
Package ‘pipeR’
October 14, 2022

Type Package

Title Multi-Paradigm Pipeline Implementation

Version 0.6.1.3

Author Kun Ren <ken@renkun.me>

Maintainer Kun Ren <ken@renkun.me>

Description Provides various styles of function chaining methods: Pipe
operator, Pipe object, and pipeline function, each representing a distinct
pipeline model yet sharing almost a common set of features: A value can be
piped to the first unnamed argument of a function and to dot symbol in an
enclosed expression. The syntax is designed to make the pipeline more
readable and friendly to a wide range of operations.

Depends R (>= 2.15)

Date 2016-04-04

Suggests testthat

License MIT + file LICENSE

URL https://renkun.me/pipeR, https://github.com/renkun-ken/pipeR,

https://renkun.me/pipeR-tutorial

BugReports https://github.com/renkun-ken/pipeR/issues

ByteCompile TRUE

RoxygenNote 5.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2016-04-04 11:49:28

R topics documented:
pipeR-package . 2
Pipe . 3
pipeline . 5
%>>% . 7

1

https://renkun.me/pipeR
https://github.com/renkun-ken/pipeR
https://renkun.me/pipeR-tutorial
https://github.com/renkun-ken/pipeR/issues

2 pipeR-package

Index 12

pipeR-package The pipeR package

Description

pipeR implements various function chaining methods: %>>% operator, Pipe object, and pipeline
function. Each represents a distinct pipeline model yet shares a common set of features designed to
build easy-to-read/write/maintain pipelines. To learn more, please visit pipeR Tutorial.

Details

pipeR package defines a set of syntax tailored for unified, intuitive piping experience. The package
is designed to help organize code as a streamline that is consistent with logic and intuition.

The following example shows how traditional code can be written in different function chaining
styles.

Examples

Traditional code:
plot(density(sample(mtcars$mpg, size = 10000, replace = TRUE),
kernel = "gaussian"), col = "red", main="density of mpg (bootstrap)")

Operator-based pipeline using %>>%:
mtcars$mpg %>>%

sample(size = 10000, replace = TRUE) %>>%
density(kernel = "gaussian") %>>%
plot(col = "red", main = "density of mpg (bootstrap)")

Object-based pipeline using Pipe():
Pipe(mtcars$mpg)$

sample(size = 10000, replace = TRUE)$
density(kernel = "gaussian")$
plot(col = "red", main = "density of mpg (bootstrap)")

Argument-based pipeline using pipeline():
pipeline(mtcars$mpg,

sample(size = 10000, replace = TRUE),
density(kernel = "gaussian"),
plot(col = "red", main = "density of mpg (bootstrap)"))

Expression-based pipeline using pipeline():
pipeline({

mtcars$mpg
sample(size = 10000, replace = TRUE)
density(kernel = "gaussian")
plot(col = "red", main = "density of mpg (bootstrap)")

})

http://renkun.me/pipeR-tutorial

Pipe 3

Pipe Create a Pipe object that stores a value and allows command chaining
with $.

Description

Create a Pipe object that stores a value and allows command chaining with $.

Usage

Pipe(value = NULL)

Arguments

value value to pipe (default is NULL)

Details

Pipe() function creates a Pipe object that provides object-like command chaining mechanism,
which avoids using external operator and can be cleaner than operator-based pipline.

Pipe() creates a Pipe object that allows using $ to perform first-argument piping, call .() to evalu-
ate an expression with . or symbol defined by lambda expression, for side effect, or simply extract
an element from the stored value. $value or [] ends a pipeline and extracts its final value.

The functionality of Pipe object fully covers that of the pipe operator %>>% and provides more
features. For example, Pipe object supports directly subsetting $value by [...], extracting element
by [[...]], and assigning value by $item <-, [...] <-, and [[...]] <-.

A typical usage of Pipe object is to start with Pipe() and end with $value or [].

print() and str() are implemented for Pipe object. Use header = FALSE to suppress Pipe header
message in printed results. Use options(Pipe.header = FASLE) to suppress it globally.

If the Pipe object is used in more than one pipelines, a recommended usage is to name the object
specially so that it is easy to distinguish the Pipe object from the value it stores. For example, it can
start with p.

Value

Pipe object

Examples

Not run:
Pipe as first-argument using $
Pipe(rnorm(100))$mean()
Pipe(rnorm(100))$plot(col="red")

Extract the value from the Pipe object using []
Pipe(rnorm(100))$c(4,5) []

4 Pipe

Pipe to an exrepssion with . or symbol defined in
lambda expression to represent the object
Pipe(rnorm(100))$.(1 + .) []
Pipe(rnorm(100))$.(x ~ 1 + x) []

Pipe for side effect
Pipe(rnorm(100))$

.(~ cat("number:",length(.),"\n"))$
summary()

Pipe(rnorm(100))$
.(~ x ~ cat("number:",length(x),"\n"))$
summary()

Assignment
Pipe(rnorm(100))$

.(~ x)$
mean()

Pipe(rnorm(100))$
.(~ x <- length(.))$
mean()

Pipe(rnorm(100))%
.(x <- c(min(.),max(.)))$
mean()

Extract element with \code{.(name)}
Pipe(mtcars)$lm(formula = mpg ~ cyl + wt)$.(coefficients)

Command chaining
Pipe(rnorm(100,mean=10))$

log()$
diff()$
plot(col="red")

Pipe(rnorm(100))$
density(kernel = "rect")$
plot(col = "blue")

Store an continue piping
pipe1 <- Pipe(rnorm(100,mean=10))$log()$diff()
pipe1$plot(col="red")

Subsetting, extracting, and assigning

p <- Pipe(list(a=1,b=2))
p["a"]
p[["a"]]
p$a <- 2
p["b"] <- NULL
p[["a"]] <- 3
p[length(.)] # . = p$value

pipeline 5

Data manipulation with dplyr
library(dplyr)
Pipe(mtcars)$

select(mpg,cyl,disp,hp)$
filter(mpg <= median(mpg))$
mutate(rmpg = mpg / max(mpg))$
group_by(cyl)$
do(data.frame(mean=mean(.$rmpg),median=median(.$rmpg))) []

Graphics with ggvis
library(ggvis)
Pipe(mtcars)$

ggvis(~ mpg, ~ wt)$
layer_points()

Data manipulation with rlist
library(rlist)
Pipe(list(1,2,3))$

list.map(. + 1)$
list.filter(. <= 5)$
list.sort(.) []

Lazy evaluation
p1 <- Pipe(mtcars)$

ggvis(~ mpg, ~ wt)
p1$layer_points()
p1$layer_bars()

Stored Pipe
f1 <- Pipe(rnorm(100))$plot
f1(col="red")
f1(col="green")

End(Not run)

pipeline Evaluate an expression pipeline

Description

Evaluate an expression pipeline enclosed by {} or a sequence of expressions as as pipeline. This
functions works to chain expressions without using %>>% operator but produce the same result.

Usage

pipeline(...)

6 pipeline

Arguments

... Pipeline expressions. Supply multiple pipeline expressions as arguments or only
an enclosed expression within {} as the first argument.

Details

When pipeline(...) is called with multiple arguments, the arguments will be regarded as pipeline
expressions.

When pipeline(...) is called with a single argument, the argument is expected to be a block
expression enclosed by {} in which each expression will be regarded as a pipeline expression.

The pipeline expressions will be chained sequentially by %>>% and be evaluated to produce the same
results as if using the pipe operator.

Examples

pipeline(1:10, sin, sum)

pipeline(1:10, plot(col = "red", type = "l"))

pipeline(mtcars,
lm(formula = mpg ~ cyl + wt),
summary,
coef)

pipeline({
mtcars
lm(formula = mpg ~ cyl + wt)
summary
coef

})

pipeline({
mtcars
"Sample data" ? head(., 3)
lm(formula = mpg ~ cyl + wt)
~ lmodel
summary
? .$r.squared
coef

})

pipeline({
mtcars
"estimating a linear model ..."
lm(formula = mpg ~ cyl + wt)
"summarizing the model ..."
summary

})

%>>% 7

%>>% Pipe an object forward

Description

The %>>% operator pipes the object on the left-hand side to the right-hand side according to the
syntax.

Usage

x %>>% expr

Arguments

x object

expr expression

Details

Pipe operator %>>% determines the piping mechanism by the syntax of the expression on the right-
hand side.

%>>% supports the following syntaxes:

1. Pipe to first unnamed argument:

Whenever a function name or call with or without parameters follows the operator, the left-hand
side value will be piped to the right-hand side function as the first unnamed argument.

x %>>% f evaluated as f(x)

x %>>% f(...) evaluated as f(x,...)

x %>>% package::name(...) evaluated as package::name(x, ...)

2. Pipe to . in enclosed expression:

Whenever an expression following the operator is enclosed by {}, the expression will be evaluated
with . representing the left-hand side value. It is the same with expression enclosed with () unless
it contains a lambda expression or assignment expression.

x %>>% { expr } evaluated as { expr } given . = x

x %>>% (expr) evaluated as expr given . = x

3. Pipe by lambda expression:

A lambda expression is a formula whose left-hand side is a symbol used to represent the value being
piped and right-hand side is an expression to be evaluated with the symbol.

x %>>% (p ~ expr) as expr given p = x

4. Pipe for side-effect:

If one only cares about the side effect (e.g. printing intermediate results, plotting graphics, assigning
value to symbol) of an expression rather than its returned value, write a lambda expression that starts
with ~ indicating side effect (or branching, in the sense of pipeline building).

8 %>>%

x %>>% (~ f(.)) evaluated as {f(x); x}.

x %>>% (~ p ~ f(p)) evaluated as {f(x); x}

5. Pipe for assignment

Equal operator (=) and assignment operators (<- and ->) perform assignment. This is particularly
useful when one needs to save an intermediate value in the middle of a pipeline without breaking it.

Assignment as side-effect

In general, x %>>% (~ y = ...) is evaluated as y <- x %>>% (...) and returns x.

x %>>% (~ y) evaluated as y <- x and returns x, where y must be a symbol.

x %>>% (~ y = f(.)) evaluated as y <- f(x) and returns x.

x %>>% (~ y = p ~ f(p)) evaluated as y <- f(x) and returns x.

Piping with assignment

In general, x %>>% (y = ...) is evaluated as y <- x %>>% (...).

x %>>% (y = f(.)) evaluated as y <- f(x) and returns f(x).

x %>>% (y = p ~ f(p)) evaluated as y <- f(x) and returns f(x).

The equal sign above can be interchangeably used as the assignment operator <-. Note that the
global assignment operator <<- and ->> in a pipeline also performs global assignment that is subject
to side-effect outside the calling environment.

In some cases, users might need to create a group of symbols. The following code calls assign to
dynamically determine the symbol name when its value is evaluated.

for (i in 1:5) rnorm(i) %>>% (assign(paste0("rnorm", i), .))

To avoid exporting a symbol to the calling environment, use a symbol name starting with . like

6. Pipe for element extraction:

If a symbol is enclosed within (), it tells the operator to extract element from the left-hand side
value. It works with vector, list, environment and all other objects for which [[]] is defined.
Moreover, it also works with S4 object.

x %>>% (name) as x[["name"]] when x is list, environment, data.frame, etc; and x@name when
x is S4 object.

7. Pipe to string:

If an object is piped to a single character value, then the string will be cat() and starts a new
paragraph. This is useful for indicating the executing process of a pipeline.

x %>>% "print something" %>>% f(y) will cat("print something") and then evaluate f(x,y).

8. Pipe for questioning:

If a lambda expression start with ?, the expression will be a side effect printing the syntax and the
value of the expression. This is a light-weight version of side-effect piping and can be useful for
simple inspection and debugging for pipeline operations.

x %>>% (? expr) will print the value of expr and return x, just like a question.

x %>>% ("title" ? expr) will print "title" as the question, the value of expr, and return x.

%>>% 9

Examples

Not run:
Pipe as first-argument to a function name
rnorm(100) %>>% plot

Pipe as first-argument to a function call
rnorm(100) %>>% plot()
rnorm(100) %>>% plot(col="red")
rnorm(100) %>>% plot(col="red",main=length(.))

Pipe as first-argument to a function call in namespace
(in this case, parentheses are required)
rnorm(100) %>>% base::mean()

Pipe to . in an expression enclosed by braces
representing the piped object
rnorm(100) %>>% { plot(.,col="red",main=length(.)) }

Pipe to . in an expression enclosed by parentheses
representing the piped object
rnorm(100) %>>% (plot(.,col="red",main=length(.)))

Pipe to an expression enclosed by parentheses with
lambda expression in the form of x ~ f(x).
rnorm(100) %>>% (x ~ plot(x,col="red",main=length(x)))

Pipe to an expression for side effect and return
the input value
rnorm(100) %>>%

(~ cat("Number of points:",length(.))) %>>%
summary

rnorm(100) %>>%
(~ x ~ cat("Number of points:",length(x))) %>>%
summary

Assign the input value to a symbol in calling environment
as side-effect
mtcars %>>%

subset(mpg <= mean(mpg)) %>>%
(~ sub_mtcars) %>>%
summary

Assign to a symbol the value calculated by lambda expression
as side effect
mtcars %>>%

(~ summary_mtcars = summary(.)) %>>%
(~ lm_mtcars = df ~ lm(mpg ~ ., data = df)) %>>%
subset(mpg <= mean(mpg)) %>>%
summary

Modifying values in calling environment

10 %>>%

"col_" %>>%
paste0(colnames(mtcars)) %>>%
{names(mtcars) <- .}

rnorm(100) %>>% {
num_mean <- mean(.)
num_sd <- sd(.)
num_var <- var(.)

}

rnorm(100) %>>% {
.mean <- mean(.)
.sd <- sd(.)
ci <- .mean + c(-1,1) * 1.96 * .sd

}

for(i in 1:10) rnorm(i) %>>% (assign(paste0("var", i), .))

Pipe for element extraction
mtcars %>>% (mpg)

Pipe for questioning and printing
rnorm(100) %>>%

(? summary(.)) %>>%
plot(col="red")

mtcars %>>%
"data prepared" %>>%
lm(formula = mpg ~ wt + cyl) %>>%
summary %>>%
coef

mtcars %>>%
("Sample data" ? head(., 3)) %>>%
lm(formula = mpg ~ wt + cyl) %>>%
summary %>>%
coef

Pipe to an anomymous function
rnorm(100) %>>% (function(x) mean(x))()
rnorm(100) %>>% {function(x) mean(x)}()

Pipe to an enclosed function to make a closure
z <- rnorm(100) %>>% (function(x) mean(x+.))
z(1) # 3

z <- rnorm(100) %>>% {function(x) mean(x+.)}
z(1) # 3

Data manipulation with dplyr
library(dplyr)
iris %>>%

mutate(Sepal.Size=Sepal.Length*Sepal.Width,

%>>% 11

Petal.Size=Petal.Length*Petal.Width) %>>%
select(Sepal.Size,Petal.Size,Species) %>>%
group_by(Species) %>>%
do(arrange(.,desc(Sepal.Size+Petal.Size)) %>>% head(3))

Data manipulation with rlist
library(rlist)
list(1,2,3) %>>%

list.map(. + 1) %>>%
list.filter(. <= 5) %>>%
list.sort(.)

End(Not run)

Index

%>>%, 7

Pipe, 3
pipeline, 5
pipeR-package, 2

12

	pipeR-package
	Pipe
	pipeline
	%>>%
	Index

