Package ‘peperr’

March 22, 2023

Type Package

Date 2023-03-21

Title Parallelised Estimation of Prediction Error

Version 1.5

Depends snowfall, survival, methods

Suggests locfit, penalized, codetools

Author Christine Porzelius, Harald Binder

Maintainer Frederic Bertrand <frederic.bertrand@utt.fr>

Description Designed for prediction error estimation
through resampling techniques, possibly accelerated by parallel
execution on a compute cluster. Newly developed model fitting
routines can be easily incorporated. Methods used in the package are detailed in
Porzelius Ch., Binder H. and Schumacher M. (2009) <doi: 10.1093/bioinformatics/btp062>
and were used, for instance, in
Porzelius Ch., Schumacher M.and Binder H. (2011) <doi:10.1007/s00180-011-0236-6>.

License GPL (>=2)
NeedsCompilation yes

RoxygenNote 7.1.1

URL https://github.com/fbertran/peperr/,
https://fbertran.github.io/peperr/

BugReports https://github.com/fbertran/peperr/issues/
Repository CRAN
Date/Publication 2023-03-22 13:40:20 UTC

R topics documented:

aggregation.brier L. e e e e e e e
aggregation.misclass L.
AgEregatiON.PIMPEC v v v e e e e e e e e e e e e e e e
complexity LASSO L

https://doi.org/10.1093/bioinformatics/btp062
https://doi.org/10.1007/s00180-011-0236-6
https://github.com/fbertran/peperr/
https://fbertran.github.io/peperr/
https://github.com/fbertran/peperr/issues/

2 aggregation.brier
extract.fun 6
fitcoxph L e e 7
fitLASSO e 8
IPEC . o o e 8
PEPEIT .« . o i e e e e e e e e 10
PEIT . o o o e e e e 17
PLL . . e 19
PLL.coxph e 20
PIOLPEDPEIT L o o o e e e e e e e e 20
PIMPEC .« . o it e e e e e e e 22
predictProbo 23
predictProb.coxph L 24
predictProb.survfit. L 25
resample.ndices L. oL 25
Index 27
aggregation.brier Determine the Brier score for a fitted model
Description
Evaluate the Brier score, i.e. prediction error, for a fitted model on new data. To be used as argument
aggregation. fun in peperr call.
Usage
aggregation.brier(full.data=NULL, response, x, model, cplx=NULL,
type=c("apparent”, "noinf”), fullsample.attr = NULL, ...)
Arguments
full.data passed from peperr, but not used for calculation of the Brier score.
response vector of binary response.
X nxp matrix of covariates.
model model fitted as returned by a fit. fun, as used in a call to peperr.
cplx passed from peperr, but not necessary for calculation of the Brier score.
type character.
fullsample.attr
passed from peperr, but not necessary for calculation of the Brier score.
additional arguments, passed to predict function.
Details

The empirical Brier score is the mean of the squared difference of the risk prediction and the true
value of all observations and takes values between 0 and 1, where small values indicate good pre-
diction performance of the risk prediction model.

aggregation.misclass 3

Value

Scalar, indicating the empirical Brier score.

aggregation.misclass Determine the missclassification rate for a fitted model

Description

Evaluate the misclassification rate, i.e. prediction error, for a fitted model on new data. To use as
argument aggregation. fun in peperr call.

Usage
aggregation.misclass(full.data=NULL, response, x, model, cplx=NULL,
type=c("apparent”, "noinf"), fullsample.attr = NULL, ...)
Arguments
full.data passed from peperr, but not used for calculation of the misclassification rate.
response vector of binary response.
X n*p matrix of covariates.
model model fitted with fit. fun.
cplx passed from peperr, but not necessary for calculation of the misclassification
rate.
type character.

fullsample.attr
passed from peperr, but not necessary for calculation of the misclassification
rate.

additional arguments, passed to predict function.

Details

Misclassification rate is the ratio of observations for which prediction of response is wrong.

Value

Scalar, indicating the misclassification rate.

aggregation.pmpec

aggregation.pmpec

Determine the prediction error curve for a fitted model

Description

Interface to pmpec,

for conforming to the structure required by the argument aggregation.fun in

peperr call. Evaluates the prediction error curve, i.e. the Brier score tracked over time, for a fitted

survival model.

Usage
aggregation.pmpec(full.data, response, x, model, cplx=NULL, times = NULL,
type=c("apparent”, "noinf"), fullsample.attr = NULL, ...)
Arguments
full.data data frame with full data set.
response Either a survival object (with Surv(time, status), where time is an n-vector
of censored survival times and status an n-vector containing event status, coded
with 0 and 1) or a matrix with columns time containing survival times and
status containing integers, where 0 indicates censoring, 1 the interesting event
and larger numbers other competing risks.
X nxp matrix of covariates.
model survival model as returned by fit.fun as used in call to peperr.
cplx numeric, number of boosting steps or list, containing number of boosting steps
in argument stepno.
times vector of evaluation time points. If given, used as well as in calculation of
full apparent and no-information error as in resampling procedure. Not used if
fullsample.attr is specified.
type character.

fullsample.attr

Details

vector of evaluation time points, passed in resampling procedure. Either user-
defined, if times were passed as args.aggregation, or the determined time
points from the aggregation. fun call with the full data set.

additional arguments passed to pmpec call.

If no evaluation time points are passed, they are generated using all uncensored time points if their
number is smaller than 100, or 100 time points up to the 95% quantile of the uncensored time points

are taken.

pmpec requires a predictProb method for the class of the fitted model, i.e. for a model of class

class predictPro

b.class.

complexity. LASSO 5

Value
A matrix with one row. Each column represents the estimated prediction error of the fit at the time
points.

See Also

peperr, predictProb, pmpec

complexity.LASSO Interface for selection of optimal parameter for lasso fit

Description

Determines the optimal value for tuning parameter lambda for a regression model with lasso penal-
ties via cross-validation. Conforming to the calling convention required by argument complexity
in peperr call.

Usage

complexity.LASSO(response, x, full.data, ...)
Arguments

response a survival object (Surv(time, status)).

X nxp matrix of covariates.

full.data data frame containing response and covariates of the full data set.

additional arguments passed to optL1 of package penalized call.

Details

Function is basically a wrapper around optL1 of package penalized. Calling peperr, default argu-
ments of optL1 can be changed by passing a named list containing these as argument args. complexity.

Value

Scalar value giving the optimal value for lambda.

See Also

peperr, optL1

6 extract.fun

extract.fun Extract functions, libraries and global variables to be loaded onto a
compute cluster

Description
Automatic extraction of functions, libraries and global variables employed passed functions. De-
signed for peperr call, see Details section there.

Usage

extract.fun(funs = NULL)

Arguments

funs list of function names.

Details

This function is necessary for compute cluster situations where for computation on nodes required
functions, libraries and variables have to be loaded explicitly on each node. Avoids loading of whole
global environment which might include the unnecessary loading of huge data sets.

It might have problems in some cases, especially it is not able to extract the library of a function that
has no namespace. Similarly, it can only extract a required library if it is loaded, or if the function
contains a require or library call.

Value

list containing

packages vector containing quoted names of libraries
functions vector containing quoted names of functions
variables vector containing quoted names of global variables
See Also
peperr
Examples

1. Simplified example for illustration
Not run:

library(CoxBoost)

a <- function(){

some calculation

}

b<-function(){

fit.coxph 7

some other calculation
X <- cv.CoxBoost()

z is global variable
y <= a(2)

3

list with packages, functions and variables required for b:
extract.fun(list(b))

2. As called by default in peperr example
extract.fun(list(fit.CoxBoost, aggregation.pmpec))

End(Not run)

fit.coxph Interface function for fitting a Cox proportional hazards model

Description

Interface for fitting survival models by Cox proporional hazards model, conforming to the require-
ments for argument fit.fun in peperr call.

Usage

fit.coxph(response, x, cplx, ...)
Arguments

response a survival object (with Surv(time, status)).

X n*p matrix of covariates.

cplx not used.

additional arguments passed to coxph call.

Details

Function is basically a wrapper around coxph of package survival.

Value

CoxBoost object

See Also

peperr, coxph

8 ipec

fit.LASSO Interface function for fitting a generalised linear model with the lasso

Description

Interface for fitting survival models with the lasso, conforming to the requirements of argument
fit.fun in peperr call.

Usage
fit.LASSO(response, x, cplx, ...)
Arguments
response response. Could be numeric vector for linear regression, Surv object for Cox
regression or a binary vector for logistic regression.
X nxp matrix of covariates.
cplx LASSO penalty. 1lambdal of penalized call.
additional arguments passed to penalized call.
Details

Function is basically a wrapper around function penalized of package penalized.

Value

penfit object

See Also

peperr, penalized

ipec Integrated prediction error curve

Description

Summary measures of prediction error curves

Usage

ipec(pe, eval.times, type=c(”"Riemann”, "Lebesgue”, "relativelLebesgue”), response=NULL)

ipec

Arguments

pe

eval.times

type

response

Details

prediction error at different time points. Vector of length of eval.times or ma-
trix (columns correspond to evaluation time points, rows to different prediction
error estimates)

evalutation time points

type of integration. 'Riemann’ estimates Riemann integral, ’Lebesgue’ uses the
probability density as weights, while ’relativeLebesgue’ delivers the difference
to the null model (using the same weights as for Lebesgue’).

survival object (Surv(time, status)), required only if type is 'Lebesgue’ or
‘relativeLebesgue’

For survival data, prediction error at each evaluation time point can be extracted of a peperr object
by function perr. A summary measure can then be obtained via intgrating over time. Note that the
time points used for evaluation are stored in list element attribute of the peperr object.

Value

ipec

See Also

perr

Examples

Not run:
n <- 200
p <- 100

Value of integrated prediction error curve. Integer or vector, if pe is vector or
matrix, respectively, i.e. one entry per row of the passed matrix.

beta <- c(rep(1,10),rep(@,p-10))

x <= matrix(rnorm(n*p),n,p)

real.time <- -(log(runif(n)))/(10xexp(drop(x %*% beta)))
cens.time <- rexp(n,rate=1/10)

status <- ifelse(real.time <= cens.time,1,0)

time <- ifelse(real.time <= cens.time,real.time,cens.time)

Example:

#
#
using CoxBoost
#
#
#

peperr.object <-

Obtain prediction error estimate fitting a Cox proportional hazards model

through 10 bootstrap samples
with fixed complexity 50 and 75
and aggregate using prediction error curves

peperr(response=Surv(time, status), x=x,

fit.fun=fit.CoxBoost, complexity=c(50, 75),
indices=resample.indices(n=length(time), method="sub632"”, sample.n=10))
632+ estimate for both complexity values at each time point
prederr <- perr(peperr.object)
Integrated prediction error curve for both complexity values

10 peperr

ipec(prederr, eval.times=peperr.object$attribute, response=Surv(time, status))

End(Not run)

peperr Parallelised Estimation of Prediction Error

Description

Prediction error estimation for regression models via resampling techniques. Potentially paral-
lelised, if compute cluster is available.

Usage

peperr(response, X,
indices = NULL,
fit.fun, complexity = NULL, args.fit = NULL, args.complexity = NULL,
parallel = NULL, cpus = 2, clustertype=NULL, clusterhosts=NULL,
noclusterstart = FALSE, noclusterstop=FALSE,
aggregation.fun=NULL, args.aggregation = NULL,
load.list = extract.fun(list(fit.fun, complexity, aggregation.fun)),
load.vars = NULL, load.all = FALSE,
trace = FALSE, debug = FALSE,
peperr.lib.loc=NULL,
RNG=c ("RNGstream”, "SPRNG"”, "fixed"”, "none"), seed=NULL,
1b=FALSE, sr=FALSE, sr.name="default", sr.restore=FALSE)

Arguments

response Either a survival object (with Surv(time, status), where time is an n-vector
of censored survival times and status an n-vector containing event status, coded
with 0 and 1) or a matrix with columns time containing survival times and
status containing integers, where 0 indicates censoring, 1 the interesting event
and larger numbers other competing risks. In case of binary response, vector
with entries 0 and 1.

X nxp matrix of covariates.

indices named list, with two elements (both expected to be lists) sample.index, con-

taining the vector of indices of observations used to fit the model, and list
not.in.sample, containing the vector of indices of observations used for as-
sessment. One list entry per split. Function resample.indices provides the
most common resampling methods. If argument indices is not specified (de-
fault), the indices are determined as follows: If number of observations in the
passed data matrix is smaller than number of covariates, 500 bootstrap samples
without replacement are generated ("subsampling"), else 500 bootstrap samples
with replacement.

fit.fun function returning a fitted model, see Details.

peperr 11

complexity if the choice of a complexity parameter is necessary, for example the number of
boosting steps in boosting techniques, a function returning complexity parame-
ter for model fitted with fit.fun, see Details. Alternatively, one explicit value for
the complexity or a vector of values can be passed. In the latter case, the model
fit is carried out for each of the complexity parameters. Alternatively, a named
list can be passed, if complexity is a tuple of different parameter values.

args.fit named list of arguments to be passed to the function given in fit. fun.
args.complexity
if complexity is a function, a named list of arguments to be passed to this
function.

parallel the default setting corresponds to the case that sfCluster is used or if R runs
sequential, i.e. without any parallelisation. If sfCluster is used, settings from
sfCluster commandline call are taken, i.e. the required number of nodes has to
be specified as option of the sfCluster call (and not using argument cpus). If
another cluster solution (specified by argument clustertype) shall be used, a
cluster with cpus CPUs is started if parallel=TRUE. parallel=FALSE switches
back to sequential execution. See Details.

cpus number of nodes, i.e., number of parallel running R processes, to be set up in a
cluster, if not specified by commandline call. Only needed if parallel=TRUE.

clustertype type of cluster, character. ’SOCK” for socket cluster, ' MPI’, ’'PVM’ or 'NWS’.
Only considered if parallel=TRUE. If so, a socket cluster, which does not re-
quire any additional installation, is started as default.

clusterhosts host list for socket and NWS clusters, if parallel=TRUE. Has to be specified
only if using more than one machine.

noclusterstart if function is used in already parallelised code. If set to TRUE, no cluster is
initialised even if a compute cluster is available and function works in sequen-
tial mode. Additionally usable if calls on the slaves should be executed before
calling function peperr, for example to load data on slaves, see Details.

noclusterstop if TRUE, cluster stop is suppressed. Useful for debugging of sessions on slaves.

Note that the next peperr call forces cluster stop, except if called with noclusterstart=TRUE.
aggregation.fun

function that evaluates the prediction error for a model fitted by the function

given in fit. fun, see Details. If not specified, function aggregation.pmpec is

taken if response is survival object, in case of binary response function aggregation.brier.
args.aggregation

named list of arguments to be passed to the function given in argument aggregation. fun.

load.list a named list with element packages, functions and variables containing
quoted names of libraries, functions and global variables required for compu-
tation on cluster nodes. The default extracts automatically the libraries, func-
tions and global variables of the, potentially user-defined, functions fit. fun,
complexity and aggregation.fun, see function extract.fun. Can be set to
NULL, e.g. if no libraries, functions and variables are needed. Alternatively,
use argument load.all. See Details.

load.vars anamed list with global variables required for computation on cluster nodes. See
Details. Relict, global variabels can now be passed as list element variables
of argument load.list.

12 peperr

load.all logical. If set to TRUE, all variables, functions and libraries of the current global
environment are loaded on cluster nodes. See Details.

trace logical. If TRUE, output about the current execution step is printed (if running
parallel: printed on nodes, that means not visible in master R process, see De-
tails).

debug if TRUE, information concerning export of variables is given.

peperr.lib.loc location of package peperr if not in standard library search path (. 1ibPaths()),
to be specified for loading peperr onto the cluster nodes.

RNG type of RNG. "fixed"” requires a specified seed. "RNGstream” and "SPRNG"
use default seeds, if not specified. See Details.

seed seed to allow reproducibility of results. Only considered if argument RNG is not
"none”. See Details.

1b if TRUE and a compute cluster is used, computation of slaves is executed load
balanced. See Details.

sr if TRUE, intermediate results are saved. If execution is interrupted, they can be
restored by setting argument sr.restore to TRUE. See documentation of package
snowfall for details

Sr.name if sr is set to TRUE and more than one computation runs simultaneously, unique
names need to be used.

sr.restore if sr is set to TRUE, an interrupted computation is restarted.

Details

Validation of new model fitting approaches requires the proper use of resampling techniques for
prediction error estimation. Especially in high-dimensional data situations the computational de-
mand might be huge. peperr accelerates computation through automatically parallelisation of the
resampling procedure, if a compute cluster is available. A noticeable speed-up is reached even when
using a dual-core processor.

Resampling based prediction error estimation requires for each split in training and test data the
following steps: a) selection of model complexity (if desired), using the training data set, b) fitting
the model with the selected (or a given) complexity on the training set and c¢) measurement of
prediction error on the corresponding test set.

Functions for fitting the model, determination of model complexity, if required by the fitting pro-
cedure, and aggregating the prediction error are passed as arguments fit.fun, complexity and
aggregation. fun. Already available functions are

for model fit: fit.CoxBoost, fit.coxph, fit.LASSO, fit.rsf_mtry

to determine complexity: complexity.mincv.CoxBoost, complexity.ipec.CoxBoost, complexity.LASSO,
complexity.ipec.rsf_mtry

to aggregate prediction error: aggregation.pmpec, aggregation.brier, aggregation.misclass

Function peperr is especially designed for evaluation of newly developed model fitting routines.
For that, own routines can be passed as arguments to the peperr call. They are incorporated as
follows (also compare existing functions, as named above):

peperr 13

1. Model fitting techniques, which require selection of one or more complexity parameters, of-
ten provide routines based on cross-validation or similar to determine this parameter. If this
routine is already at hand, the complexity function needed for the peperr call is not more than
a wrapper around that, which consists of providing the data in the required way, calling the
routine and return the selected complexity value(s).

2. For a given model fitting routine the fitting function, which is passed to the peperr call as
argument fit.fun, is not more than a wrapper around that. Explicitly, response and matrix of
covariates have to be transformed to the required form, if necessary, the routine is called with
the passed complexity value, if required, and the fitted prediction model is returned.

3. Prediction error is estimated using a fitted model and a data set, by any kind of comparison of
the true and the predicted response values. In case of survival response, apparent error (type
apparent), which means that the prediction error is estimated in the same data set as used for
model fitting, and no-information error (type noinf), which calculates the prediction error in
permuted data, have to be provided. Note that the aggregation function returns the error with
an additional attribute called addattr. The evaluation time points have to be stored there to
allow later access.

4. In case of survival response, the user may additionally provide a function for partial log like-
lihood calculation, if he uses an own function for model fit, called PLL.class. If prediction
error curves are used for aggregation (aggregation.pmpec), a predictProb method has to be
provided, i.e. for each model of class class predictProb.class, see there.

Concerning parallelisation, there are three possibilities to run peperr:

 Start R on commandline with sfCluster and preferred options, for example number of cpus.
Leave the three arguments parallel, clustertype and nodes unchanged.

* Use any other cluster solution supported by snowfall, i.e. LAM/MPI, socket, PVM, NWS (set
argument clustertype). Argument parallel has to be set to TRUE and number of cpus can
be chosen by argument nodes)

* If no cluster is used, R works sequentially. Keep parallel=NULL. No parallelisation takes
place and therefore no speed up can be obtained.

In general, if parallel=NULL, all information concerning the cluster set-up is taken from comman-
dline, else, it can be specified using the three arguments parallel, clustertype, nodes, and, if
necessary, clusterhosts.

sfCluster is a Unix tool for flexible and comfortable managment of parallel R processes. However,
peperr is usable with any other cluster solution supported by snowfall, i.e. sfCluster has not to
be installed to use package peperr. Note that this may require cluster handling by the user, e.g.
manually shut down with ’lamhalt’ on commandline for type="MPI". But, using a socket cluster
(argument parallel=TRUE and clustertype="S0CK"), does not require any extra installation.

Note that the run time cannot speed up anymore if the number of nodes is chosen higher than the
number of passed training/test samples plus one, as parallelisation takes place in the resampling
procedure and one additional run is used for computation on the full sample.

If not running in sequential mode, a specified number of R processes called nodes is spawned
for parallel execution of the resampling procedure (see above). This requires to provide all vari-
ables, functions and libraries necessary for computation on each of these R processes, so explicitly
all variables, functions and libraries required by the, potentially user-defined, functions fit. fun,
complexity and aggregation.fun. The simplest possibility is to load the whole content of

14 peperr

the global environment on each node and all loaded libraries. This is done by setting argument
load. all=TRUE. This is not the default, as a huge amount of data is potentially loaded to each node
unnecessarily. Function extract.fun is provided to extract the functions and libraries needed,
automatically called at each call of function peperr. Note that all required libraries have to be
located in the standard library search path (obtained by .libPaths()). Another alternative is to
load required data manually on the slaves, using snowfall functions sfLibrary, sfExport and
sfExportAll. Then, argument noclusterstart has to be switched to TRUE. Additionally, argu-
ment load.list could be set to NULL, to avoid potentially overwriting of functions and variables
loaded to the cluster nodes automatically.

Note that a set. seed call before calling function peperr is not sufficient to allow reproducibility
of results when running in parallel mode, as the slave R processes are not affected as they are own
R instances. peperr provides two possibilities to make results reproducible:

* Use RNG="RNGstream” or RNG="SPRNG". Independent parallel random number streams are
initialized on the cluster nodes, using function sfClusterSetupRNG of package snowfall. A
seed can be specified using argument seed, else the default values are taken. A set.seed call
on the master is required additionally and argument 1b=FALSE, see below.

» If RNG="f1ixed", a seed has to be specified. This can be either an integer or a vector of length
number of samples +2. In the second case, the first entry is used for the main R process,
the next number of samples ones for each sample run (in parallel execution mode on slave
R processes) and the last one for computation on full sample (as well on slave R process in
parallel execution mode). Passing integer x is equivalent to passing vector x+(@: (number of
samples+1)). This procedure allows reproducibility in any case, i.e. also if the number of
parallel processes changes as well as in sequential execution.

Load balancing (argument 1b) means, that a slave gets a new job immediately after the previous is
finished. This speeds up computation, but may change the order of jobs. Due to that, results are
only reproducible, if RNG="fixed" is used.

Value
Object of class peperr

indices list of resampling indices.

complexity passed complexity. If argument complexity not specified, O.
selected.complexity

selected complexity for the full data set, if complexity was passed as function.
Else equal to value complexity.

response passed response.

full.model.fit List, one entry per complexity value. Fitted model of the full data set by passed
fit.fun.

full.apparent full apparent error of the full data set. Matrix: One row per complexity value. In
case of survival response, columns correspond to evaluation timepoints, which
are returned in value attribute.

noinf.error No information error of the full data set, i. e. evaluation in permuted data.
Matrix: One row per complexity value. Columns correspond to evaluation time-
points, which are returned in attribute.

peperr 15

attribute if response is survival: Evaluation time points. Passed in args.aggregation or
automatically determined by aggregation function. Otherwise, if available, extra
attribute returned by aggregation function, else NULL, see Details.

sample.error list. Each entry contains matrix of prediction error for one resampling test sam-
ple. One row per complexity value.

sample.complexity
vector of complexity values. Equals value complexity, if complexity value was
passed explicitly, otherwise by function complexity selected complexity value
for each resampling sample. If argument complexity not specified, 0.

sample.lipec only, if response is survival. Lebesgue integrated prediction error curve for each
sample. List with one entry per sample, each a matrix with one row per com-
plexity value.

sample.pll only, if response is survival and PLL.class function available. Predictive partial
log likelihood for each sample. List with one entry per sample, each a matrix
with one row per complexity value.

null.model.fit only, if response is survival or binary. Fit of null model, i.e. fit without infor-
mation of covariates. In case of survival response Kaplan-Meier, else logistic
regression model.

null.model only, if response is survival or binary. Vector or scalar: Prediction error of the
null model, in case of survival response at each evaluation time point.

sample.null.model
list. Prediction error of the null model for one resampling test sample. Matrix,
one row per complexity value.

Author(s)

Christine Porzelius <cp@fdm.uni-freiburg.de>, Harald Binder

References

Binder, H. and Schumacher, M. (2008) Adapting prediction error estimates for biased complexity
selection in high-dimensional bootstrap samples. Statistical Applications in Genetics and Molecular
Biology, 7:1.

Porzelius, C., Binder, H., Schumacher, M. (2008) Parallelised prediction error estimation for eval-
uation of high-dimensional models. Manuscript.

See Also

perr, resample.indices, extract.fun

Examples

Generate survival data with 10 informative covariates

Not run:
n <- 200
p <- 100

beta <- c(rep(1,10),rep(0,p-10))
x <= matrix(rnorm(nxp),n,p)

16

peperr

real.time <- -(log(runif(n)))/(10*xexp(drop(x

cens.time <- rexp(n,rate=1/10)

status <- ifelse(real.time <= cens.time,1,0)

time <- ifelse(real.time <= cens.time,real.time,cens.time)

A: R runs sequential or R is started on commandline with desired options

(for example using sfCluster: sfCluster -i --cpus=5)

Example A1l:

Obtain prediction error estimate fitting a Cox proportional hazards model

using CoxBoost

through 10 bootstrap samples

with fixed complexity 5@ and 75

and aggregate using prediction error curves (default setting)

peperr.objectl <- peperr(response=Surv(time, status), x=x,
fit.fun=fit.CoxBoost, complexity=c(50, 75),
indices=resample.indices(n=length(time), method="sub632", sample.n=10))

peperr.objectl

Diagnostic plots
plot(peperr.objectl)

Extraction of prediction error curves (.632+ prediction error estimate),
blue line corresponds to complexity 50,
red one to complexity 75
plot(peperr.objecti$attribute,

perr(peperr.object1)[1,]1, type="1", col="blue",

xlab="Evaluation time points”, ylab="Prediction error")
lines(peperr.objecti$attribute,

perr(peperr.object1)[2,], col="red")

Example A2:

As Example A1, but

with complexity selected through a cross-validation procedure

and extra argument 'penalty' passed to fit function and complexity function

peperr.object2 <- peperr(response=Surv(time, status), x=x,
fit.fun=fit.CoxBoost, args.fit=list(penalty=100),
complexity=complexity.mincv.CoxBoost, args.complexity=list(penalty=100),
indices=resample.indices(n=length(time), method="sub632"”, sample.n=10),
trace=TRUE)

peperr.object?2

Diagnostic plots
plot(peperr.object2)

Example A3:

As Example A2, but

with extra argument 'times', specifying the evaluation times passed to aggregation.fun
and seed, for reproducibility of results

Note: set.seed() is required additional to argument 'seed',

as function 'resample.indices' is used in peperr call.

set.seed(123)

peperr.object3 <- peperr(response=Surv(time, status), x=x,

perr 17

fit.fun=fit.CoxBoost, args.fit=list(penalty=100),
complexity=complexity.mincv.CoxBoost, args.complexity=1list(penalty=100),
indices=resample.indices(n=length(time), method="sub632"”, sample.n=10),
args.aggregation=list(times=seq(@, quantile(time, probs=0.9), length.out=100)),
trace=TRUE, RNG="fixed", seed=321)

peperr.object3

Diagnostic plots
plot(peperr.object3)

B: R is started sequential, desired cluster options are given as arguments

Example B1:

As example A1, but using a socket cluster and 3 CPUs

peperr.object4 <- peperr(response=Surv(time, status), x=x,
fit.fun=fit.CoxBoost, complexity=c(50, 75),
indices=resample.indices(n=length(time), method="sub632", sample.n=10),
parallel=TRUE, clustertype="SOCK", cpus=3)

End(Not run)

perr Prediction error estimates

Description

Extracts prediction error estimates from peperr objects.

Usage
perr(peperrobject,
type = c("632p"”, "632", "apparent”, "NoInf", "resample”, "nullmodel”))
Arguments

peperrobject peperr object obtained by call to function peperr.

type "632p" for the .632+ prediction error estimate (default), "632" for the .632 pre-
diction error estimate. "apparent”, "NoInf"”, "resample” and "nullmodel”
return the apparent error, the no-information error, the mean sample error and
the nullmodel fit, see Details.

Details

The .632 and the .632+ prediction error estimates are weighted combinations of the apparent error
and bootstrap cross-validation error estimate, for survival data at given time points.

18 perr

Value

If type="632p" or type="632": Prediction error: Matrix, with one row per complexity value.

If type="apparent”: Apparent error of the full data set. Matrix: One row per complexity value. In
case of survival response, columns correspond to evaluation timepoints, which are given in attribute
addattr.

If type="NoInf": No-information error of the full data set, i. e. evaluation in permuted data.
Matrix: One row per complexity value. Columns correspond to evaluation timepoints, which are
given in attribute addattr.

If type="resample”: Matrix. Mean prediction error of resampling test samples, one row per com-
plexity value.

If type="nullmodel"”: Vector or scalar: Null model prediction error, i.e. of fit without information
of covariates. In case of survival response Kaplan-Meier estimate at each time point, if response is
binary logistic regression model, else not available.

References

Binder, H. and Schumacher, M. (2008) Adapting prediction error estimates for biased complexity
selection in high-dimensional bootstrap samples. Statistical Applications in Genetics and Molecular
Biology, 7:1.

Gerds, T. and Schumacher, M. (2007) Efron-type measures of prediction error for survival analysis.
Biometrics, 63, 1283-1287.

Schumacher, M. and Binder, H., and Gerds, T. (2007) Assessment of Survival Prediction Models in
High-Dimensional Settings. Bioinformatics, 23, 1768-1774.

See Also

peperr, ipec

Examples

Not run:

n <- 200

p <- 100

beta <- c(rep(1,10),rep(@,p-10))

x <= matrix(rnorm(nxp),n,p)

real.time <- -(log(runif(n)))/(10xexp(drop(x %*% beta)))
cens.time <- rexp(n,rate=1/10)

status <- ifelse(real.time <= cens.time,1,0)

time <- ifelse(real.time <= cens.time,real.time,cens.time)

Example:

Obtain prediction error estimate fitting a Cox proportional hazards model
using CoxBoost

through 10 bootstrap samples

with fixed complexity 50 and 75

and aggregate using prediction error curves

peperr.object <- peperr(response=Surv(time, status), x=x,
fit.fun=fit.CoxBoost, complexity=c(50, 75),

% o H W

PLL 19

indices=resample.indices(n=1length(time), method="sub632", sample.n=10))
632+ estimate for both complexity values at each time point
perr(peperr.object)

End(Not run)

PLL Generic function for extracting the predictive partial log-likelihood

Description

Generic function for extracting th predictive partial log-likelihood from a fitted survival model.

Usage
PLL(object, newdata, newtime, newstatus, ...)
Arguments
object fitted model of class class.
newdata n_new*p matrix of covariates.
newtime n_new-vector of censored survival times.
newstatus n_new-vector of event status, coded with 0 for censoring and 1, if an event oc-
curred.
additional arguments, for example complexity value, if necessary.
Details

The predictive partial log-likelihood measures the prediction performance of each model fitted in
a boostrap sample, using the data not in this sample. Multiplying by (-2) leads to a deviance-like
measure, which means that small values indicate good prediction performance.

peperr requires function PLL . class in case of survival response, for each model fit of class class.
At the time, PLL.CoxBoost is available.

Value

Vector of length n_new

20 plot.peperr

PLL.coxph Predictive partial log-likelihood for Cox poportional hazards model

Description

Extracts the predictive partial log-likelihood from a coxph model fit.

Usage
S3 method for class 'coxph'
PLL(object, newdata, newtime, newstatus, complexity, ...)
Arguments
object fitted model of class coxph.
newdata n_newxp matrix of covariates.
newtime n_new-vector of censored survival times.
newstatus n_new-vector of survival status, coded with 0 and .1
complexity not used.

additional arguments, not used.

Details

Used by function peperr, if function fit. coxph is used for model fit.

Value

Vector of length n_new

plot.peperr Plot method for peperr object

Description

Plots, allowing to get a first impression of the prediction error estimates and to check complexity
selection in bootstrap samples.

Usage

S3 method for class 'peperr'
plot(x, vy, ...)

plot.peperr 21

Arguments
X peperr object.
y not used.
additional arguments, not used.
Details

The plots provide a simple and fast overview of the results of the estimation of the prediction error
through resampling. Which plots are shown depends on if complexity was selected, i.e., a function
was passed in the peperr call for complexity, or explicitly passed. In case of survival response,
prediction error curves are shown. In case of binary response, where one complexity value is passed
explicitly, no plot is available. Especially in the case that complexity is selected in each bootstrap
sample, these diagnostic plots help to check whether the resampling procedure works adequately
and to detect specific problems due to high-dimensional data structures.

Examples

Not run:

n <- 200

p <- 100

beta <- c(rep(1,10),rep(@,p-10))

x <= matrix(rnorm(n*p),n,p)

real.time <- -(log(runif(n)))/(10xexp(drop(x %*% beta)))
cens.time <- rexp(n,rate=1/10)

status <- ifelse(real.time <= cens.time,1,0)

time <- ifelse(real.time <= cens.time,real.time,cens.time)

peperr.objectl <- peperr(response=Surv(time, status), x=x,
fit.fun=fit.CoxBoost, complexity=c(50, 75),
indices=resample.indices(n=1length(time), method="sub632", sample.n=10))
plot(peperr.objectl)

peperr.object2 <- peperr(response=Surv(time, status), x=x,
fit.fun=fit.CoxBoost, args.fit=list(penalty=100),
complexity=complexity.mincv.CoxBoost, args.complexity=list(penalty=100),
indices=resample.indices(n=length(time), method="sub632", sample.n=10),
trace=TRUE)

plot(peperr.object2)

peperr.object3 <- peperr(response=Surv(time, status), x=x,
fit.fun=fit.CoxBoost, args.fit=list(penalty=100),
complexity=complexity.mincv.CoxBoost, args.complexity=list(penalty=100),
indices=resample.indices(n=length(time), method="sub632", sample.n=10),
args.aggregation=list(times=seq(@, quantile(time, probs=0.9), length.out=100)),
trace=TRUE)

plot(peperr.object3)

End(Not run)

22

pmpec

pmpec

Calculate prediction error curves

Description

Calculation of prediction error curve from a survival response and predicted probabilities of sur-

vival

Usage

pmpe

c(object, response=NULL, x=NULL, times, model.args=NULL,
type=c("PErr","NoInf"), external.time=NULL, external.status=NULL,
data=NULL)

Arguments

object fitted model of a class for which the interface function predictProb.class is
available.

response Either a survival object (with Surv(time, status), where time is an n-vector
of censored survival times and status an n-vector containing event status, coded
with 0 and 1) or a matrix with columns time containing survival times and
status containing integers, where 0 indicates censoring, 1 the interesting event
and larger numbers other competing risks.

X nxp matrix of covariates.

times vector of time points at which the prediction error is to be estimated.

model.args named list of additional arguments, e.g. complexity value, which are to be
passed to predictProb function.

type type of output: Estimated prediction error (default) or no information error (pre-
diction error obtained by permuting the data).

external.time optional vector of time points, used for censoring distribution.

exte

data

Details

rnal.status
optional vector of status values, used for censoring distribution.

Data frame containing n-vector of observed times ("time’), n-vector of event
status (’status’) and n*p matrix of covariates (remaining entries). Alternatively

to response and x, for compatibility to pec.

Prediction error of survival data is measured by the Brier score, which considers the squared differ-
ence of the true event status at a given time point and the predicted event status by a risk prediction
model at that time. A prediction error curve is the weighted mean Brier score as a function of time
at time points in times (see References).

pmpec requires a predictProb method for the class of the fitted model, i.e. for a model of class

clas

s predictProb.class.

predictProb 23

pmpec is implemented to behave similar to function pec of package pec, which provides several
predictProb methods.

In bootstrap framework, data contains only a part of the full data set. For censoring distribution, the
full data should be used to avoid extreme variance in case of small data sets. For that, the observed
times and status values can be passed as argument external.time and external.status.

Value

Vector of prediction error estimates at each time point given in time.

Author(s)
Harald Binder

References

Gerds, A. and Schumacher, M. (2006) Consistent estimation of the expected Brier score in general
survival models with right-censored event times. Biometrical Journal, 48, 1029-1040.

Schoop, R. (2008) Predictive accuracy of failure time models with longitudinal covariates. PhD
thesis, University of Freiburg. http://www.freidok.uni-freiburg.de/volltexte/4995/.

See Also

predictProb, pec

predictProb Generic function for extracting predicted survival probabilities

Description

Generic function for extraction of predicted survival probabilities from a fitted survival model con-
forming to the interface required by pmpec.

Usage
predictProb(object, response, x, ...)
Arguments
object a fitted survival model.
response Either a survival object (with Surv(time, status), where time is an n-vector
of censored survival times and status an n-vector containing event status, coded
with 0 and 1) or a matrix with columns time containing survival times and
status containing integers, where 0 indicates censoring, 1 the interesting event
and larger numbers other competing risks. In case of binary response, vector
with entries O and 1.
X nxp matrix of covariates.

additional arguments, for example model complexity or, in case of survival re-
sponse, argument times, a vector containing evaluation times.

24 predictProb.coxph

Details

pmpec requires a predictProb.class function for each model fit of class class. It extracts the
predicted probability of survival from this model.

See existing predictProb functions, at the time predictProb.CoxBoost, predictProb.coxph
and predictProb.survfit.

If desired predictProb function for class class is not available in peperr, but implemented in
package pec as predictSurvProb. class, it can easily be transformed as predictProb method.

Value

Matrix with predicted probabilities for each evaluation time point in times (columns) and each new
observation (rows).

predictProb.coxph Extract predicted survival probabilities from a coxph object

Description

Extracts predicted survival probabilities for survival models fitted by Cox proportional hazards
model, providing an interface as required by pmpec.

Usage
S3 method for class 'coxph'
predictProb(object, response, x, times, ...)
Arguments
object a fitted model of class coxph.
response survival object (with Surv(time, status), where time is an n-vector of cen-
sored survival times and status an n-vector containing survival status, coded
with 0 and 1.
X n*p matrix of covariates.
times vector of evaluation time points.

additional arguments, currently not used.

Value

Matrix with probabilities for each evaluation time point in times(columns) and each new observa-
tion (rows).

predictProb.survfit 25

predictProb.survfit Extract predicted survival probabilities from a survfit object

Description

Extracts predicted survival probabilities for survival models fitted by survfit, providing an inter-
face as required by pmpec.

Usage
S3 method for class 'survfit'
predictProb(object, response, x, times, train.data, ...)
Arguments
object a fitted model of class survfit.
response survival object (with Surv(time, status), where time is an n-vector of cen-
sored survival times and status an n-vector containing survival status, coded
with 0 and 1.
X n*p matrix of covariates.
times vector of evaluation time points.
train.data not used.

additional arguments, currently not used.

Value

Matrix with probabilities for each evaluation time point in times(columns) and each new observa-
tion (rows).

resample.indices Generation of indices for resampling Procedure

Description

Generates training and test set indices for use in resampling estimation of prediction error, e.g.
cross-validation or bootstrap (with and without replacement).

Usage

resample.indices(n, sample.n = 100, method = c("no", "cv" ,"boot”, "sub632"))

26

Arguments

n
sample.n

method

Details

resample.indices

number of observations of the full data set.

the number of bootstrap samples in case of method="boot" and the number
of cross-validation subsets in case of method="cv", e.g. 10 for 10-fold cross-
validation. Not considered if method="no", where number of samples is one
(the full data set) by definition.

by default, the training set indices are the same as the test set indices, i.e. the
model is assessed in the same data as fitted ("no"”). "cv": Cross-validation,
"boot": Bootstrap (with replacement), "sub632": Boostrap without replace-
ment, also called subsampling. In the latter case, the number of observations in
each sample equals round(@.632 * n), see Details.

As each bootstrap sample should be taken as if new data, complexity selection should be carried
out in each bootstrap sample. Binder and Schumacher show that when bootstrap samples are drawn
with replacement, often too complex models are obtained in high-dimensional data settings. They
recommend to draw bootstrap samples without replacement, each of size round(0.632 * n), which
equals the expected number of unique observations in one bootstrap sample drawn with replace-
ment, to avoid biased complexity selection and improve predictive power of the resulting models.

Value

A list containing two lists of length sample.n:

sample. index
not.in.sample

References

contains in each element the indices of observations of one training set.

contains in each element the indices of observations of one test set, correspond-
ing to the training set in listelement sample. index.

Binder, H. and Schumacher, M. (2008) Adapting prediction error estimates for biased complexity
selection in high-dimensional bootstrap samples. Statistical Applications in Genetics and Molecular

Biology, 7:1.

See Also

peperr

Examples

generate dataset: 100 patients, 20 covariates
data <- matrix(rnorm(2000), nrow=100)

generate indices for training and test data for 10-fold cross-validation
indices <- resample.indices(n=100, sample.n = 10, method = "cv")

create training and test data via indices
trainingsamplel <- datal[indices$sample.index[[1]],]
testsamplel <- datal[indices$not.in.sample[[1]1],]

Index

+ models
aggregation.brier, 2
aggregation.misclass, 3
aggregation.pmpec, 4
complexity.LASSO, 5
extract.fun, 6
fit.coxph, 7
fit.LASSO, 8
ipec, 8
peperr, 10
perr, 17
PLL, 19
PLL . coxph, 20
plot.peperr, 20
pmpec, 22
predictProb, 23
predictProb.coxph, 24
predictProb.survfit, 25
resample.indices, 25

* regression
aggregation.brier, 2
aggregation.misclass, 3
aggregation.pmpec, 4
complexity.LASSO, 5
extract. fun, 6
fit.coxph, 7
fit.LASSO, 8
ipec, 8
peperr, 10
perr, 17
PLL, 19
PLL . coxph, 20
plot.peperr, 20
pmpec, 22
predictProb, 23
predictProb.coxph, 24
predictProb.survfit, 25
resample.indices, 25

* survival

27

aggregation.brier, 2
aggregation.misclass, 3
aggregation.pmpec, 4
complexity.LASSO, 5
extract.fun, 6
fit.coxph, 7
fit.LASSO, 8

ipec, 8

peperr, 10

perr, 17

PLL, 19

PLL.coxph, 20
plot.peperr, 20
pmpec, 22
predictProb, 23
predictProb.coxph, 24
predictProb.survfit, 25
resample.indices, 25

aggregation.brier, 2
aggregation.misclass, 3
aggregation.pmpec, 4

complexity.LASSO, 5
coxph, 7

extract.fun, 6, 15

fit.coxph, 7
fit.LASSO, 8

ipec, 8, 18
optL1, 5

penalized, 8
peperr, 10, 18
perr, 9, 15,17
PLL, 19

PLL . coxph, 20
plot.peperr, 20

28

pmpec, 22
predictProb, 23
predictProb.coxph, 24
predictProb.survfit, 25

resample.indices, 15, 25

INDEX

	aggregation.brier
	aggregation.misclass
	aggregation.pmpec
	complexity.LASSO
	extract.fun
	fit.coxph
	fit.LASSO
	ipec
	peperr
	perr
	PLL
	PLL.coxph
	plot.peperr
	pmpec
	predictProb
	predictProb.coxph
	predictProb.survfit
	resample.indices
	Index

