Package ‘parsec’

August 19, 2023

Version 1.2.7
Date 2023-08-19
Title Partial Orders in Socio-Economics

Author Alberto Arcagni [aut, cre],
Marco Fattore [aut]

Maintainer Alberto Arcagni <alberto.arcagni@uniromal.it>

Description Implements tools for the analysis of partially ordered data, with a particular fo-
cus on the evaluation of multidimensional systems of indicators and on the analy-
sis of poverty. References, Fattore M. (2016) <doi:10.1007/s11205-015-1059-6> Fat-
tore M., Arcagni A. (2016) <doi:10.1007/s11205-016-1501-
4> Arcagni A. (2017) <doi:10.1007/978-3-319-45421-4_19>.

Depends igraph, netrankr, methods

License GPL (>=2)

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-08-19 13:40:02 UTC
RoxygenNote 6.1.1

R topics documented:

parsec-package L. e e e e e 3
AF e 4
AF2threshold 6
ANtiSYMMELTY o ottt e e e e e e e e e e e 7
average_ranks oL e e e e e e e 7
binary L 9
colevels L e 9
cover2incidence e e e e 10
depths L 10
dOWnSet e e e e 11
drawedges 12
equivalences 12

https://doi.org/10.1007/s11205-015-1059-6
https://doi.org/10.1007/s11205-016-1501-4
https://doi.org/10.1007/s11205-016-1501-4
https://doi.org/10.1007/978-3-319-45421-4_19

Index

R topics documented:

evaluation e 13
FOD . . . e 16
gen.downset e 18
GEMLUPSEL L L e e e 19
getlambda 20
GELZELA L e 21
heights L e e e 21
dn ..o e 22
INCIdeNCe2COVET L L e e e e e e 24
incomparability e 24
IS.dOWnsSeto e e 25
iS.inext . ..o e 26
is.partialorder L. e 26
ISPreorder L o e e e e e e e 27
ISSUPSEL . . L e e 28
latex e e 28
LE . o 29
LE2incidence 30
levels.incidence and levels.cover oL oo 31
lingen e 32
linzeta e 32
maximal 33
Merge.wprof e e 33
minimal 35
10 35
MRP . . e 37
MRPIex e 38
obsprof . . . L 39
parsec2igraph L 39
plot.average_ranks L. e e e e 40
PIOL.COVET o o e e e e 42
plotparsec 43
plotrank_stability 44
POP2prof L 45
popelemo L e e e e e 46
proFreq e e e e 47
rank_stability oL e 48
reflexivity 49
rmProfiles 50
SUMMATY.COVET .« . v v v v v e e v e e e e e e e e e e e e e e e e e e e 51
SUMMATY.PATSEC .« « & v v v v v e 52
transitiveClosure L e 53
transitivity e e e e 53
UPSEL . o v o v e e e e e e e e e e e e e e e 54
validate.partialorder.incidenceo oo 55
var2prof . ..o e 55
VEITICES . . . v o o e e e e e e 57

58

parsec-package 3

parsec-package PARtial orders in Socio-EConomics

Description

The package implements tools for the analysis of partially ordered data, with a particular focus on
the evaluation of multidimensional systems of indicators and on the analysis of poverty.

Its main objective is to provide socio-economic scholars with an integrated set of elementary func-
tions for multidimensional evaluation, based on ordinal information. In particular, it provides func-
tions for data management and basic analysis of partial orders as well as other functions for the
evaluation and application of both the poset-based approach and a more classic counting method.

Author(s)
A, Arcagni M, Fattore

Maintainer: A, Arcagni <alberto.arcagni @unimib.it>

Examples

HEHHHHHHHEEHS AR AN
a simple example of package application
HHHEHHHEHEE A

definition of the variables by their number of grades
variables <- c(2, 2, 2)

definition of the threshold
threshold <- c(”"112", "211")

extraction of all of the possible profiles from variables; the

function returns an object of class "wprof”, weighted profiles: by default,
weigths/frequencies are set equal to 1

profiles <- var2prof(varlen = variables)

the following function creates matrices describing the poset, and
provides all the results related to it
eval <- evaluation(profiles, threshold, nit = 10"5, maxint = 10%3)

The results can then be summarized

summary (summary(eval))

a method of the plot function returns the Hasse diagram, a frequency
distribution of the threshold, the identification function, the rank
distribution of each profile through a barplot, and the relative gap.

plot(eval)

HHHHHHAEHEE R
a second example of new functions recently introduced

A

definition of the variables and of the corresponding profiles

vl <- as.ordered(c("a", "b", "c", "d"))

v2 <- 1:3

prof <- var2prof(varmod = list(vl = as.ordered(c("a", "b", "c", "d")), v2 = 1:3))
np <- nrow(prof$profiles)

definition of different distributions over the set of profiles

k <- 10 # number of populations

set.seed(0)

populations <- as.data.frame(lapply(1:k, function(x) round(runif(np)*100)))
rownames (populations) <- rownames(prof$profiles)

names(populations) <- paste@("P", 1:k)

prof
populations

evaluation of the fuzzy first order dominance
res <- FFOD(profiles = prof, distributions = populations)
res

rank stablity analysis
res <- rank_stability(res)
res

graphical representation
plot(res)

AF OPHI counting approach

Description

The function implements the OPHI counting approach, in a single call. The implementation is
limited to ordinal attributes.

Usage
AF(Cy, ...)
Default S3 method:
AF(y, z, w=rep(1, ncol(y)), k=sum(w), freg=rep(1, nrow(y)), ...)
S3 method for class 'wprof'
AF(y, ...)
Arguments
y matrix of profiles, possibly substituted by an object of class wprof.

vector of attribute cutoffs.

AF 5

w variables’ weights.

k overall cutoff.

freq profiles’ frequencies; the argument can be omitted if y is an object of class
wprof. .

any of the above.

Value

An object of S3 class ophi containing all the outputs related to the OPHI counting approach. The
objectis a 1ist comprising:

y matrix of profiles,

freq profiles’ frequencies,

d number of variables

n number of observations (sum of frequencies),

z vector of cutoffs,

k overall cutoff,

rho function comparing profiles to the vector of cutoffs,

rho_k function comparing profiles to the overall cutoff, by weighting variables,
go profile-variable matrix reporting the output of function rho,

c censored vector of deprivation counts,

Z_k boolean vector identifying deprived profiles, according to the specified cutoffs,

number of poor statstical units in the population,

headcount ratio, i.e. q/n, where n is the number of statistical units in the popu-

lation,
A average deprivation share,
Mo adjusted headcount ratio.

References
Alkire S., Foster J. (2011), Counting and multidimensional poverty measurement, Journal of Public

Economics, 96(7-8), 476-487.

Examples

vl <- ¢(2, 3, 3, 2)
prof <- var2prof(varlen = vl)

res <- AF(prof, z = c(1, 2, 1, 1), k=1)

res

6 AF2threshold

AF2threshold Poset threshold making the poset approach equivalent to the AF count-
ing approach

Description

The function computes the threshold in the profile poset, which makes the poset approach equivalent
to the AF counting approach, described in argument mpi.

Usage

AF2threshold(mpi, prof, zeta = NULL)

Arguments

mpi an object of class ophi, see AF for details.
prof an object of class wprof.

zeta an object of class incidence.

See Also

AF

Examples

vl <- c(2, 3, 2)
prof <- var2prof(varlen = vl, labtype = "progressive")

res <- AF(prof, z = c(1, 2, 1), k=1)
thr <- AF2threshold(res, prof)

plot(prof, col = 1 + thr, lwd = 1 + res$c,
main = "Comparison between OPHI and parsec”,
sub = "bold: deprived profiles identified by OPHI, red: parsec threshold")

eval <- evaluation(prof, thr, maxint = 10%4, nit = 10*7)

ord <- order(evalidn_f, resc)
plot(eval$idn_f[ord], col = "red”, lwd=2, type = "1", xlab="",
ylab = "", axes = FALSE, frame.plot = TRUE,
main = "Comparison between OPHI and parsec”,
sub = "red: identification function, black: OPHI deprived profiles”)
points(res$clord], type="1", lwd=2)
axis(2)

antisymmetry 7

antisymmetry antisymmetry

Description

The function checks whether boolean square matrix m represents an antisymmetric binary relation.

Usage

antisymmetry(m)

Arguments

m a square matrix.

See Also

transitivity, binary, reflexivity,
is.preorder, is.partialorder,

validate.partialorder.incidence

Examples

M <- c(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, TRUE, TRUE, TRUE)

M <- matrix(M, 4, 4)

rownames (M) <- colnames(M) <- LETTERS[1:4]

antisymmetry(M)

average_ranks Average Ranks

Description

The function evaluates the average rank, and other distribution details, for each element of the poset.

Usage
average_ranks(x, ...)
S3 method for class 'cover'
average_ranks(x, level = 0.9, error = 10*(-5), ...)

S3 method for class 'incidence'
average_ranks(x, level = 0.9, error = 10*(-5), ...)

Arguments

X
level

error

Details

average_ranks

an incidence or cover matrix representing a partial order.
coverage probability of the rank intervals.

the "distance" from uniformity in the sampling distribution of linear extensions
used to evaluate the average ranks. See idn for details.

any of above.

The function computes the rank distribution for each element of the poset, through function idn.
Next, it checks whether there are any equivalent profiles, using function equivalences, and makes
their rank distribution equal. Finally it provides a dataframe comprising, for each element of the
poset: the average rank avrg, the extremes inf and sup of the rank interval, the effective coverage
probability of the rank interval prob, the estimated minimum and maximum rank values (min and
max) and the rank range.

The output is a dataframe of class average_ranks /for which a method of function plot is available.
See plot.average_ranks for details).

Value

A dataframe of class average_ranks whose columns are:

avrg
inf
sup
prob
min
max

range

Author(s)

the average rank;

the lower extreme of the rank interval,

the upper extreme of the rank interval;

the effective coverage probability of the rank interval;
the minimum rank;

the maximum rank;

the rank range.

Fattore M., Arcagni A.

See Also

idn, equivalences, plot.average_ranks

Examples

profiles <- var2prof(varlen = c(3, 2, 2))
Z <- getzeta(profiles)
res <- average_ranks(Z)

plot(res)

binary

binary binary

Description

The function checks whether square matrix m represents a binary relation.

Usage

binary(m)

Arguments

m a square martrix.

See Also

transitivity, reflexivity,
antisymmetry, is.preorder,

is.partialorder, validate.partialorder.incidence

Examples

M <- c(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, TRUE, TRUE, TRUE)

M <- matrix(M, 4, 4)

rownames (M) <- colnames(M) <- LETTERS[1:4]

binary(M)

colevels Colevels of a poset

Description

The function returns colevels associated to poset elements.

Usage

colevels(y)

Arguments

y an object of class cover or incidence.

10

Examples

vl <- c(3, 2, 4)
prof <- var2prof(varlen = vl)
Z <- getzeta(prof)

colevels(Z)

depths

cover2incidence cover2incidence

Description

The function computes the incidence matrix of a poset from its cover matrix.

Usage

cover2incidence(g)
Arguments

g a cover matrix, an object of class cover
Value

The function returns the corresponding incidence matrix, an object of class incidence.

See Also

incidence2cover

depths Depths

Description

The function computes the depths of poset elements.

Usage
depths(z)

Arguments

z an object of class cover or incidence.

downset 11

Examples

vl <- c(3, 2, 4)
prof <- var2prof(varlen = vl)
Z <- getzeta(prof)

depths(2)

downset downset

Description

The function computes a boolean vector identifying the poset elements below (or equal to) at least
one element of the input subset Q.

Usage
downset(z, ...)
S3 method for class 'cover'
downset(z, ...)
S3 method for class 'incidence'
downset(z, Q = NULL, ...)
Arguments
z a cover, or an incidence, matrix of S3 class cover or incidence respectively
Q vector of indices identifying a subset of poset profiles
any of the above.
Examples

z <- getzeta(var2prof(varlen = c(2, 2, 2)))

plot(z, col =1+ c(1, 1, 0, 0, 1, 0, 0, @) + c(0, 0, 0, 2, 0, @, 2, 2), lwd = 2)
Q<-c(4, 7, 8

rownames (z) [Q]

downset(z, Q)

Q <= (211", "112”, "111")
downset(z, Q)

12 equivalences

drawedges drawedges

Description

Graphical function called by plot. cover to draw the edges of the Hasse diagram representing the
input cover matrix C.

Usage
drawedges(C, vertices, ...)
Arguments
C cover matrix.
vertices coordinates of the vertices obtained by function vertices.
line parameters, see graphics{lines}.
See Also

plot.cover, vertices, graphics{lines}

equivalences Equivalence classes in a poset.

Description

The function computes the set of poset elements sharing the same upset and downset.

Usage

equivalences(x)

Arguments

X an object of class incidence or cover.

Value

The function computes a vector assigning an equivalence class to each profile. The vector is of class
factor.

Author(s)

Arcagni A.

evaluation 13

Examples

Lmbd <- getlambda(A > B, A>C, B>D, A>E, B>E, C>F, C>G)
res <- equivalences(Lmbd)

equivalence_classes <- levels(res)
colrs <- sapply(res, function(x) which(equivalence_classes == x)) + 1
plot(Lmbd, col = colrs, 1lwd = 2)

evaluation Multidimensional evaluation on posets

Description

Given a partial order (arguments profiles and/or zeta) and a selected threshold, the function
returns an object of S3 class parsec, comprising the identification function and different sever-
ity measures, computed by uniform sampling of the linear extensions of the poset, through a C
implementation of the Bubley - Dyer (1999) algorithm.

Usage

evaluation(
profiles = NULL,
threshold,
error = 10*(-3),
zeta = getzeta(profiles),
weights = {
if (lis.null(profiles))
profiles$freq
else rep(1, nrow(zeta))
1
distances = {
n <- nrow(zeta)
matrix(1, n, n) - diag(1, n)
1
linext = lingen(zeta),
nit = floor({
n <- nrow(zeta)
n*5 * log(n) + n*4 x log(error*(-1))
D,
maxint = 2”31 - 1,
inequality = FALSE
)
inequality(profiles = NULL, zeta = getzeta(profiles), ...)

14

Arguments

profiles
threshold

error

zeta

weights

distances

linext

nit

maxint

inequality

Value

profiles

evaluation

an object of S3 class wprof.

a vector identifying the threshold. It can be a vector of indexes (numeric), a
vector of profile names (character) or a boolean vector of length equal to the
number of profiles. Function inequality does not require its definition since
its results do not depend on it.

the "distance" from uniformity in the sampling distribution of linear extensions.

the incidence matrix of the poset. An object of S3 class incidence. By default,
extracted from profiles.

weights assigned to profiles. If the argument profiles is not NULL, weights are
by default set equal to profile frequencies, otherwise they are set equal to 1.

matrix of distances between pairs of profiles. The matrix must be square, with
dimensions equal to the number of profiles. Even if the poset is complete, the
distance between two profiles is computed only if one profile covers the other.

the linear extension initializing the sampling algorithm. By default, it is gener-
ated by lingen(zeta). Alternatively, it can be provided by the user through a
vector of profile positions.

Number of ITerations in the Bubley-Dyer algorithm, by default evaluated from
a formula of Karzanov and Khachiyan based on the number of profiles and the
argument error (see Bubley and Dyer, 1999).

Maximum integer. By default the maximum integer obtainable in a 32bit system.
This argument is used to group iterations and run the compiled C code more
times, so as to avoid memory indexing problems. Users can set a lower value to
maxint in case of low RAM availability.

boolean parameter (by default FALSE) to make the evaluation function return
also a measure of inequality (which can make computations quite lengthy). It is
TRUE in function inequality and can not be modified.

further optional graphical parameters. See plot.default.

an object of S3 class wprof reporting poset profiles and their associated frequen-
cies (number of statistical units in each profile).

number_of_profiles

number of profiles.

number_of_variables

incidence
cover
threshold

number of variables.
S3 class incidence, incidence matrix of the poset.
S3 class cover, cover matrix of the poset.

boolean vector specifying whether a profile belongs to the threshold.

number_of_iterations

rank_dist

number of iterations performed by the Bubley-Dyer algorithm.

matrix reporting by rows the relative frequency distributions of the ranks of each
profile, over the set of sampled linear extensions.

evaluation

thr_dist

prof_w
edg_w
idn_f

svr_abs

svr_rel

wea_abs

wea_rel

poverty_gap
wealth_gap

inequality

References

15

vector reporting the relative frequency a profile is used as threshold in the sam-
pled linear extensions.

vector of weights assigned to each profile.
matrix of distances between profiles, used to evaluate the gap measures.

vector reporting the identification function, computed as the fraction of sampled
linear extensions where a profile is in the downset of the threshold.

vector reporting, for each profile, the average graph distance from the first profile
above all threshold elements, over the sampled linear extensions. In each linear
extension, the distance is set equal to O for profiles above the threshold.

equal to svr_abs divided by its maximum, that is svr_abs of the minimal element
in the linear extension.

vector reporting, for each profile, the average graph distance from the maximum
threshold element, over the sampled linear extensions. In each linear extension,
the distance is set equal to O for profiles in the downset of threshold elements.

the previous absolute distance is divided by its maximum possible value, that
is the absolute distance of the threshold from the maximal element in the linear
extension.

Population mean of svr_rel
Population mean of wea_rel

when the argument inequality is TRUE, the average value of the inequality
index over the linear extensions (see Fattore and Arcagni, 2013). Function
inequalty returns only this result.

Bubley R., Dyer M. (1999), Faster random generation of linear extensions, Discrete Math., 201,

81-88.

Fattore M., Arcagni A. (2013), Measuring multidimensional polarization with ordinal data, SIS
2013 Statistical Conference, BES-M3.1 - The BES and the challenges of constructing composite
indicators dealing with equity and sustainability

Examples

profiles <- var2prof(varlen = c(3, 2, 2))
threshold <- c(”311", "112")

res <- evaluation(profiles, threshold, maxint = 10"5)

summary(res)
plot(res)

16 FOD

FOD Fuzzy First Order Domninance analysis on partial orders

Description

The function FOD performs the Fuzzy First Order Dominance analysis described in Fattore and
Arcagni (forthcoming).

Usage
FFOD(profiles, ...)
S3 method for class 'wprof'
FFOD(profiles,
distributions = as.data.frame(profiles$freq),
lambda = do.call(
getlambda, as.list(names(profiles$profiles))
),
alpha = NULL,
)
Arguments
profiles an object of class wprof

distributions adata.frame of frequencies/weights where the columns correspond to the dif-
ferent distributions and the rows to the profiles. The profiles in the rows have to
be ordered as in profiles.

lambda object of class incidence representing the partial order of the relative impor-
tance of the indicators. By default, the lambda poset is an antichain (i.e. all the
indicators are considered equi-important).

alpha vector of values to cut the mintr.delta matrix to generate the posets in the list
covers. Default is NULL posets are generated for each different value in matrix
mintr.delta. See section *Value’ below.

any of above.

Details

The function requires the set of profiles, through the object profiles of class wprof, and the corre-
sponding frequencies, which can be defined by the argument distributions of class data. frame.

Notice that a warning is provided if the rownames of the distributions do not match the rownamens
of the profiles.

Through poset 1ambda, it is possible to provide (ordinal) information on the relative importance of
the indicators in the multi-indicator system.

FOD 17

Value
An object of class FODposet containing:

delta matrix of the overall dominance degrees.
mintr.delta matrix of the min-transitive closure of matrix delta.

global.approx L1 distance between deltaandmintr.delta, divided by the L1 norm of delta.
global.approx.corr
L1 distance between delta and mintr.delta, divided by the L1 norm of delta
after removing its diagonal.

cell.approx matrix of absolute differences between the elements of delta and the elements
of mintr.delta.

posets.ind data. frame with indicators describing the partial orders obtained as alpha-cuts
of the min-transitive closure mintr.delta. For each poset, the data frame
provides: its cardinality, the number of comparabilities, the number of
incomparabilities and their ratio (ci.ratio).

eqv.classes list of boolean matrices specifying, for each alpha-cut, the equivalence classes of
the input distributions. Equivalence classes are reported by rows and the initial
distributions by columns. If element ij of the matrix is TRUE, then distribution j
belongs to the i-th equivalence class.

covers list of objects of class cover comprising the cover matrices of the poset gener-
ated by each alpha-cut of mintr.delta.

Author(s)
Fattore M., Arcagni A.

References

Fattore M., Arcagni A. (forthcoming), F-FOD: Fuzzy First Order Dominance analysis and popula-
tions ranking over ordinal multi-indicator systems.

Examples

vl <- as.ordered(c("a", "b", "c", "d"))

v2 <- 1:3

prof <- var2prof(varmod = list(vl = as.ordered(c("a", "b", "c", "d")), v2 = 1:3))
np <- nrow(prof$profiles)

k <- 10 # number of populations

set.seed(Q)

populations <- as.data.frame(lapply(1:k, function(x) round(runif(np)*100)))
rownames (populations) <- rownames(prof$profiles)

names(populations) <- paste@("P", 1:k)

prof
populations

res <- FFOD(profiles = prof, distributions = populations)
res

18 gen.downset

gen.downset Antichain generating a given downset

Description

The function returns the antichain generating the input downset Q, given the incidence matrix z of
the poset.

Usage

gen.downset(z, Q = 1)

Arguments
z an incidence matrix.
Q a vector (boolean, numeric indexing elements, or character with elements’
names) identifying the input downset.
Value

A boolean vector.

See Also

gen.upset

Examples

lv <- ¢c(2, 3, 2)
prof <- var2prof(varlen = 1lv)

z <- getzeta(prof)
down <- c("111", "211", "112", "212")
gen <- gen.downset(z, down)

plot(z, lwd = 1 + (rownames(prof$profiles)%in%down), col = 1 + gen,
sub = "bold = the downset, red = the antichain generating the downset")

gen.upset 19

gen.upset Antichain generating a given upset

Description

The function returns the antichain generating the input upset Q, given the incidence matrix z of the
poset.

Usage

gen.upset(z, Q = 1)

Arguments
z an incidence matrix.
Q a vector (boolean, numeric indexing elements, or character with elements’
names) identifying the input upset.
Value

A boolean vector.

See Also

gen.downset

Examples

lv <- ¢c(2, 3, 2)
prof <- var2prof(varlen = 1lv)

z <- getzeta(prof)
up <= c(”221", "131", "231", "222", "132", "232")
gen <- gen.upset(z, up)

plot(z, lwd = 1 + (rownames(prof$profiles)%in%up), col = 1 + gen,
sub = "bold = the upset, red = the antichain generating the upset")

20 getlambda

getlambda Object constructor for the incidence matrix representing a partial or-
der on variables.

Description

The function creates an object of class incidence representing a partial order on the set of variables.

Usage

getlambda(...)

Arguments

Cover relations between variable pairs.

Details

Cover relations between pair of ariables are defined by the names of the two variables and the
symbols < and >. For instance, if variable A is covered by variable B, write the cover relation as A
<BorB > A. If a variable is not comparable to the others, write the name of the variable alone.

Value

an object of class incidence.

Author(s)

Alberto Arcagni

See Also

plot.cover

Examples

Lambda <- getlambda(BOTTOM < A, B > BOTTOM, INCOMP)
plot(Lambda)

getzeta 21

getzeta Incidence matrix generation

Description
The function computes the incidence matrix from the set of input profiles y. The output is a boolean
matrix of S3 class incidence.

Usage

getzeta(y)
S3 method for class 'wprof'
getzeta(y)

Arguments

y the set of profiles, an object of S3 class wprof.

Examples

prf <- var2prof(varlen = c(2, 3))
getzeta(prf)

heights Heights

Description

The function computes the vector of heights of poset elements.

Usage
heights(z)

Arguments

z an object of class cover, incidence or poset.

Examples

vl <- ¢(3, 2, 4)
prof <- var2prof(varlen = vl)
Z <- getzeta(prof)

heights(Z)

22 idn

idn Multidimensional evaluation on posets (Identification Function only)

Description

Given a partial order (arguments profiles and/or zeta) and a selected threshold, the function
computes the identification function, as a S3 class object parsec. The identification function is
computed by uniform sampling of the linear extensions of the input poset, through a C implemen-
tation of the Bubley - Dyer (1999) algorithm. idn is a simplified and faster version of evaluation,
computing just the identification function.

Usage
idn(
profiles = NULL,
threshold,
error = 10*(-3),
zeta = getzeta(profiles),
weights = {
if (lis.null(profiles))
profiles$freq
else rep(1, nrow(zeta))
+
linext = lingen(zeta),
nit = floor({
n <- nrow(zeta)
n*5 * log(n) + n*4 x log(error*(-1))
D,
maxint = 2731 - 1
)
Arguments
profiles an object of S3 class wprof.
threshold a vector identifying the threshold. It can be a vector of indexes (numeric), a
vector of poset element names (character) or a boolean vector of length equal to
the number of elements.
error the "distance" from uniformity in the sampling distribution of linear extensions.
zeta the incidence matrix of the poset. An object of S3 class incidence. By default,
extracted from profiles.
weights weights assigned to profiles. If the argument profiles is not NULL, weights are
by default set equal to profile frequencies, otherwise they are set equal to 1.
linext the linear extension initializing the sampling algorithm. By default, it is gener-

ated by lingen(zeta). Alternatively, it can be provided by the user through a
vector of elements positions.

idn

23

nit Number of iterations in the Bubley-Dyer algorithm, by default evaluated using
a formula of Karzanov and Khachiyan based on the number of poset elements
and the argument error (see Bubley and Dyer, 1999).

maxint Maximum integer. By default the maximum integer obtainable in a 32bit system.
This argument is used to group iterations and run the compiled C code more
times, so as to avoid memory indexing problems. User can set a lower value to
maxint in case of lower RAM availability.

Value

profiles an object of S3 class wprof reporting poset profiles and their associated frequen-
cies (number of statistical units in each profile).

number_of_profiles
number of profiles.

number_of_variables
number of variables.

incidence S3 class incidence, incidence matrix of the poset.
cover S3 class cover, cover matrix of the poset.
threshold boolean vector specifying whether a profile belongs to the threshold.

number_of_iterations
number of iterations performed by the Bubley Dyer algorithm.

rank_dist matrix reporting by rows the relative frequency distribution of the poverty ranks
of each profile, over the set of sampled linear extensions.

thr_dist vector reporting the relative frequency a profile is used as threshold in the sam-
pled linear extensions. This result is useful for a posteriori valuation of the poset
threshold.

prof_w vector of weights assigned to each profile.

edges_weights matrix of distances between profiles, used to evaluate the measures of gap.

idn_f vector reporting the identification function, computed as the fraction of sampled
linear extensions where a profile is in the downset of the threshold.
svr_abs NA use evaluation to obtain this result.
svr_rel NA use evaluation to obtain this result.
wea_abs NA use evaluation to obtain this result.
wea_rel NA use evaluation to obtain this result.
poverty_gap NA use evaluation to obtain this result.
wealth_gap NA use evaluation to obtain this result.
inequality NA use evaluation to obtain this result.
References

Bubley R., Dyer M. (1999), Faster random generation of linear extensions, Discrete Math., 201,
81-88.

Fattore M., Arcagni A. (2013), Measuring multidimensional polarization with ordinal data, SIS
2013 Statistical Conference, BES-M3.1 - The BES and the challenges of constructing composite
indicators dealing with equity and sustainability

24 incomparability

Examples

profiles <- var2prof(varlen = c(3, 2, 4))
threshold <- c(”311", "112")

res <- idn(profiles, threshold, maxint = 10%5)

summary(res)
plot(res)

incidence2cover incidence2cover

Description

The function computes the cover matrix associated to the input incidence matrix (i.e. the cover
matrix whose transitive closure is the input incidence matrix).

Usage

incidence2cover(z)
Arguments

z an incidence matrix, an object of class incidence.
Value

Cover matrix, an object of class cover.

See Also

cover2incidence

incomparability Incomparability between profiles

Description

The function computes the set of pairwise incomparabilities between poset elements.

Usage

incomp(z)

Arguments

z an incidence matrix.

is.downset 25

Value

A boolean matrix whose element ij is TRUE when profiles i and j are incomparable.

See Also

getzeta

Examples

vl <- c(2, 2, 2)

pr <- var2prof(varlen = vl)
Z <- getzeta(pr)

incomp(Z)

is.downset is.downset

Description
The function checks whether the input set of poset elements Q is a downset of the poset represented
by the incidence matrix z.

Usage

is.downset(z, Q = 1)

Arguments

z incidence matrix

Q vector identifying the input set of profiles.
Examples

z <- getzeta(var2prof(varlen = c(2, 2, 2)))

plot(z, col =1 + c(1, 1, 0, 0, 1, 0, @, @) + c(@, 0, 0, 2, @0, 0, 2, 2), lwd = 2)
Q<-c(4,7, 8

rownames(z)[Q]

is.downset(z, Q)

Q <_ C(I’211II’ II—I‘IZII) II—]11II)
is.downset(z, Q)

26 is.partialorder

is.linext is.linext

Description
The function checks whether the input argument order is a linear extension of the poset represented
by the incidence matrix z.

Usage

is.linext(order, z)

Arguments
order indexes of the poset elements (as rows and columns of z matrix) specifying the
candidate linear order.
z incidence matrix.
Examples

Z <- getzeta(var2prof(varlen = c(3, 3)))
ranks <- c(1, 4, 2, 3, 5, 7, 6, 8, 9)
names(ranks) <- rownames(Z)

ranks

is.linext(order = ranks, z = Z)

is.partialorder is.partialorder

Description

The function checks whether the input boolean square matrix m represents a partial order.

Usage

is.partialorder(m)

Arguments

m a boolean square matrix..

See Also

transitivity, binary, reflexivity,
antisymmetry, is.preorder,

validate.partialorder.incidence

is.preorder

Examples

M <- c(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, TRUE, TRUE, TRUE)

M <- matrix(M, 4, 4)

rownames (M) <- colnames(M) <- LETTERS[1:4]

is.partialorder (M)

27

is.preorder is.preorder

Description

The function checks whether the input boolean square matrix m represents a preorder.

Usage

is.preorder(m)

Arguments

m a boolean square matrix.

See Also
transitivity, binary, reflexivity,
antisymmetry, is.partialorder,

validate.partialorder.incidence

Examples

M <- c(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, TRUE, TRUE, TRUE)

M <- matrix(M, 4, 4)

rownames (M) <- colnames(M) <- LETTERS[1:4]

is.preorder (M)

28 latex

is.upset is.upset

Description
The function checks whether the input set of elements Q is an upset of the poset represented by the
incidence matrix z.

Usage

is.upset(z, Q = 1)

Arguments
z an incidence matrix.
vector specifying the input set of poset elements.
Examples

z <- getzeta(var2prof(varlen = c(2, 2, 2)))

plot(z, col =1 + c(1, 1, 0, @0, 1, 0, @, @) + c(0, 0, 0, 2, @0, 0, 2, 2), lwd = 2)
Q<-c(4,7, 8

rownames (z)[Q]

is.upset(z, Q)

Q <= c("211", "112", "111")
is.upset(z, Q)

latex latex

Description

The function returns the LaTeX code to create a tikz figure representing the Hasse diagram drawn
from a set of profiles (prof), an incidence matrix (Z) or a cover matrix (C). The code can be copied
and pasted into a latex file. The latex source requires the tikz package,

Usage
latex(y, ...)
S3 method for class 'wprof'
latex(y, label = "", caption = "", scale = c(1, 1), ...)
S3 method for class 'incidence'
latex(y, label = "", caption = "", scale = c(1, 1), ...)
S3 method for class 'cover'
latex(y, label = "", caption = "", scale = c(1, 1), ...)

LE 29

Arguments
y an object of S3 class wprof, an object of S3 class incidence or an object of S3
class cover.
label the label of the LaTeX figure.
caption the caption of the LaTeX figure.
scale a vector of two elements to control the scale of the X-axis and the scale of the
Y-axis in the LaTeX output.
any of above.
Examples

prof <- var2prof(varlen = c(2, 3))
latex(prof, label="fg:hasse"”, caption="Hasse diagram”, scale = c(2, 2))

LE Linear extensions

Description
The function generates all of the linear extensions of the partial order defined by the incidence
matrix Lambda.

Usage
LE (Lambda)

Arguments

Lambda incidence matrix.

Value

a list of vectors representing all linear orders compatible with the Lambda incidence matrix.

Author(s)
Alberto Arcagni

See Also

getlambda

Examples

Lambda <- getlambda(A < B, A< C, D <C)
LE (Lambda)

30 LE2incidence

LE2incidence Computes the incidence matrices of lexicographic linear extensions of
a profile poset.

Description

The function generates the incidence matrices of the lexicographic linear extensions of a profile
poset, given the variables (argument varmod or varlen) and a list of complete orders on them
(argument 1st).

Usage
LE2incidence(
1st,
varmod = lapply(as.list(varlen), function(lst) 1:1st),
varlen = sapply(varmod, length)
)
Default S3 method:
LE2incidence(
1st,
varmod = lapply(as.list(varlen), function(lst) 1:1st),
varlen = sapply(varmod, length)
)
S3 method for class 'list'
LE2incidence(
1st,
varmod = lapply(as.list(varlen), function(x) 1:x),
varlen = sapply(varmod, length)
)
Arguments
1st a vector of characters, or a list of specifies the names of the variables in in-
creasing order. See details.
varmod list of variables and their grades. See details.
varlen a vector with the number of grades of each variable. See details.
Details

Argument 1st is a list of chracter vectors. Each vector lists variable names in increasing order.

List varmod and vector varlen must be named so as to identify the variables they refer to. Profiles
are generated as combinations of the variables’ grades. The names of the profiles are the grades
of the variables concatenated, after the variables order in varmod/varlen. See var2prof for more
details about these arguments.

levels.incidence and levels.cover 31

Value

an object of S3 class incidence or a list of objects of S3 class incidence.

Author(s)

Alberto Arcagni

See Also

var2prof

Examples

Lambda <- getlambda(A < B, C < D)
plot(Lambda)
1st <- LE(Lambda)
vl <-c(A=2,B=2,C=2,D=2)
lstZeta <- LE2incidence(lst, varlen = vl)
for (x in lstZeta)

plot(x)

levels.incidence and levels.cover
Levels of a poset

Description

The methods return a vector associating each profile with the corresponding level. The behaviour
of these methods for objects of classes incidence and cover is different from the behaviour of
function levels for factors.

Usage

S3 method for class 'incidence'
levels(x)

S3 method for class 'cover'
levels(x)

Arguments

X an object of class cover or incidence.

See Also

the function levels for objects of type factor

32 linzeta

Examples

vl <- c¢(3, 2, 4)
prof <- var2prof(varlen = vl)
Z <- getzeta(prof)

levels(Z)

lingen lingen

Description
The function computes a vector of ranks, defining a linear extension of the poset represented by
incidence matrix z.

Usage

lingen(z)

Arguments

z an incidence matrix.

Examples

Z <- getzeta(var2prof(varlen = c(3, 3)))
lingen(Z)

linzeta linzeta

Description
The function computes the incidence matrix of the linear order defined by the rank vector lin. It
returns an object of S3 class incidence.

Usage

linzeta(lin)

Arguments

lin a vector of elements’ ranks.

maximal 33

Examples

ranks <- c(5, 3, 4, 2, 1)
names(ranks) <- LETTERS[1:5]
linzeta(ranks)
plot(linzeta(ranks))

maximal Maximal elements of a poset.

Description

The function returns a boolean vector identifying the maximal elements of the poset.

Usage

maximal (z)

Arguments

z an object of class cover or incidence.

Examples

vl <- c(3, 2, 4)
prof <- var2prof(varlen = vl)
Z <- getzeta(prof)

maximal (Z)

merge.wprof Merge two sets of profiles.

Description

Method of the function merge of package base to merge two objects of class wprof generated
through functions var2prof or pop2prof.

Usage

S3 method for class 'wprof'
merge(x, y, support = FALSE, FUN = "+" all = TRUE, ...)

34 merge.wprof

Arguments
X,y objects of class wprof to be coerced to one.
support boolean variables specifying whether y is the support of x (FALSE by default).
FUN function to be applied to the profiles’ frequencies (by default, FUN = sum). It is
ignored if support is TRUE.
all same argument of function merge, by default set to TRUE, to get all possible
profiles. If a profile is not observed in the data, its frequency is set to 0.
additional arguments to be passed to method merge.data. frame of the package
base.
Details

Objects of class wprof are composed of a data.frame of profiles and a vector of frequencies.
This method applies method merge.data.frame to the profiles and applies function FUN to the
frequencies.

If support is TRUE, function merge.data. frame is not used and the output corresponds to the ob-
ject y, but with its frequencies modified. These are set equal to the frequencies of the corresponding
profiles in x, or to 0 for profiles not contained in x.

Author(s)
Arcagni A.

See Also

merge, var2prof, pop2prof

Examples

n<-5

vl <- as.ordered(c("a", "b", "c", "d"))
v2 <- 1:3

set.seed(0)

pop <- data.frame(

vl = sample(vl, n, replace = TRUE),

v2 = sample(v2, n, replace = TRUE)

)

survey_weights <- round(runif(5)*10)

prof1 <- pop2prof(pop, weights = survey_weights)
prof2 <- var2prof(varmod = list(vl = as.ordered(c("a", "b", "c", "d")), v2 = 1:3))

prof2 is the support of prof1
merge(prof1, prof2, support = TRUE)

union between the two sets of profiles and their frequencies are added
merge(profl1, prof2)

minimal 35

intersection of the sets of profiles with the assumption
that the minimum number of observations is shared

between the two distributions

merge(prof1, prof2, all = FALSE, FUN = min)

prof2$freq <- prof2$freq*10
to remove from prof2 the observations in prof1

distribution <- merge(prof2, profl, FUN = "-"); distribution
minimal Minimal elements of a poset
Description

The function returns a boolean vector identifying the minimal elements of the poset.

Usage

minimal(z)

Arguments

z an object of class cover or incidence.

Examples
vl <- ¢(3, 2, 4)

prof <- var2prof(varlen = vl)
Z <- getzeta(prof)

minimal(Z)

mrg Merge posets

Description

The function merges posets defined through a list of incidence matrices or a list of complete orders
between the variables (argument 1st). In the second case the variables must be defined (argument
varmod or varlen).

36 mrg

Usage
mrg(
1st,
varmod = lapply(as.list(varlen), function(x) 1:x),
varlen = sapply(varmod, length)
)

S3 method for class 'incidence'
mrg(lst, varmod = NULL, varlen = NULL)
S3 method for class 'character'
mrg(
1st,
varmod = lapply(as.list(varlen), function(x) 1:x),

varlen = sapply(varmod, length)
)
Arguments
1st a list of incidence matrices (class incidence) or list of vectors of characters.
See details.
varmod list of variables and their grades. See details.
varlen a vector of number of grades of each variable. See details.
Details

For efficiency reasons, the argument 1st can be also a list of vectors of characters. In this case,
each vector lists the names of the variables in increasing order.

The list varmod and the vector varlen must be named, so as to identify the variables they refer to.
The profiles are generated by the combinations of the variables grades. The names of the profiles
are the grades of the variables concatenated, according to variables order in varmod/varlen. See
var2prof for more details about these arguments.

Value

an object of S3 class incidence.

Author(s)

Alberto Arcagni

See Also

var2prof, LE2incidence

Examples

Example with 1lst as list of incidence matrices
Lambda <- getlambda(A < B, C < D)

plot(Lambda)

1st <- LE(Lambda)

MRP 37

vl<-c(A=2,B=2,C=2,D=2)
lstZeta <- LE2incidence(lst, varlen = vl)
for (x in lstZeta)

plot(x)
mrg(lstZeta)

Example with 1lst as list of characters
Lambda <- getlambda(A < B, C < D)

1st <- LE(Lambda)
vl<-c(A=2,B=2,C=2,D=2)

Zeta <- mrg(lst, varlen = vl)
plot(Zeta)
MRP Mutial ranking probability matrix
Description

Function to evaluate Mutial Ranking Probability (MRP) matrix based on netrankr package.

Usage
MRP(Z, method = c("exact"”, "mcmc", "approx"), error = 10*(-3), nit = NULL)
S3 method for class 'incidence'
MRP(Z, method = c("exact”, "mcmc", "approx"), error = 10*(-3), nit = NULL)
Arguments
z an incidence matrix, an object of class incidence.
method a string to choose the method applied to evaluate the MRP matrix. The default
value is "exact"”. See section 'Details’ below.
error considered only if mcmc method is selected. The "distance" from uniformity in
the sampling distribution of linear extensions.
nit considered only if mcmc method is selected. Number of ITerations in the Bubley-
Dyer algorithm, by default evaluated indicated in Bubley and Dyer (1999) de-
pending on the value of error.
Details

Package netrankr provides three functions to evaluate MRP matrix. Note that MRP matrix defini-
tion in netrankr is a little different from the one used in Fattore and Arcagni (2018), therefore this
function unifies the results to the second definition.

Parameter method allows the selection of which function of package netrankr touse: "exact” runs
the function exact_rank_prob that provides the exact results, "mcmc” the function mcmc_rank_prob
that provide the estimated results through the Bubley Dyer algorithm and "approx” runs the func-
tion approx_rank_relative that provide the Bruggemann and Carlsen (2011) approximated re-
sults. For small posets it is possible to evaluate the exact MRP matrix, for larger posets it is neces-
sary to use the appoximated results.

38 MRPlex

Value

An object of class matrix representing the MRP matrix. Dimensions names are equal to incidence
matrix ones.

References

Bruggemann R., Carlsen L., (2011). An improved estimation of averaged ranks of partial orders.
MATCH Commun. Math. Comput. Chem., 65(2):383-414.

Bubley R., Dyer M. (1999), Faster random generation of linear extensions, Discrete Math., 201,
81-88.

Fattore M., Arcagni A. (2018). Using mutual ranking probabilities for dimensionality reduction
and ranking extraction in multidimensional systems of ordinal variables. Advances in Statistical
Modelling of Ordinal Data, 117.

See Also

exact_rank_prob, mcmc_rank_prob, approx_rank_relative

Examples

L <- getlambda(A < B, C < B, B <D)

MRP (L)
MRPlex Mutual ranking probabilities on the lexicographic linear extensions
set
Description

The function returns the mutual ranking probabilities matrix evaluated considering only the lexico-
graphic linear extensions. Results are obtained by exact formula.

Usage

MRPlex(profiles, selection = NULL)

Arguments
profiles an object of S3 class wprof.
selection a vector of string indicating a subset of profiles to evaluate the mutual rank-
ing probabilities. If NULL the mutual ranking probabilities are evaluated for all
profiles.
Value

The MRP matrix of the selected profiles.

obsprof 39

Examples

prf <- var2prof(varlen = c(2, 2, 2))
MRPlex(prf)

obsprof Remove unobserved profiles.

Description

The function removes, from the set of possible profiles prof derived from the multi-indicator sys-
tem, those unobserved in the input dataset (i.e. profiles with associated frequency equal to zero). It
returns an object of class S3 wprof comprising the observed profiles and their frequencies.

Usage

obsprof (prof)
S3 method for class 'wprof'
obsprof (prof)

Arguments

prof object of S3 class wprof.

Examples

prf <- var2prof(varlen = c(3, 3, 3))

prf$freq <- sample(c(@, 1), 3*3*3, replace = TRUE)
prf <- obsprof(prf)

plot(prf, shape = "equispaced”)

parsec2igraph Converting a partial order to an object of the package igraph.

Description

The function turns a cover matrix to an igraph object, so as to allow using the graphical power of
igraph to plot Hasse diagrams. Objects of class cover are boolean matrices where element ij is
equal to 1 if element i is covered by element j. This makes the cover matrix the transpose of the
adjacency matrix of a graph, describing the cover relation in igraph.

Usage
parsec2igraph(p, ...)
S3 method for class 'cover'
parsec2igraph(p, ...)

S3 method for class 'incidence'
parsec2igraph(p, ...)

40 plot.average_ranks

Arguments
p an object of class cover or incidence.
additional arguments of the function vertices.
Value

The function returns an object of class igraph, representing the directed graph defined by the cover
relation.

The function adds to the graph a layout generated through function vertices, so as to plot the
graph according to the conventions used for Hasse diagrams.

Author(s)

Arcagni, A.

References

Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal,
Complex Systems 1695. 2006. http://igraph.org

See Also

igraph, vertices

Examples

example(merge.wprof)
poset <- getzeta(distribution)
incidence2cover(poset)

G <- parsec2igraph(poset, noise = TRUE)
get.adjacency(G)

tkplot(G, vertex.size = distribution$freq, vertex.color = "white")

G <- parsec2igraph(poset, noise = 10)

tkplot(G, vertex.size = distribution$freq, vertex.color = "white")
plot.average_ranks Method of function plot for objects of class average_ranks
Description

From the output of the function average_ranks, the function plots the average rank and the asso-
ciated rank interval, for each element of the poset.

plot.average_ranks 41

Usage
S3 method for class 'average_ranks'
plot(x,
range.first = TRUE, range.col = "black”, range.lty =1,
range.lwd = 1, type = "p", ylim = c(nrow(x), 1),
xlab = "", ylab = "Average rank”, pch = c(16, 3, 3),
col = "black”, cex = c(1, 1, 1),
)
Arguments
X An object of class average_ranks.
range.first A boolean attribute to specify whether the interval is plotted in background
(TRUE) or in foreground (FALSE).
range.col Color of the interval.
range.lty The line type to represent the range; the values are the same of the attribute 1ty
in the plot.default function.
range.lwd Width of the lines representing the range.
type Attribute of the function plot.default, here "p"” by default.
ylim Attribute of function plot.default, here c(max(x$sup), 1) by default (this
way, the Y-axis is reversed, so that rank 1 corresponds to "best").
x1lab Attribute of the function plot.default, here "" by default.
ylab Attribute of the function plot.default, here "Average rank” by default.
pch Attribute of the function plot.default, here c(16, 3, 3) by default. This
method uses the matplot function to plot the average ranks and their range.
The first value refers to the point character of the average rank, the other two to
the point characters of the range.
col Attribute of the function plot.default, here "black” by default. The average
ranks and their ranges are of the same color, but similarly to pch, users can
provide a vector of different colors.
cex Attribute of the function plot.default, here c(1, 1, 1) by default.
Other arguments of the function plot.default.
See Also
average_ranks, plot.default, matplot
Examples

profiles <- var2prof(varlen = c(3, 2, 4))

7 <-

getzeta(profiles)

res <- average_ranks(Z)
plot(res)

42 plot.cover

plot.cover Hasse diagram

Description

plot methods to draw Hasse diagrams, for objects of S3 classes wprof, incidence, cover,

Usage
S3 method for class 'wprof'
plot(x, shape = c("square"”, "circle”, "equispaced”), noise = FALSE, ...)
S3 method for class 'incidence'
plot(x, shape = c("square”, "circle”, "equispaced”), noise = FALSE, ...)
S3 method for class 'cover'
plot(x, shape = c("square”, "circle”, "equispaced”), noise = FALSE,
pch = 21, cex = max(nchar(rownames(x))) + 2, bg = "white", ...)
Arguments
X an object of S3 class wprof, an object of S3 class incidence or an object of S3

class cover.

shape shape of the Hasse diagram. See vertices.

noise jittering in the shape of the Hasse diagram. See vertices.
pch graphical parameter. See plot.default.

cex graphical parameter. See plot.default.

bg graphical parameter. See plot.default.

further optional graphical parameters. See plot.default.

Examples
prf <- var2prof(varlen = c(5, 5, 5))
prf$freq <- sample(c(rep(@, 20), 1, 2, 3), 5x5%5, replace = TRUE)
prf <- obsprof(prf)
z <- getzeta(prf)

plot(z, shape = "equispaced”, col = prf$freq, lwd = 2)

plot.parsec 43

plot.parsec Plot the outputs of the PARSEC function evaluation.

Description

Several representations of the results provided by the evaluation function.

Usage
S3 method for class 'parsec'
plot(
X!
which = c("Hasse"”, "threshold”, "identification”, "rank"”, "gap"),
ask = dev.interactive(),
shape = c("square”, "circle”, "equispaced"),

noise = FALSE,

Arguments

X an object of S3 class parsec, output of the evaluation function.

which the names of the graphs to be plotted (all, by default); the user can choose
among
* Hasse, the Hasse diagram of the poset, see plot.cover for details,

* threshold, the relative frequencies of the times a profile is used as thresh-
old in the sampled linear extensions.

* rank, barplot providing the rank distribution of each profile (X-axis). The
heights of the blocks represent relative frequencies (the sum of the heights
over profiles is equal to 1) and the color represents the rank: white for rank
one, black for the highest rank and a gray scale for intermediate ranks.

* gap, a unified representation of the relative (e.g. poverty) gap and of the
relative (e.g. wealth) gap. The horizontal lines represent the average (e.g.
poverty) gap and the average (e.g. wealth gap). The darker vertical dashed
lines represent the threshold profiles.

ask boolean value indicating whether the system has to ask users before changing
the plot.

shape the shape of the Hasse diagram, see plot. cover for details.
noise jittering in the shape of the Hasse diagram. See vertices.

further arguments for the plot. cover function.

See Also

evaluation, plot.cover

44 plot.rank_stability

Examples

profiles <- var2prof(varlen = c(3, 2, 4))
threshold <- c(”311", "112")

res <- evaluation(profiles, threshold, nit = 103)

plot(res)

plot.rank_stability Plot outputs of PARSEC function rank_stability.

Description

The function generates four plots, to reproduce the sequence of the average ranks and of the posi-
tions of the elements, in the rankings associated to the alpha-cut posets.

Rankings and average ranks have to be evaluted with the function rank_stability.

First and third plots show the sequence of average ranks, second and fourth show the sequence of
rankings. Sequences in first and second plots are shown against the sequence of alpha-cuts, in third
and fourth plots as a function of alpha values.

Usage

S3 method for class 'rank_stability'

plot(x,
which = 1:4, legend = TRUE, legend.x = "bottomleft"”,
legend.y = NULL, legend.bg = "white"”, grid = TRUE,
grid.1lty = 2, grid.col = rgb(o, o, o, 1/7),
grid.lwd = 1, y_axis = "reversed”, ask = dev.interactive(),
type = "1", col = gray(1:ncol(x$ranking)/ncol(x$ranking)/1.3),
lwd = 3, 1ty =1,

)
Arguments
X object of class rank_stability generated by function rank_stability.
which select a subset of the numbers 1:4, to specify the desired plots. See caption
below (and the ’Details’).
legend boolean argument to choose whether to show the legend in the plots.

legend.x, legend.y, legend.bg
arguments x, y and bg of the function legend defining the coordinates and the
backgroud color of the legend.

grid boolean argument to choose whether to show the grid in the plots.

grid.lty, grid.col, grid.lwd
arguments defining the line type, color and width of the grid.

y_axis if it is set equal to "reversed" plots show the y axis reversed.

pop2prof 45

ask boolean argument indicating whether the system has to ask users before chang-
ing plots.

type 1-character string giving the desired type of plot. See plot.default for details.

col vector of colors. See matplot for details.

lwd vector of line widths. See matplot for details.

1ty vector of line types. See matplot for details.

other arguments of function matplot.

See Also

rank_stability, legend, plot.default, matplot

Examples

vl <- as.ordered(c("a", "b", "c", "d"))

v2 <- 1:3

prof <- var2prof(varmod = list(vl = as.ordered(c("a", "b", "c", "d")), v2 = 1:3))
np <- nrow(prof$profiles)

k <- 10 # number of populations

set.seed(0)

populations <- as.data.frame(lapply(1:k, function(x) round(runif(np)*100)))
rownames (populations) <- rownames(prof$profiles)

names(populations) <- paste@("P", 1:k)

X <- FFOD(profiles = prof, distributions = populations)

res <- rank_stability(x)
plot(res)

pop2prof Population to profiles

Description

Extract the observed profiles and the corresponding frequencies, out of the statistical population.

Usage
pop2prof(
Y,
labtype = c("profiles”, "progressive"”, "rownames"),
sep = "",
weights = rep(1, nrow(y))

46

Arguments

y
labtype

sep

weights

Details

popelem

a dataset, used to count profile frequencies. See details.
users can choose the type of labels to assign to profiles. See details.
variables separator in the profiles labels.

a vector of length equal to the number of observations in y, representing the
survey weights of each observation.

y is a data.frame of observations on the ordinal or numeric variables. The partial order must be
defined within the object type, so as to build the incidence matrix of the order relation (see getzeta).

The function extracts variables and their observed modalities from the population; it builds all pos-
sible profiles and assigns to them the corresponding frequency. If some modalities are not observed
in the population, they will not be used to build the profiles. If one is interested in the set of all
possible profiles from a given set of variables, function var2prof is to be used.

Users can choose the label type to assign to profiles. Accepetd types are: profiles the variabiles
modalities, progressive a progressive numeration, rownames the rownames in the dataset.

Value

The function returns a S3 class object wprof, "weighted profiles", containing the data.frame
named profiles and the frequency vector freq.

See Also

var2prof, getzeta

Examples

n<-5

vl <- as.ordered(c("a", "b", "c", "d"))

v2 <- 1:3

pop <- data.frame(

vl = sample(vl, n, replace

TRUE),

v2 = sample(v2, n, replace = TRUE)

)
pop2prof (pop)

popelem

popelem

Description

The function identifies in a matrix y, profiles in prof. For each row of matrix y, the function returns
the location of the corresponding profile in object prof.

proFreq 47

Usage

popelem(prof, ...)
S3 method for class 'wprof'
popelem(prof, vy, ...)

Arguments
prof an object of S3 class wprof.
y amatrix or data.frame representing a set of observations with variables (the
same contained in prof) by columns.
any of the above.
Examples

vl <- c(2, 3, 2)

prf <- var2prof(varlen = vl)

pop <- matrix(c(2, 1, 1, 1, 2, 1, 2, 3, 1), 3, 3)
rownames (pop) <- LETTERS[1:3]

v <- popelem(prof = prf, y = pop)
v
prf$profiles[v,]

profFreq Observed profile frequencies

Description

The function computes profile frequencies, by counting the number of times a profile appears in the
population.

Usage

proFreq(profiles, population)

Arguments
profiles an object of S3 class wprof.
population amatrix or data.frame representing a set of observations with variables (the
same contained in prof) by columns.
Value

An object of class wprof with the same profiles of the argument but with different frequencies.

Author(s)

Alberto Arcagni

48 rank_stability

See Also

popelem

Examples

vl <- ¢(2, 3, 2)

prf <- var2prof(varlen = vl)

pop <- matrix(c(2, 1, 1, 1, 2, 1, 2, 3, 1), 3, 3)
rownames (pop) <- LETTERS[1:3]

proFreq(profiles = prf, population = pop)

rank_stability Rank stability analysis in posetic FOD

Description

The function computes the average ranks and the positions in the ranking of the elements of the
alpha-cuts.

Usage

rank_stability(x, ...)

S3 method for class 'FODposet'

rank_stability(x,
selection = 1:length(x$covers),
coverage_probability = 0.9,
error = 10*(-5),

)
Arguments
X object of class FODposet generated by function FOD.
selection numeric vector or a vector of names to select the cover matrices in argument x.

coverage_probability
least coverage probability of the rank intervals with extremes lower_ranks and
upper_ranks.

error the "distance" from uniformity in the sampling distribution of linear extensions
used to evaluate the average ranks. See idn for details.

any of above.

reflexivity

Value

alpha

average_ranks
lower_ranks
upper_ranks
ranking

resolution

Author(s)

49

vector of the alpha values defining the alpha-cuts.

data frame of average ranks of the poset elements (by columns) at different alpha
values (by rows).

data frame of the lower bounds of the rank interval, of each poset element (by
columns) at different alpha values (by rows).

data frame of the upper bounds of the rank interval, of each poset element (by
columns) at different alpha values (by rows).

data frame of the positions of poset elements (by columns), in the ranking ex-
tracted from the posets associated to alpha-cuts (by rows).

number of elements of the posets associated to the alpha-cuts.

Fattore M., Arcagni A.

See Also
FFOD, idn

Examples

vl <- as.ordered(c("a", "b", "c", "d"))

v2 <- 1:3

prof <- var2prof(varmod = list(vl = as.ordered(c("a", "b", "c", "d")), v2 = 1:3))
np <- nrow(prof$profiles)

k <- 10 # number of populations

set.seed(0)

populations <- as.data.frame(lapply(1:k, function(x) round(runif(np)*100)))
rownames (populations) <- rownames(prof$profiles)
names(populations) <- paste@("P"”, 1:k)

X <- FFOD(profiles = prof, distributions = populations)

res <- rank_stability(x)

res

reflexivity

reflexivity

Description

The function checks whether the input boolean square matrix m represents a reflexive binary relation.

Usage

reflexivity(m)

50 rmProfiles

Arguments

m a boolean square matrix.

See Also

transitivity, binary, antisymmetry,
is.preorder, is.partialorder,

validate.partialorder.incidence

Examples

M <- c¢(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, TRUE, TRUE, TRUE)

M <- matrix(M, 4, 4)

rownames (M) <- colnames(M) <- LETTERS[1:4]

reflexivity(M)

rmProfiles Removing profiles

Description

Function to remove profiles from an object of class wprof.

Usage
rmProfiles(y, ...)
S3 method for class 'wprof'
rmProfiles(y, v, ...)
Arguments
y object of class wprof.
v a vector pointing to the profiles to be removed. The vector can be of type:
* numeric whose components refer to the positions of profiles in y;
* logical of the same length as the number of profiles in y;
* character, referring to profile names in y.
any of the above.
Value

The function returns an wprof object equal to y but without the profiles in v.

summary.cover 51

Examples
vl <- ¢(3, 3, 3)
prof <- var2prof(varlen = vl)
rownames (prof$profiles)

prof <- rmProfiles(prof, c("123", "321"))

plot(prof)

summary.cover Summary method for cover and incidence objects.

Description

The function computes a summary of cover and incidence S3 objects. Currently, the function returns
just the number of profiles and the number of comparabilities.

Usage
S3 method for class 'cover'
summary (object, ...)
S3 method for class 'incidence'
summary (object, ...)
Arguments
object a cover matrix or an incidence matrix.

added for consistency with the generic method.

Examples

vl <- c(2, 3, 3)

prf <- var2prof(varlen = vl)
Z <- getzeta(prf)

summary (Z)

C <- incidence2cover(Z)
summary (C)

52 summary.parsec

summary .parsec Summary of outputs of the evaluation function.

Description

S3 method of function summary reporting main information for an object of class parsec, obtained
from function evaluation. In particular, the function computes a table showing, for each profile:

* the variables’ grades identifying the profile (if these are returned by evaluation.

* the assigned weight.

» whether or not it belongs to the threshold.

* the corresponding value of the identification function.

* the average poverty rank.

* the different gap measures (see evaluation for details).

If the number of profiles is higher than ten, the shown table gets cut, but the method returns a
data. frame providing the complete output.

Usage
S3 method for class 'parsec'
summary (object, ...)
Arguments
object an object of S3 class parsec, output of the evaluation function.

added for consistency with the generic method.

See Also

evaluation

Examples

profiles <- var2prof(varlen = c(3, 2, 4))
threshold <- c(”311", "112")

res <- evaluation(profiles, threshold, nit = 103)

sm <- summary(res)
summary (sm)

transitiveClosure 53

transitiveClosure Transitive Closure

Description

The function computes the transitive closure of a reflexive and antisymmetric binary relation.

Usage
transitiveClosure(m)
Arguments
m a generic square boolean matrix representing a reflexive and antisymmetric bi-
nary relation, an object of class cover or an object of class incidence.
Value

Incidence matrix of the transitive closure of the input matrix m.

See Also

is.partialorder

Examples

m<-c(, o, 0,1, 0,1,0,1,0,0,1,0,1,1,0,1)
m <- matrix(m, 4, 4)

transitiveClosure(m)

transitivity transitivity

Description

The function checks whether the boolean square matrix m representes a transitive binary relation.

Usage

transitivity(m)

Arguments

m a boolean square matrix.

54 upset

See Also

binary, reflexivity, antisymmetry,
is.preorder, is.partialorder,

validate.partialorder.incidence

Examples

M <- c(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, TRUE, TRUE, TRUE)

M <- matrix(M, 4, 4)

rownames(M) <- colnames(M) <- LETTERS[1:4]

transitivity(M)

upset upset

Description

The function computes a boolean vector specifying which poset elements belong to the downset
generated by subposet Q.

Usage
upset(z, ...)
S3 method for class 'cover'
upset(z, ...)
S3 method for class 'incidence'
upset(z, Q = NULL, ...)
Arguments
z a cover or an incidence matrix, of S3 classes cover or incidence, respectively.
vector specifying a subposet of the poset represented by z.
any of the above.
Examples

z <- getzeta(var2prof(varlen = c(2, 2, 2)))

plot(z, col =1 + ¢c(1, 1, @, 0, 1, @, @, @) + c(0, @, 0, 2, 0, @, 2, 2), lwd = 2)
Q<-c(4, 7, 8)

rownames (z)[Q]

upset(z, Q)

Q <= c("211", "112", "111")
upset(z, Q)

validate.partialorder.incidence 55

validate.partialorder.incidence
validate.partialorder.incidence

Description

The function checks whether the boolean square matrix m represents a partial order. If yes, the
function returns the same input matrix as a S3 class object incidence. Otherwise, the unfulfilled
partial order properties of matrix m are returned.

Usage

validate.partialorder.incidence(m)

Arguments

m a boolean square matrix.

See Also

transitivity, binary, reflexivity,

antisymmetry, is.preorder, is.partialorder

Examples

M <- c(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE,
FALSE, TRUE, TRUE, TRUE, TRUE)

M <- matrix(M, 4, 4)

rownames (M) <- colnames(M) <- LETTERS[1:4]

M <- validate.partialorder.incidence(M)

plot(M)

var2prof Variables to profiles

Description

The function computes the list of all of the profiles from a list of input ordinal variables. See details
for how to define variables.

Usage

var2prof (varmod = lapply(as.list(varlen), function(x) 1:x),
varlen = sapply(varmod, length), freq = NULL,
labtype = c("profiles"”, "progressive”), y=NULL)

56 var2prof

Arguments
varmod list of variables and their grades. See details.
varlen a vector of number of grades of each variable. See details.
freq profiles frequency distribution. By default, the frequencies are set equal to 1.
labtype type of labels to assign to profiles. See details.
y a matrix of observations, used to count profiles frequencies. See details.
Details

Variables can be defined through their names and grades, using a list as argument varmod. The
names of the objects in the list are taken as variable names. The objects in the list must be ordered
vectors or numeric vectors.

A faster way to define variables is through a vector with the number of grades of each variable, as
argument varlen. This way, variables and their grades are assigned arbitrary names. In particular,
grades are identified by their ranks in the variable definition.

The user can choose the type of label to assign to profiles. profiles is the combination of grades
identifying the profiles. When the names of the grades are too long, it is suggested to choose
progressive.

y is a matrix of observations on the ordinal variables (observations by rows and variables by
columns). Variables must be ordered as defined in the previous arguments. The names of variable
grades must match their definition. By this argument, the function counts the number of times a
profile is observed in the population, assigning the result to the freq output. This method should be
used when the variables and their grades are known, otherwise the function pop2prof is available.

Value

The function returns a S3 class object wprof, "weighted profiles", comprising the data.frame
profiles and the vector of frequencies freq.

See Also

pop2prof, getzeta

Examples

2 variables with 2 modalities, frequencies detected from population
pop <- matrix(sample(1:2, 100, replace=TRUE), 50, 2)
var2prof(varlen=c(2, 2))

2 variables:
- mood: 2 modalities
- weather: 3 modalities
2x3 profiles and frequencies sampled from a Binomial distribution n = 10, p = 0.5
var <- list(
mood = ordered(c("bad”, "good"), levels = c("bad”, "good")),

weather = ordered(c("rainy”, "cloudy”, "sunny"), levels = c("rainy”, "cloudy”, "sunny"))
)
var2prof(var, freq = rbinom(2*3, 10, ©0.5), labtype = "progressive")

vertices 57

vertices Coordinates of the vertices of the Hasse diagram, representing the in-
put cover relation.

Description

The function computes the coordinates of the vertices of the Hasse diagram.

Usage

vertices(C, shape = c(”square”, "circle"”, "equispaced”), noise = FALSE)
Arguments

C cover matrix, an object of class S3 cover.

shape shape of the diagram. See details.

noise some jittering on the x axis, so as to improve readability. Values can be boolean

or positive values, to get different jittering intensities.

Details

Possible Hasse diagram shapes: square; circle; equispaced. The last option is suggested when
the poset has more than one maximal or minimal elements. The function is used by the plot methods
defined in the package (see plot.cover).

See Also

plot.cover

Index

* partial order
parsec-package, 3

AF, 4,6
AF2threshold, 6

antisymmetry, 7, 9, 26, 27, 50, 54, 55

approx_rank_relative, 38
average_ranks, 7, 41

binary, 7,9, 26, 27, 50, 54, 55

C_bd (evaluation), 13
C_bd_simp (idn), 22
C_linzeta (evaluation), 13
colevels, 9
cover2incidence, 10, 24

depths, 10
downset, 11
drawedges, 12

equivalences, 8, 12
evaluation, 13, 22, 23, 43, 52
exact_rank_prob, 38

FFOD, 49
FFOD (FOD), 16
FOD, 16, 48

gen.downset, 18, 19
gen.upset, 18, 19
getlambda, 20, 29
getzeta, 21, 25, 46, 56
graphics, 12

height.poset (heights), 21
heights, 21

idn, 8, 22, 22, 48, 49
igraph, 39, 40
incidence2cover, 10, 24

58

incomp (incomparability), 24
incomparability, 24
inequality (evaluation), 13
is.downset, 25

is.linext, 26

is.partialorder, 7, 9, 26, 27, 50, 53-55
is.preorder, 7,9, 26, 27, 50, 54, 55

is.upset, 28

latex, 28

LE, 29
LE2incidence, 30, 36
legend, 44, 45
levels, 31

levels.cover (levels.incidence and

levels.cover), 31

levels.incidence (levels.incidence and

levels.cover), 31

levels.incidence and levels.cover, 31

lingen, 32
linzeta, 32

matplot, 41, 45
maximal, 33
mcmc_rank_prob, 38
merge, 34
merge.data.frame, 34
merge.wprof, 33
minimal, 35

mrg, 35

MRP, 37

MRPlex, 38

obsprof, 39

parsec (parsec-package), 3
parsec-package, 3
parsec2igraph, 39
plot.average_ranks, 8, 40
plot.cover, 12, 20, 42, 43, 57

INDEX

plot.default, /4,41, 42,45
plot.incidence (plot.cover), 42
plot.parsec, 43
plot.rank_stability, 44
plot.wprof (plot.cover), 42
pop2prof, 34,45, 56
popelem, 46, 48

proFreq, 47

rank_stability, 44, 45, 48
reflexivity, 7, 9, 26, 27,49, 54, 55
rmProfiles, 50

summary.cover, 51
summary.incidence (summary.cover), 51
summary.parsec, 52

transitiveClosure, 53
transitivity, 7, 9, 26, 27, 50, 53, 55

upset, 54
validate.partialorder.incidence, 7, 9,
26, 27, 50, 54, 55
var2prof, 30, 31, 34, 36, 46, 55
vertices, 12,40, 42, 43, 57

wprof (var2prof), 55

59

	parsec-package
	AF
	AF2threshold
	antisymmetry
	average_ranks
	binary
	colevels
	cover2incidence
	depths
	downset
	drawedges
	equivalences
	evaluation
	FOD
	gen.downset
	gen.upset
	getlambda
	getzeta
	heights
	idn
	incidence2cover
	incomparability
	is.downset
	is.linext
	is.partialorder
	is.preorder
	is.upset
	latex
	LE
	LE2incidence
	levels.incidence and levels.cover
	lingen
	linzeta
	maximal
	merge.wprof
	minimal
	mrg
	MRP
	MRPlex
	obsprof
	parsec2igraph
	plot.average_ranks
	plot.cover
	plot.parsec
	plot.rank_stability
	pop2prof
	popelem
	proFreq
	rank_stability
	reflexivity
	rmProfiles
	summary.cover
	summary.parsec
	transitiveClosure
	transitivity
	upset
	validate.partialorder.incidence
	var2prof
	vertices
	Index

