
Package ‘pangoling’
April 7, 2025

Type Package

Title Access to Large Language Model Predictions

Version 1.0.3

Description Provides access to word predictability estimates using large
language models (LLMs) based on 'transformer' architectures via
integration with the 'Hugging Face' ecosystem
<https://huggingface.co/>. The package
interfaces with pre-trained neural networks and supports both
causal/auto-regressive LLMs (e.g., 'GPT-2') and
masked/bidirectional LLMs (e.g., 'BERT') to compute the probability
of words, phrases, or tokens given their linguistic context. For
details on GPT-2 and causal models, see Radford et al. (2019)
<https://storage.prod.researchhub.com/uploads/papers/2020/06/01/
language-models.pdf>,
for details on BERT and masked models, see
Devlin et al. (2019) <doi:10.48550/arXiv.1810.04805>. By enabling a
straightforward estimation of word predictability, the package
facilitates research in psycholinguistics, computational
linguistics, and natural language processing (NLP).

License MIT + file LICENSE

URL https://docs.ropensci.org/pangoling/,

https://github.com/ropensci/pangoling

BugReports https://github.com/ropensci/pangoling/issues

Depends R (>= 4.1.0)

Imports cachem, data.table, memoise, reticulate, rstudioapi, stats,
tidyselect, tidytable (>= 0.7.2), utils

Suggests brms, knitr, parallel, rmarkdown, spelling, testthat (>=
3.0.0), tictoc, covr

Config/testthat/edition 3

Encoding UTF-8

Language en-US

1

https://huggingface.co/
https://storage.prod.researchhub.com/uploads/papers/2020/06/01/language-models.pdf
https://storage.prod.researchhub.com/uploads/papers/2020/06/01/language-models.pdf
https://doi.org/10.48550/arXiv.1810.04805
https://docs.ropensci.org/pangoling/
https://github.com/ropensci/pangoling
https://github.com/ropensci/pangoling/issues

2 causal_config

LazyData true

RoxygenNote 7.3.1

StagedInstall yes

VignetteBuilder knitr

NeedsCompilation no

Author Bruno Nicenboim [aut, cre] (<https://orcid.org/0000-0002-5176-3943>),
Chris Emmerly [ctb],
Giovanni Cassani [ctb],
Lisa Levinson [rev],
Utku Turk [rev]

Maintainer Bruno Nicenboim <b.nicenboim@tilburguniversity.edu>

Repository CRAN

Date/Publication 2025-04-07 17:00:02 UTC

Contents
causal_config . 2
causal_next_tokens_pred_tbl . 4
causal_pred_mats . 6
causal_preload . 8
causal_words_pred . 9
df_jaeger14 . 12
df_sent . 15
installed_py_pangoling . 15
install_py_pangoling . 16
masked_config . 17
masked_preload . 18
masked_targets_pred . 19
masked_tokens_pred_tbl . 21
ntokens . 23
perplexity_calc . 24
set_cache_folder . 25
tokenize_lst . 26
transformer_vocab . 27

Index 28

causal_config Returns the configuration of a causal model

Description

Returns the configuration of a causal model

https://orcid.org/0000-0002-5176-3943

causal_config 3

Usage

causal_config(
model = getOption("pangoling.causal.default"),
checkpoint = NULL,
config_model = NULL

)

Arguments

model Name of a pre-trained model or folder. One should be able to use models based
on "gpt2". See hugging face website.

checkpoint Folder of a checkpoint.

config_model List with other arguments that control how the model from Hugging Face is
accessed.

Value

A list with the configuration of the model.

More details about causal models

A causal language model (also called GPT-like, auto-regressive, or decoder model) is a type of large
language model usually used for text-generation that can predict the next word (or more accurately
in fact token) based on a preceding context.

If not specified, the causal model used will be the one set in the global option pangoling.causal.default,
this can be accessed via getOption("pangoling.causal.default") (by default "gpt2"). To
change the default option use options(pangoling.causal.default = "newcausalmodel").

A list of possible causal models can be found in Hugging Face website.

Using the config_model and config_tokenizer arguments, it’s possible to control how the model
and tokenizer from Hugging Face is accessed, see the Python method from_pretrained for details.

In case of errors when a new model is run, check the status of https://status.huggingface.co/

See Also

Other causal model helper functions: causal_preload()

Examples

causal_config(model = "gpt2")

https://huggingface.co/models?other=gpt2
https://huggingface.co/models?pipeline_tag=text-generation
https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/auto#transformers.AutoProcessor.from_pretrained
https://status.huggingface.co/

4 causal_next_tokens_pred_tbl

causal_next_tokens_pred_tbl

Generate next tokens after a context and their predictability using a
causal transformer model

Description

This function predicts the possible next tokens and their predictability (log-probabilities by default).
The function sorts tokens in descending order of their predictability.

Usage

causal_next_tokens_pred_tbl(
context,
log.p = getOption("pangoling.log.p"),
decode = FALSE,
model = getOption("pangoling.causal.default"),
checkpoint = NULL,
add_special_tokens = NULL,
config_model = NULL,
config_tokenizer = NULL

)

Arguments

context A single string representing the context for which the next tokens and their pre-
dictabilities are predicted.

log.p Base of the logarithm used for the output predictability values. If TRUE (de-
fault), the natural logarithm (base e) is used. If FALSE, the raw probabilities are
returned. Alternatively, log.p can be set to a numeric value specifying the base
of the logarithm (e.g., 2 for base-2 logarithms). To get surprisal in bits (rather
than predictability), set log.p = 1/2.

decode Logical. If TRUE, decodes the tokens into human-readable strings, handling spe-
cial characters and diacritics. Default is FALSE.

model Name of a pre-trained model or folder. One should be able to use models based
on "gpt2". See hugging face website.

checkpoint Folder of a checkpoint.
add_special_tokens

Whether to include special tokens. It has the same default as the AutoTokenizer
method in Python.

config_model List with other arguments that control how the model from Hugging Face is
accessed.

config_tokenizer

List with other arguments that control how the tokenizer from Hugging Face is
accessed.

https://huggingface.co/models?other=gpt2
https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/auto#transformers.AutoTokenizer

causal_next_tokens_pred_tbl 5

Details

The function uses a causal transformer model to compute the predictability of all tokens in the
model’s vocabulary, given a single input context. It returns a table where each row represents
a token, along with its predictability score. By default, the function returns log-probabilities in
natural logarithm (base e), but you can specify a different logarithm base (e.g., log.p = 1/2 for
surprisal in bits).

If decode = TRUE, the tokens are converted into human-readable strings, handling special characters
like accents and diacritics. This ensures that tokens are more interpretable, especially for languages
with complex tokenization.

Value

A table with possible next tokens and their log-probabilities.

More details about causal models

A causal language model (also called GPT-like, auto-regressive, or decoder model) is a type of large
language model usually used for text-generation that can predict the next word (or more accurately
in fact token) based on a preceding context.

If not specified, the causal model used will be the one set in the global option pangoling.causal.default,
this can be accessed via getOption("pangoling.causal.default") (by default "gpt2"). To
change the default option use options(pangoling.causal.default = "newcausalmodel").

A list of possible causal models can be found in Hugging Face website.

Using the config_model and config_tokenizer arguments, it’s possible to control how the model
and tokenizer from Hugging Face is accessed, see the Python method from_pretrained for details.

In case of errors when a new model is run, check the status of https://status.huggingface.co/

See Also

Other causal model functions: causal_pred_mats(), causal_words_pred()

Examples

causal_next_tokens_pred_tbl(
context = "The apple doesn't fall far from the",
model = "gpt2"

)

https://huggingface.co/models?pipeline_tag=text-generation
https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/auto#transformers.AutoProcessor.from_pretrained
https://status.huggingface.co/

6 causal_pred_mats

causal_pred_mats Generate a list of predictability matrices using a causal transformer
model

Description

This function computes a list of matrices, where each matrix corresponds to a unique group specified
by the by argument. Each matrix represents the predictability of every token in the input text (x)
based on preceding context, as evaluated by a causal transformer model.

Usage

causal_pred_mats(
x,
by = rep(1, length(x)),
sep = " ",
log.p = getOption("pangoling.log.p"),
sorted = FALSE,
model = getOption("pangoling.causal.default"),
checkpoint = NULL,
add_special_tokens = NULL,
decode = FALSE,
config_model = NULL,
config_tokenizer = NULL,
batch_size = 1,
...

)

Arguments

x A character vector of words, phrases, or texts to evaluate.

by A grouping variable indicating how texts are split into groups.

sep A string specifying how words are separated within contexts or groups. Default
is " ". For languages that don’t have spaces between words (e.g., Chinese), set
sep = "".

log.p Base of the logarithm used for the output predictability values. If TRUE (de-
fault), the natural logarithm (base e) is used. If FALSE, the raw probabilities are
returned. Alternatively, log.p can be set to a numeric value specifying the base
of the logarithm (e.g., 2 for base-2 logarithms). To get surprisal in bits (rather
than predictability), set log.p = 1/2.

sorted When default FALSE it will retain the order of groups we are splitting by. When
TRUE then sorted (according to by) list(s) are returned.

model Name of a pre-trained model or folder. One should be able to use models based
on "gpt2". See hugging face website.

checkpoint Folder of a checkpoint.

https://huggingface.co/models?other=gpt2

causal_pred_mats 7

add_special_tokens

Whether to include special tokens. It has the same default as the AutoTokenizer
method in Python.

decode Logical. If TRUE, decodes the tokens into human-readable strings, handling spe-
cial characters and diacritics. Default is FALSE.

config_model List with other arguments that control how the model from Hugging Face is
accessed.

config_tokenizer

List with other arguments that control how the tokenizer from Hugging Face is
accessed.

batch_size Maximum number of sentences/texts processed in parallel. Larger batches in-
crease speed but use more memory. Since all texts in a batch must have the same
length, shorter ones are padded with placeholder tokens.

... Currently not in use.

Details

The function splits the input x into groups specified by the by argument and processes each group
independently. For each group, the model computes the predictability of each token in its vocabu-
lary based on preceding context.

Each matrix contains:

• Rows representing the model’s vocabulary.

• Columns corresponding to tokens in the group (e.g., a sentence or paragraph).

• By default, values in the matrices are the natural logarithm of word probabilities.

Value

A list of matrices with tokens in their columns and the vocabulary of the model in their rows

More details about causal models

A causal language model (also called GPT-like, auto-regressive, or decoder model) is a type of large
language model usually used for text-generation that can predict the next word (or more accurately
in fact token) based on a preceding context.

If not specified, the causal model used will be the one set in the global option pangoling.causal.default,
this can be accessed via getOption("pangoling.causal.default") (by default "gpt2"). To
change the default option use options(pangoling.causal.default = "newcausalmodel").

A list of possible causal models can be found in Hugging Face website.

Using the config_model and config_tokenizer arguments, it’s possible to control how the model
and tokenizer from Hugging Face is accessed, see the Python method from_pretrained for details.

In case of errors when a new model is run, check the status of https://status.huggingface.co/

See Also

Other causal model functions: causal_next_tokens_pred_tbl(), causal_words_pred()

https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/auto#transformers.AutoTokenizer
https://huggingface.co/models?pipeline_tag=text-generation
https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/auto#transformers.AutoProcessor.from_pretrained
https://status.huggingface.co/

8 causal_preload

Examples

data("df_sent")
df_sent
list_of_mats <- causal_pred_mats(

x = df_sent$word,
by = df_sent$sent_n,
model = "gpt2"

)

View the structure of the resulting list
list_of_mats |> str()

Inspect the last rows of the first matrix
list_of_mats[[1]] |> tail()

Inspect the last rows of the second matrix
list_of_mats[[2]] |> tail()

causal_preload Preloads a causal language model

Description

Preloads a causal language model to speed up next runs.

Usage

causal_preload(
model = getOption("pangoling.causal.default"),
checkpoint = NULL,
add_special_tokens = NULL,
config_model = NULL,
config_tokenizer = NULL

)

Arguments

model Name of a pre-trained model or folder. One should be able to use models based
on "gpt2". See hugging face website.

checkpoint Folder of a checkpoint.
add_special_tokens

Whether to include special tokens. It has the same default as the AutoTokenizer
method in Python.

config_model List with other arguments that control how the model from Hugging Face is
accessed.

config_tokenizer

List with other arguments that control how the tokenizer from Hugging Face is
accessed.

https://huggingface.co/models?other=gpt2
https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/auto#transformers.AutoTokenizer

causal_words_pred 9

Value

Nothing.

More details about causal models

A causal language model (also called GPT-like, auto-regressive, or decoder model) is a type of large
language model usually used for text-generation that can predict the next word (or more accurately
in fact token) based on a preceding context.

If not specified, the causal model used will be the one set in the global option pangoling.causal.default,
this can be accessed via getOption("pangoling.causal.default") (by default "gpt2"). To
change the default option use options(pangoling.causal.default = "newcausalmodel").

A list of possible causal models can be found in Hugging Face website.

Using the config_model and config_tokenizer arguments, it’s possible to control how the model
and tokenizer from Hugging Face is accessed, see the Python method from_pretrained for details.

In case of errors when a new model is run, check the status of https://status.huggingface.co/

See Also

Other causal model helper functions: causal_config()

Examples

causal_preload(model = "gpt2")

causal_words_pred Compute predictability using a causal transformer model

Description

These functions calculate the predictability of words, phrases, or tokens using a causal transformer
model.

Usage

causal_words_pred(
x,
by = rep(1, length(x)),
word_n = NULL,
sep = " ",
log.p = getOption("pangoling.log.p"),
ignore_regex = "",
model = getOption("pangoling.causal.default"),
checkpoint = NULL,
add_special_tokens = NULL,
config_model = NULL,

https://huggingface.co/models?pipeline_tag=text-generation
https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/auto#transformers.AutoProcessor.from_pretrained
https://status.huggingface.co/

10 causal_words_pred

config_tokenizer = NULL,
batch_size = 1,
...

)

causal_tokens_pred_lst(
texts,
log.p = getOption("pangoling.log.p"),
model = getOption("pangoling.causal.default"),
checkpoint = NULL,
add_special_tokens = NULL,
config_model = NULL,
config_tokenizer = NULL,
batch_size = 1

)

causal_targets_pred(
contexts,
targets,
sep = " ",
log.p = getOption("pangoling.log.p"),
ignore_regex = "",
model = getOption("pangoling.causal.default"),
checkpoint = NULL,
add_special_tokens = NULL,
config_model = NULL,
config_tokenizer = NULL,
batch_size = 1,
...

)

Arguments

x A character vector of words, phrases, or texts to evaluate.
by A grouping variable indicating how texts are split into groups.
word_n Word order, by default this is the word order of the vector x.
sep A string specifying how words are separated within contexts or groups. Default

is " ". For languages that don’t have spaces between words (e.g., Chinese), set
sep = "".

log.p Base of the logarithm used for the output predictability values. If TRUE (de-
fault), the natural logarithm (base e) is used. If FALSE, the raw probabilities are
returned. Alternatively, log.p can be set to a numeric value specifying the base
of the logarithm (e.g., 2 for base-2 logarithms). To get surprisal in bits (rather
than predictability), set log.p = 1/2.

ignore_regex Can ignore certain characters when calculating the log probabilities. For exam-
ple ^[[:punct:]]$ will ignore all punctuation that stands alone in a token.

model Name of a pre-trained model or folder. One should be able to use models based
on "gpt2". See hugging face website.

https://huggingface.co/models?other=gpt2

causal_words_pred 11

checkpoint Folder of a checkpoint.
add_special_tokens

Whether to include special tokens. It has the same default as the AutoTokenizer
method in Python.

config_model List with other arguments that control how the model from Hugging Face is
accessed.

config_tokenizer

List with other arguments that control how the tokenizer from Hugging Face is
accessed.

batch_size Maximum number of sentences/texts processed in parallel. Larger batches in-
crease speed but use more memory. Since all texts in a batch must have the same
length, shorter ones are padded with placeholder tokens.

... Currently not in use.
texts A vector or list of sentences or paragraphs.
contexts A character vector of contexts corresponding to each target.
targets A character vector of target words or phrases.

Details

These functions calculate the predictability (by default the natural logarithm of the word probability)
of words, phrases or tokens using a causal transformer model:

• causal_targets_pred(): Evaluates specific target words or phrases based on their given
contexts. Use when you have explicit context-target pairs to evaluate, with each target word
or phrase paired with a single preceding context.

• causal_words_pred(): Computes predictability for all elements of a vector grouped by a
specified variable. Use when working with words or phrases split into groups, such as sen-
tences or paragraphs, where predictability is computed for every word or phrase in each group.

• causal_tokens_pred_lst(): Computes the predictability of each token in a sentence (or
group of sentences) and returns a list of results for each sentence. Use when you want to
calculate the predictability of every token in one or more sentences.

See the online article in pangoling website for more examples.

Value

For causal_targets_pred() and causal_words_pred(), a named numeric vector of predictabil-
ity scores. For causal_tokens_pred_lst(), a list of named numeric vectors, one for each sentence
or group.

More details about causal models

A causal language model (also called GPT-like, auto-regressive, or decoder model) is a type of large
language model usually used for text-generation that can predict the next word (or more accurately
in fact token) based on a preceding context.

If not specified, the causal model used will be the one set in the global option pangoling.causal.default,
this can be accessed via getOption("pangoling.causal.default") (by default "gpt2"). To
change the default option use options(pangoling.causal.default = "newcausalmodel").

https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/auto#transformers.AutoTokenizer
https://docs.ropensci.org/pangoling/articles/intro-gpt2.html

12 df_jaeger14

A list of possible causal models can be found in Hugging Face website.

Using the config_model and config_tokenizer arguments, it’s possible to control how the model
and tokenizer from Hugging Face is accessed, see the Python method from_pretrained for details.

In case of errors when a new model is run, check the status of https://status.huggingface.co/

See Also

Other causal model functions: causal_next_tokens_pred_tbl(), causal_pred_mats()

Examples

Using causal_targets_pred
causal_targets_pred(

contexts = c("The apple doesn't fall far from the",
"Don't judge a book by its"),

targets = c("tree.", "cover."),
model = "gpt2"

)

Using causal_words_pred
causal_words_pred(

x = df_sent$word,
by = df_sent$sent_n,
model = "gpt2"

)

Using causal_tokens_pred_lst
preds <- causal_tokens_pred_lst(

texts = c("The apple doesn't fall far from the tree.",
"Don't judge a book by its cover."),

model = "gpt2"
)
preds

Convert the output to a tidy table
suppressPackageStartupMessages(library(tidytable))
map2_dfr(preds, seq_along(preds),
~ data.frame(tokens = names(.x), pred = .x, id = .y))

df_jaeger14 Self-Paced Reading Dataset on Chinese Relative Clauses

Description

This dataset contains data from a self-paced reading experiment on Chinese relative clause com-
prehension. It is structured to support analysis of reaction times, comprehension accuracy, and
surprisal values across various experimental conditions in a 2x2 fully crossed factorial design:

https://huggingface.co/models?pipeline_tag=text-generation
https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/auto#transformers.AutoProcessor.from_pretrained
https://status.huggingface.co/

df_jaeger14 13

Usage

data(df_jaeger14)

Format

A tibble with 8,624 rows and 15 variables:

subject Participant identifier, a character vector.

item Trial item number, an integer.

cond Experimental condition, a character vector indicating variations in sentence structure (e.g.,
"a", "b", "c", "d").

word Chinese word presented in each trial, a character vector.

wordn Position of the word within the sentence, an integer.

rt Reaction time in milliseconds for reading each word, an integer.

region Sentence region or phrase type (e.g., "hd1", "Det+CL"), a character vector.

question Comprehension question associated with the trial, a character vector.

accuracy Binary accuracy score for the comprehension question (1 = correct, 0 = incorrect).

correct_answer Expected correct answer for the comprehension question, a character vector ("Y"
or "N").

question_type Type of comprehension question, a character vector.

experiment Name of the experiment, indicating self-paced reading, a character vector.

list Experimental list number, for counterbalancing item presentation, an integer.

sentence Full sentence used in the trial with words marked for analysis, a character vector.

surprisal Model-derived surprisal values for each word, a numeric vector.

Region codes in the dataset (column region):

• N: Main clause subject (in object-modifications only)

• V: Main clause verb (in object-modifications only)

• Det+CL: Determiner+classifier

• Adv: Adverb

• VN: RC-verb+RC-object (subject relatives) or RC-subject+RC-verb (object relatives)

– Note: These two words were merged into one region after the experiment; they were
presented as separate regions during the experiment.

• FreqP: Frequency phrase/durational phrase

• DE: Relativizer "de"

• head: Relative clause head noun

• hd1: First word after the head noun

• hd2: Second word after the head noun

• hd3: Third word after the head noun

• hd4: Fourth word after the head noun (only in subject-modifications)

14 df_jaeger14

• hd5: Fifth word after the head noun (only in subject-modifications)

Notes on reading times (column rt):

• The reading time of the relative clause region (e.g., "V-N" or "N-V") was computed by sum-
ming up the reading times of the relative clause verb and noun.

• The verb and noun were presented as two separate regions during the experiment.

Details

• Factor I: Modification type (subject modification; object modification)

• Factor II: Relative clause type (subject relative; object relative)

Condition labels:

• a) subject modification; subject relative

• b) subject modification; object relative

• c) object modification; subject relative

• d) object modification; object relative

Source

Jäger, L., Chen, Z., Li, Q., Lin, C.-J. C., & Vasishth, S. (2015). The subject-relative advantage in
Chinese: Evidence for expectation-based processing. Journal of Memory and Language, 79–80,
97-120. doi:10.1016/j.jml.2014.10.005

See Also

Other datasets: df_sent

Examples

Basic exploration
head(df_jaeger14)

Summarize reaction times by region
library(tidytable)

df_jaeger14 |>
group_by(region) |>
summarize(mean_rt = mean(rt, na.rm = TRUE))

https://doi.org/10.1016/j.jml.2014.10.005

df_sent 15

df_sent Example dataset: Two word-by-word sentences

Description

This dataset contains two example sentences, split word-by-word. It is structured to demonstrate
the use of the pangoling package for processing text data.

Usage

df_sent

Format

A data frame with 15 rows and 2 columns:

sent_n (integer) Sentence number, indicating which sentence each word belongs to.

word (character) Words from the sentences.

See Also

Other datasets: df_jaeger14

Examples

Load the dataset
data("df_sent")
df_sent

installed_py_pangoling

Check if the required Python dependencies for pangoling are in-
stalled

Description

This function verifies whether the necessary Python modules (transformers and torch) are avail-
able in the current Python environment.

Usage

installed_py_pangoling()

Value

A logical value: TRUE if both transformers and torch are installed and accessible, otherwise
FALSE.

16 install_py_pangoling

See Also

Other helper functions: install_py_pangoling(), set_cache_folder()

Examples

Not run:
if (installed_py_pangoling()) {
message("Python dependencies are installed.")

} else {
warning("Python dependencies are missing. Please install `torch` and `transformers`.")

}

End(Not run)

install_py_pangoling Install the Python packages needed for pangoling

Description

install_py_pangoling function facilitates the installation of Python packages needed for using
pangoling within an R environment, utilizing the reticulate package for managing Python envi-
ronments. It supports various installation methods, environment settings, and Python versions.

Usage

install_py_pangoling(method = c("auto", "virtualenv", "conda"),
conda = "auto",
version = "default",
envname = "r-pangoling",
restart_session = TRUE,
conda_python_version = NULL,
...,
pip_ignore_installed = FALSE,
new_env = identical(envname, "r-pangoling"),
python_version = NULL)

Arguments

method A character vector specifying the environment management method. Options
are ’auto’, ’virtualenv’, and ’conda’. Default is ’auto’.

conda Specifies the conda binary to use. Default is ’auto’.

version The Python version to use. Default is ’default’, automatically selected.

envname Name of the virtual environment. Default is ’r-pangoling’.
restart_session

Logical, whether to restart the R session after installation. Default is TRUE.

masked_config 17

conda_python_version

Python version for conda environments.

... Additional arguments passed to reticulate::py_install.
pip_ignore_installed

Logical, whether to ignore already installed packages. Default is FALSE.

new_env Logical, whether to create a new environment if envname is ’r-pangoling’. De-
fault is the identity of envname.

python_version Specifies the Python version for the environment.

Details

This function automatically selects the appropriate method for environment management and Python
installation, with a focus on virtual and conda environments. It ensures flexibility in dependency
management and Python version control. If a new environment is created, existing environments
with the same name are removed.

Value

The function returns NULL invisibly, but outputs a message on successful installation.

See Also

Other helper functions: installed_py_pangoling(), set_cache_folder()

Examples

Install with default settings:
Not run:
install_py_pangoling()

End(Not run)

masked_config Returns the configuration of a masked model

Description

Returns the configuration of a masked model.

Usage

masked_config(
model = getOption("pangoling.masked.default"),
config_model = NULL

)

18 masked_preload

Arguments

model Name of a pre-trained model or folder. One should be able to use models based
on "bert". See hugging face website.

config_model List with other arguments that control how the model from Hugging Face is
accessed.

Details

A masked language model (also called BERT-like, or encoder model) is a type of large language
model that can be used to predict the content of a mask in a sentence.

If not specified, the masked model that will be used is the one set in specified in the global option
pangoling.masked.default, this can be accessed via getOption("pangoling.masked.default")
(by default "bert-base-uncased"). To change the default option use options(pangoling.masked.default
= "newmaskedmodel").

A list of possible masked can be found in Hugging Face website

Using the config_model and config_tokenizer arguments, it’s possible to control how the model
and tokenizer from Hugging Face is accessed, see the python method from_pretrained for details.
In case of errors check the status of https://status.huggingface.co/

Value

A list with the configuration of the model.

See Also

Other masked model helper functions: masked_preload()

Examples

masked_config(model = "bert-base-uncased")

masked_preload Preloads a masked language model

Description

Preloads a masked language model to speed up next runs.

Usage

masked_preload(
model = getOption("pangoling.masked.default"),
add_special_tokens = NULL,
config_model = NULL,
config_tokenizer = NULL

)

https://huggingface.co/models?other=bert
https://huggingface.co/models?pipeline_tag=fill-mask
https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/auto#transformers.AutoProcessor.from_pretrained
https://status.huggingface.co/

masked_targets_pred 19

Arguments

model Name of a pre-trained model or folder. One should be able to use models based
on "bert". See hugging face website.

add_special_tokens

Whether to include special tokens. It has the same default as the AutoTokenizer
method in Python.

config_model List with other arguments that control how the model from Hugging Face is
accessed.

config_tokenizer

List with other arguments that control how the tokenizer from Hugging Face is
accessed.

Details

A masked language model (also called BERT-like, or encoder model) is a type of large language
model that can be used to predict the content of a mask in a sentence.

If not specified, the masked model that will be used is the one set in specified in the global option
pangoling.masked.default, this can be accessed via getOption("pangoling.masked.default")
(by default "bert-base-uncased"). To change the default option use options(pangoling.masked.default
= "newmaskedmodel").

A list of possible masked can be found in Hugging Face website

Using the config_model and config_tokenizer arguments, it’s possible to control how the model
and tokenizer from Hugging Face is accessed, see the python method from_pretrained for details.
In case of errors check the status of https://status.huggingface.co/

Value

Nothing.

See Also

Other masked model helper functions: masked_config()

Examples

causal_preload(model = "bert-base-uncased")

masked_targets_pred Get the predictability of a target word (or phrase) given a left and right
context

Description

Get the predictability (by default the natural logarithm of the word probability) of a vector of target
words (or phrase) given a vector of left and of right contexts using a masked transformer.

https://huggingface.co/models?other=bert
https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/auto#transformers.AutoTokenizer
https://huggingface.co/models?pipeline_tag=fill-mask
https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/auto#transformers.AutoProcessor.from_pretrained
https://status.huggingface.co/

20 masked_targets_pred

Usage

masked_targets_pred(
prev_contexts,
targets,
after_contexts,
log.p = getOption("pangoling.log.p"),
ignore_regex = "",
model = getOption("pangoling.masked.default"),
checkpoint = NULL,
add_special_tokens = NULL,
config_model = NULL,
config_tokenizer = NULL

)

Arguments

prev_contexts Left context of the target word in left-to-right written languages.

targets Target words.

after_contexts Right context of the target in left-to-right written languages.

log.p Base of the logarithm used for the output predictability values. If TRUE (de-
fault), the natural logarithm (base e) is used. If FALSE, the raw probabilities are
returned. Alternatively, log.p can be set to a numeric value specifying the base
of the logarithm (e.g., 2 for base-2 logarithms). To get surprisal in bits (rather
than predictability), set log.p = 1/2.

ignore_regex Can ignore certain characters when calculating the log probabilities. For exam-
ple ^[[:punct:]]$ will ignore all punctuation that stands alone in a token.

model Name of a pre-trained model or folder. One should be able to use models based
on "bert". See hugging face website.

checkpoint Folder of a checkpoint.
add_special_tokens

Whether to include special tokens. It has the same default as the AutoTokenizer
method in Python.

config_model List with other arguments that control how the model from Hugging Face is
accessed.

config_tokenizer

List with other arguments that control how the tokenizer from Hugging Face is
accessed.

Details

A masked language model (also called BERT-like, or encoder model) is a type of large language
model that can be used to predict the content of a mask in a sentence.

If not specified, the masked model that will be used is the one set in specified in the global option
pangoling.masked.default, this can be accessed via getOption("pangoling.masked.default")
(by default "bert-base-uncased"). To change the default option use options(pangoling.masked.default
= "newmaskedmodel").

https://huggingface.co/models?other=bert
https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/auto#transformers.AutoTokenizer

masked_tokens_pred_tbl 21

A list of possible masked can be found in Hugging Face website

Using the config_model and config_tokenizer arguments, it’s possible to control how the model
and tokenizer from Hugging Face is accessed, see the python method from_pretrained for details.
In case of errors check the status of https://status.huggingface.co/

Value

A named vector of predictability values (by default the natural logarithm of the word probability).

More examples

See the online article in pangoling website for more examples.

See Also

Other masked model functions: masked_tokens_pred_tbl()

Examples

masked_targets_pred(
prev_contexts = c("The", "The"),
targets = c("apple", "pear"),
after_contexts = c(
"doesn't fall far from the tree.",
"doesn't fall far from the tree."

),
model = "bert-base-uncased"

)

masked_tokens_pred_tbl

Get the possible tokens and their log probabilities for each mask in a
sentence

Description

For each mask, indicated with [MASK], in a sentence, get the possible tokens and their predictability
(by default the natural logarithm of the word probability) using a masked transformer.

Usage

masked_tokens_pred_tbl(
masked_sentences,
log.p = getOption("pangoling.log.p"),
model = getOption("pangoling.masked.default"),
checkpoint = NULL,
add_special_tokens = NULL,

https://huggingface.co/models?pipeline_tag=fill-mask
https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/auto#transformers.AutoProcessor.from_pretrained
https://status.huggingface.co/
https://docs.ropensci.org/pangoling/articles/intro-bert.html

22 masked_tokens_pred_tbl

config_model = NULL,
config_tokenizer = NULL

)

Arguments

masked_sentences

Masked sentences.

log.p Base of the logarithm used for the output predictability values. If TRUE (de-
fault), the natural logarithm (base e) is used. If FALSE, the raw probabilities are
returned. Alternatively, log.p can be set to a numeric value specifying the base
of the logarithm (e.g., 2 for base-2 logarithms). To get surprisal in bits (rather
than predictability), set log.p = 1/2.

model Name of a pre-trained model or folder. One should be able to use models based
on "bert". See hugging face website.

checkpoint Folder of a checkpoint.
add_special_tokens

Whether to include special tokens. It has the same default as the AutoTokenizer
method in Python.

config_model List with other arguments that control how the model from Hugging Face is
accessed.

config_tokenizer

List with other arguments that control how the tokenizer from Hugging Face is
accessed.

Details

A masked language model (also called BERT-like, or encoder model) is a type of large language
model that can be used to predict the content of a mask in a sentence.

If not specified, the masked model that will be used is the one set in specified in the global option
pangoling.masked.default, this can be accessed via getOption("pangoling.masked.default")
(by default "bert-base-uncased"). To change the default option use options(pangoling.masked.default
= "newmaskedmodel").

A list of possible masked can be found in Hugging Face website

Using the config_model and config_tokenizer arguments, it’s possible to control how the model
and tokenizer from Hugging Face is accessed, see the python method from_pretrained for details.
In case of errors check the status of https://status.huggingface.co/

Value

A table with the masked sentences, the tokens (token), predictability (pred), and the respective
mask number (mask_n).

More examples

See the online article in pangoling website for more examples.

https://huggingface.co/models?other=bert
https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/auto#transformers.AutoTokenizer
https://huggingface.co/models?pipeline_tag=fill-mask
https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/auto#transformers.AutoProcessor.from_pretrained
https://status.huggingface.co/
https://docs.ropensci.org/pangoling/articles/intro-bert.html

ntokens 23

See Also

Other masked model functions: masked_targets_pred()

Examples

masked_tokens_pred_tbl("The [MASK] doesn't fall far from the tree.",
model = "bert-base-uncased"

)

ntokens The number of tokens in a string or vector of strings

Description

The number of tokens in a string or vector of strings

Usage

ntokens(
x,
model = getOption("pangoling.causal.default"),
add_special_tokens = NULL,
config_tokenizer = NULL

)

Arguments

x character input

model Name of a pre-trained model or folder. One should be able to use models based
on "gpt2". See hugging face website.

add_special_tokens

Whether to include special tokens. It has the same default as the AutoTokenizer
method in Python.

config_tokenizer

List with other arguments that control how the tokenizer from Hugging Face is
accessed.

Value

The number of tokens in a string or vector of words.

See Also

Other token-related functions: tokenize_lst(), transformer_vocab()

https://huggingface.co/models?other=gpt2
https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/auto#transformers.AutoTokenizer

24 perplexity_calc

Examples

ntokens(x = c("The apple doesn't fall far from the tree."), model = "gpt2")

perplexity_calc Calculates perplexity

Description

Calculates the perplexity of a vector of (log-)probabilities.

Usage

perplexity_calc(x, na.rm = FALSE, log.p = TRUE)

Arguments

x A vector of log-probabilities.

na.rm Should missing values (including NaN) be removed?

log.p If TRUE (default), x are assumed to be log-transformed probabilities with base
e, if FALSE x are assumed to be raw probabilities, alternatively log.p can be the
base of other logarithmic transformations.

Details

If x are raw probabilities (NOT the default), then perplexity is calculated as follows:

(∏
n

xn

) 1
N

Value

The perplexity.

Examples

probs <- c(.3, .5, .6)
perplexity_calc(probs, log.p = FALSE)
lprobs <- log(probs)
perplexity_calc(lprobs, log.p = TRUE)

set_cache_folder 25

set_cache_folder Set cache folder for HuggingFace transformers

Description

This function sets the cache directory for HuggingFace transformers. If a path is given, the function
checks if the directory exists and then sets the HF_HOME environment variable to this path. If no
path is provided, the function checks for the existing cache directory in a number of environment
variables. If none of these environment variables are set, it provides the user with information on
the default cache directory.

Usage

set_cache_folder(path = NULL)

Arguments

path Character string, the path to set as the cache directory. If NULL, the function
will look for the cache directory in a number of environment variables. Default
is NULL.

Value

Nothing is returned, this function is called for its side effect of setting the HF_HOME environment
variable, or providing information to the user.

See Also

Installation docs

Other helper functions: install_py_pangoling(), installed_py_pangoling()

Examples

Not run:
set_cache_folder("~/new_cache_dir")

End(Not run)

https://huggingface.co/docs/transformers/installation?highlight=transformers_cache#cache-setup

26 tokenize_lst

tokenize_lst Tokenize an input

Description

Tokenize a string or token ids.

Usage

tokenize_lst(
x,
decode = FALSE,
model = getOption("pangoling.causal.default"),
add_special_tokens = NULL,
config_tokenizer = NULL

)

Arguments

x Strings or token ids.

decode Logical. If TRUE, decodes the tokens into human-readable strings, handling spe-
cial characters and diacritics. Default is FALSE.

model Name of a pre-trained model or folder. One should be able to use models based
on "gpt2". See hugging face website.

add_special_tokens

Whether to include special tokens. It has the same default as the AutoTokenizer
method in Python.

config_tokenizer

List with other arguments that control how the tokenizer from Hugging Face is
accessed.

Value

A list with tokens

See Also

Other token-related functions: ntokens(), transformer_vocab()

Examples

tokenize_lst(x = c("The apple doesn't fall far from the tree."),
model = "gpt2")

https://huggingface.co/models?other=gpt2
https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/auto#transformers.AutoTokenizer

transformer_vocab 27

transformer_vocab Returns the vocabulary of a model

Description

Returns the (decoded) vocabulary of a model.

Usage

transformer_vocab(
model = getOption("pangoling.causal.default"),
add_special_tokens = NULL,
decode = FALSE,
config_tokenizer = NULL

)

Arguments

model Name of a pre-trained model or folder. One should be able to use models based
on "gpt2". See hugging face website.

add_special_tokens

Whether to include special tokens. It has the same default as the AutoTokenizer
method in Python.

decode Logical. If TRUE, decodes the tokens into human-readable strings, handling spe-
cial characters and diacritics. Default is FALSE.

config_tokenizer

List with other arguments that control how the tokenizer from Hugging Face is
accessed.

Value

A vector with the vocabulary of a model.

See Also

Other token-related functions: ntokens(), tokenize_lst()

Examples

transformer_vocab(model = "gpt2") |>
head()

https://huggingface.co/models?other=gpt2
https://huggingface.co/docs/transformers/v4.25.1/en/model_doc/auto#transformers.AutoTokenizer

Index

∗ causal model functions
causal_next_tokens_pred_tbl, 4
causal_pred_mats, 6
causal_words_pred, 9

∗ causal model helper functions
causal_config, 2
causal_preload, 8

∗ datasets
df_jaeger14, 12
df_sent, 15

∗ general functions
perplexity_calc, 24

∗ helper functions
install_py_pangoling, 16
installed_py_pangoling, 15
set_cache_folder, 25

∗ masked model functions
masked_targets_pred, 19
masked_tokens_pred_tbl, 21

∗ masked model helper functions
masked_config, 17
masked_preload, 18

∗ token-related functions
ntokens, 23
tokenize_lst, 26
transformer_vocab, 27

causal_config, 2, 9
causal_next_tokens_pred_tbl, 4, 7, 12
causal_pred_mats, 5, 6, 12
causal_preload, 3, 8
causal_targets_pred

(causal_words_pred), 9
causal_tokens_pred_lst

(causal_words_pred), 9
causal_words_pred, 5, 7, 9

df_jaeger14, 12, 15
df_sent, 14, 15

install_py_pangoling, 16, 16, 25
installed_py_pangoling, 15, 17, 25

masked_config, 17, 19
masked_preload, 18, 18
masked_targets_pred, 19, 23
masked_tokens_pred_tbl, 21, 21

ntokens, 23, 26, 27

perplexity_calc, 24

set_cache_folder, 16, 17, 25

tokenize_lst, 23, 26, 27
transformer_vocab, 23, 26, 27

28

	causal_config
	causal_next_tokens_pred_tbl
	causal_pred_mats
	causal_preload
	causal_words_pred
	df_jaeger14
	df_sent
	installed_py_pangoling
	install_py_pangoling
	masked_config
	masked_preload
	masked_targets_pred
	masked_tokens_pred_tbl
	ntokens
	perplexity_calc
	set_cache_folder
	tokenize_lst
	transformer_vocab
	Index

