Package 'pci'

June 15, 2024

Title A Collection of Process Capability Index Functions

Version 1.0.1

Maintainer Sam Semegne <sam.ahoi@hotmail.com>

Description A collection of process capability index functions, such as C_p(), C_pk(), C_pm(), and others, along with metadata about each, like 'LaTeX' equations and 'R' expressions. Its primary purpose is to form a foundation for other quality control packages to build on top of, by providing basic resources and functions. The indices belong to the field of statistical quality control, and quantify the degree to which a manufacturing process is able to create items that adhere to a certain standard of quality. For details see Montgomery, D. C. (2019, ISBN:978-1-119-39930-8).

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.1

Imports vek (>= 1.0.0)

Depends R (>= 4.0.0)

LazyData true

Suggests tinytest (>= 1.4.1), devtools (>= 2.4.5)

URL https://github.com/samsemegne/pci

NeedsCompilation no

Author Sam Semegne [aut, cre]

Repository CRAN

Date/Publication 2024-06-15 00:30:06 UTC

Contents

$C_p \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	 2
$C_pk\ldots$	 3
C_pl	 4
C_pm	 5
C_pu	 6
pci_info	 7

Index

C_p

 C_p

Description

$$C_p = \frac{\text{USL} - \text{LSL}}{L\sigma}$$

Only vectors of length 1 are recycled.

NA's take precedence over NaN's, e.g. NaN + NA will output NA.

Yields NaN if sigma equals 0.

Usage

C_p(sigma, lsl, usl, dl)

Arguments

sigma	numeric.
lsl	numeric.
usl	numeric.
dl	numeric. L , conventionally set to 6. Must be greater than 0.

Value

double.

References

Montgomery, D. C. (2019). Introduction to statistical quality control (8th ed.). Wiley. ISBN: 978-1-119-39930-8

Examples

```
set.seed(1L)
data = rnorm(n = 30L, mean = 3., sd = 1.)
C_p(sigma = sd(data), lsl = 0., usl = 6., dl = 6.)
# [1] 1.08211
```

8

C_pk

Description

$$C_{pk} = \min(C_{pl}, C_{pu})$$

Note. This function allows for negative C_{pk} values. Only vectors of length 1 are recycled. NA's take precedence over NaN's, e.g. NaN + NA will output NA. Yields NaN if sigma equals 0.

Usage

C_pk(mu, sigma, lsl, usl, dl)

Arguments

mu	numeric.
sigma	numeric.
lsl	numeric.
usl	numeric.
dl	numeric. Conventionally set to 6. Must be greater than 0.

Value

double.

References

Montgomery, D. C. (2019). Introduction to statistical quality control (8th ed.). Wiley. ISBN: 978-1-119-39930-8

See Also

C_pl(), C_pu()

```
set.seed(1L)
data = rnorm(n = 30L, mean = 3., sd = 1.)
C_pk(mu = mean(data), sigma = sd(data), lsl = 0., usl = 6., dl = 6.)
# [1] 1.052367
```

C_pl

 C_pl

Description

$$C_{pl} = \frac{\mu - \text{LSL}}{L\sigma}$$

Note. This function allows for negative C_{pl} values.

Only vectors of length 1 are recycled.

NA's take precedence over NaN's, e.g. NaN + NA will output NA.

Yields NaN if sigma equals 0.

Usage

C_pl(mu, sigma, lsl, l)

Arguments

mu	numeric.
sigma	numeric.
lsl	numeric.
1	numeric. Conventionally set to 3. Must be greater than 0.

Value

double.

References

Montgomery, D. C. (2019). Introduction to statistical quality control (8th ed.). Wiley. ISBN: 978-1-119-39930-8

See Also

C_pu(), C_pk()

```
set.seed(1L)
data = rnorm(n = 30L, mean = 3., sd = 1.)
C_pl(mu = mean(data), sigma = sd(data), lsl = 0., l = 3.)
# [1] 1.111853
```

C_pm

 C_pm

Description

$$C_{pm} = \frac{\text{USL} - \text{LSL}}{L\sqrt{\sigma^2 + (\mu - T)^2}}$$

Only vectors of length 1 are recycled.

NA's take precedence over NaN's, e.g. NaN + NA will output NA.

Yields NaN if sigma == 0 and mu == target.

Usage

C_pm(mu, sigma, target, lsl, usl, dl)

Arguments

mu	numeric.
sigma	numeric.
target	numeric. T.
lsl	numeric.
usl	numeric.
dl	numeric. L , conventionally set to 6. Must be greater than 0.

Value

double.

References

Montgomery, D. C. (2019). Introduction to statistical quality control (8th ed.). Wiley. ISBN: 978-1-119-39930-8

```
set.seed(1L)
data = rnorm(n = 30L, mean = 3., sd = 1.)
C_pm(mu = mean(data), sigma = sd(data), target = 3., lsl = 0., usl = 6., dl = 6.)
# [1] 1.077827
```

C_pu

 C_pu

Description

$$C_{pu} = \frac{\text{USL} - \mu}{L\sigma}$$

Note. This function allows for negative C_{pu} values.

Only vectors of length 1 are recycled.

NA's take precedence over NaN's, e.g. NaN + NA will output NA.

Yields NaN if sigma equals 0.

Usage

C_pu(mu, sigma, usl, 1)

Arguments

mu	numeric.
sigma	numeric.
usl	numeric.
1	numeric. Conventionally set to 3. Must be greater than 0.

Value

double.

References

Montgomery, D. C. (2019). Introduction to statistical quality control (8th ed.). Wiley. ISBN: 978-1-119-39930-8

See Also

C_pl(), C_pk()

```
set.seed(1L)
data = rnorm(n = 30L, mean = 3., sd = 1.)
C_pu(mu = mean(data), sigma = sd(data), usl = 6., l = 3.)
# [1] 1.052367
```

pci_info

Description

Metadata about the process capability indices (PCIs).

Format

pci_info:

- pci_id character. The ID of the PCI. Corresponds to the row name of the data.frame in R.
- **name_r** character. The variable name of the PCI, as may be referred to by other metadata fields that contain R code.
- name_latex character. The name of the PCI in LaTeX format.
- **name_r_expr** character. The name of the PCI in R expression format, useful for working with plot labels or texts in R. To be used with str2expression(text) in R.
- expr_r character. An R expression of the PCI, in expanded form. Variable names match parameter names of the PCI's function provided by the package. Can be used with str2expression(text) in R.
- eq_latex character. An equation of the PCI in LaTeX format.
- attributes AsIs. The attributes column is essentially an unnamed list, thus being a nested data structure. Each element belonging to a PCI is again an unnamed list, which holds the actual attributes for that PCI. Each attribute is a named list. Attributes detail additional technical information about the PCI or its related concepts, e.g. the bounds of the PCI. Note, all information pertains to the PCI's function provided by the package. Each actual attribute has a 'type' (single character) field, may have a 'target' (character) field, followed by fields specific to that attribute type. The 'target' field indicates which entity the attribute belongs to, e.g. the PCI or one of its terms.

Index

C_p, 2 C_pk, 3 C_pk(), 4, 6 C_pl, 4 C_pl(), 3, 6 C_pm, 5 C_pu, 6 C_pu(), 3, 4 pci_info, 7