
selectPoints, 19
seqClosedEndCpDist, 20
seqOpenEndCpDist, 24
seqOpenEndCpMean, 27
stDistAutocop, 30

∗ ts
bOptEmpProc, 2
cpAutocop, 4
cpBlockMax, 6

cpCopula, 8
cpDist, 10
cpRho, 13
cpU, 15
seqClosedEndCpDist, 20
seqOpenEndCpDist, 24
seqOpenEndCpMean, 27
stDistAutocop, 30

∗ univariate
cpAutocop, 4
cpBlockMax, 6
cpU, 15
seqClosedEndCpDist, 20
seqOpenEndCpDist, 24
seqOpenEndCpMean, 27
stDistAutocop, 30

bOpt, 17, 28
bOpt (bOptEmpProc), 2
bOptEmpProc, 2, 4, 8, 10–12, 21, 30

class, 4, 5, 7, 9, 11, 14, 16, 17, 31
cpAutocop, 2, 3, 4, 17, 30, 31
cpAutocov, 2, 3, 5
cpAutocov (cpU), 15
cpBlockMax, 6
cpCopula, 2, 3, 8, 12, 15, 17
cpCov, 2, 3
cpCov (cpU), 15
cpDist, 2, 3, 7, 10, 10, 15, 17, 23, 30, 31
cpGini, 2, 3
cpGini (cpU), 15
cpMean, 2, 3, 29
cpMean (cpU), 15
cpRho, 10, 12, 13, 17
cpTau, 2, 3, 10, 12, 15, 16
cpTau (cpU), 15
cpU, 15
cpVar, 2, 3
cpVar (cpU), 15

33

34 INDEX

detClosedEndCpDist
(seqClosedEndCpDist), 20

detOpenEndCpDist, 20, 29
detOpenEndCpDist (seqOpenEndCpDist), 24
detOpenEndCpMean, 2, 26
detOpenEndCpMean (seqOpenEndCpMean), 27

ks.test, 6, 14, 17

list, 19
lrvar, 26, 28

monClosedEndCpDist
(seqClosedEndCpDist), 20

monOpenEndCpDist (seqOpenEndCpDist), 24
monOpenEndCpMean (seqOpenEndCpMean), 27

quantile, 22
quantiles, 18

selectPoints, 19, 26
seqClosedEndCpDist, 3, 12, 20
seqOpenEndCpDist, 18, 19, 24
seqOpenEndCpMean, 3, 17–19, 27
simClosedEndCpDist, 2
simClosedEndCpDist

(seqClosedEndCpDist), 20
stDistAutocop, 2, 3, 30

threshClosedEndCpDist
(seqClosedEndCpDist), 20

	bOptEmpProc
	cpAutocop
	cpBlockMax
	cpCopula
	cpDist
	cpRho
	cpU
	quantiles
	selectPoints
	seqClosedEndCpDist
	seqOpenEndCpDist
	seqOpenEndCpMean
	stDistAutocop
	Index

