
Package ‘runner’
March 3, 2024

Title Running Operations for Vectors

Type Package

Version 0.4.4

Depends R (>= 3.0)

Language en-US

Encoding UTF-8

Maintainer Dawid Kałędkowski <dawid.kaledkowski@gmail.com>

Description Lightweight library for rolling windows operations. Package enables
full control over the window length, window lag and a time indices. With a runner
one can apply any R function on a rolling windows. The package eases work with
equally and unequally spaced time series.

License GPL (>= 2)

BugReports https://github.com/gogonzo/runner/issues

LinkingTo Rcpp

Imports methods, parallel, Rcpp

Suggests knitr, rmarkdown, tinytest

RoxygenNote 7.3.1

VignetteBuilder knitr

NeedsCompilation yes

Author Dawid Kałędkowski [aut, cre] (<https://orcid.org/0000-0001-9533-457X>)

Repository CRAN

Date/Publication 2024-03-03 20:50:02 UTC

R topics documented:
fill_run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
lag_run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
length_run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
max_run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1

https://github.com/gogonzo/runner/issues
https://orcid.org/0000-0001-9533-457X


2 fill_run

mean_run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
minmax_run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
min_run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
runner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
run_by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
streak_run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
sum_run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
which_run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
window_run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Index 24

fill_run Fill NA with previous non-NA element

Description

Fill NA with last non-NA element.

Usage

fill_run(x, run_for_first = FALSE, only_within = FALSE)

Arguments

x (vector, data.frame, matrix, xts, grouped_df)
Input in runner custom function f.

run_for_first If first elements are filled with NA, run_for_first = TRUE allows to fill all initial
NA with nearest non-NA value. By default run_for_first = TRUE

only_within NA are replaced only if previous and next non-NA values are the same. By default
only_within = TRUE

Value

vector - x containing all x elements with NA replaced with previous non-NA element.

Examples

fill_run(c(NA, NA, 1:10, NA, NA), run_for_first = TRUE)
fill_run(c(NA, NA, 1:10, NA, NA), run_for_first = TRUE)
fill_run(c(NA, NA, 1:10, NA, NA), run_for_first = FALSE)
fill_run(c(NA, NA, 1, 2, NA, NA, 2, 2, NA, NA, 1, NA, NA), run_for_first = TRUE, only_within = TRUE)



lag_run 3

lag_run Lag dependent on variable

Description

Vector of input lagged along integer vector

Usage

lag_run(x, lag = 1L, idx = integer(0), nearest = FALSE)

Arguments

x (vector, data.frame, matrix, xts, grouped_df)
Input in runner custom function f.

lag (integer vector or single value)
Denoting window lag. If lag is a single value then window lag is constant for
all elements, otherwise if length(lag) == length(x) different window size
for each element. Negative value shifts window forward. One can also specify
lag in the same way as by argument in base::seq.POSIXt(). See ’Specifying
time-intervals’ in details section.

idx (integer, Date, POSIXt)
Optional integer vector containing sorted (ascending) index of observation. By
default idx is index incremented by one. User can provide index with varying
increment and with duplicated values. If specified then k and lag are depending
on idx. Length of idx have to be equal of length x.

nearest logical single value. Applied when idx is used, then nearest = FALSE returns
observation lagged exactly by the specified number of "periods". When nearest
= TRUE function returns latest observation within lag window.

Examples

lag_run(1:10, lag = 3)
lag_run(letters[1:10], lag = -2, idx = c(1, 1, 1, 2, 3, 4, 6, 7, 8, 10))
lag_run(letters[1:10], lag = 2, idx = c(1, 1, 1, 2, 3, 4, 6, 7, 8, 10), nearest = TRUE)

length_run Length of running windows

Description

Number of elements in k-long window calculated on idx vector. If idx is an as.integer(date)
vector, then k=number of days in window - then the result is number of observations within k days
window.



4 max_run

Usage

length_run(k = integer(1), lag = integer(1), idx = integer(0))

Arguments

k (integer vector or single value)
Denoting size of the running window. If k is a single value then window size is
constant for all elements, otherwise if length(k) == length(x) different win-
dow size for each element. One can also specify k in the same way as by
argument in base::seq.POSIXt(). See ’Specifying time-intervals’ in details
section.

lag (integer vector or single value)
Denoting window lag. If lag is a single value then window lag is constant for
all elements, otherwise if length(lag) == length(x) different window size
for each element. Negative value shifts window forward. One can also specify
lag in the same way as by argument in base::seq.POSIXt(). See ’Specifying
time-intervals’ in details section.

idx (integer, Date, POSIXt)
Optional integer vector containing sorted (ascending) index of observation. By
default idx is index incremented by one. User can provide index with varying
increment and with duplicated values. If specified then k and lag are depending
on idx. Length of idx have to be equal of length x.

Examples

length_run(k = 3, idx = c(1, 2, 2, 4, 5, 5, 5, 5, 5, 5))

max_run Running maximum

Description

min_run calculates running max on given x numeric vector, specified k window size.

Usage

max_run(
x,
k = integer(0),
lag = integer(1),
idx = integer(0),
at = integer(0),
na_rm = TRUE,
na_pad = FALSE

)



max_run 5

Arguments

x (vector, data.frame, matrix, xts, grouped_df)
Input in runner custom function f.

k (integer vector or single value)
Denoting size of the running window. If k is a single value then window size is
constant for all elements, otherwise if length(k) == length(x) different win-
dow size for each element. One can also specify k in the same way as by
argument in base::seq.POSIXt(). See ’Specifying time-intervals’ in details
section.

lag (integer vector or single value)
Denoting window lag. If lag is a single value then window lag is constant for
all elements, otherwise if length(lag) == length(x) different window size
for each element. Negative value shifts window forward. One can also specify
lag in the same way as by argument in base::seq.POSIXt(). See ’Specifying
time-intervals’ in details section.

idx (integer, Date, POSIXt)
Optional integer vector containing sorted (ascending) index of observation. By
default idx is index incremented by one. User can provide index with varying
increment and with duplicated values. If specified then k and lag are depending
on idx. Length of idx have to be equal of length x.

at (integer, Date, POSIXt, character vector)
Vector of any size and any value defining output data points. Values of the vector
defines the indexes which data is computed at. Can be also POSIXt sequence
increment used in at argument in base::seq.POSIXt(). See ’Specifying time-
intervals’ in details section.

na_rm logical single value (default na_rm = TRUE) - if TRUE sum is calculating ex-
cluding NA.

na_pad (logical single value)
Whether incomplete window should return NA (if na_pad = TRUE) Incomplete
window is when some parts of the window are out of range.

Value

max (numeric) vector of length equals length of x.

Examples

set.seed(11)
x1 <- sample(c(1, 2, 3), 15, replace = TRUE)
x2 <- sample(c(NA, 1, 2, 3), 15, replace = TRUE)
k <- sample(1:4, 15, replace = TRUE)
max_run(x1) # simple cumulative maximum
max_run(x2, na_rm = TRUE) # cumulative maximum with removing NA.
max_run(x2, na_rm = TRUE, k = 4) # maximum in 4-element window
max_run(x2, na_rm = FALSE, k = k) # maximum in varying k window size



6 mean_run

mean_run Running mean

Description

Running mean in specified window of numeric vector.

Usage

mean_run(
x,
k = integer(0),
lag = integer(1),
idx = integer(0),
at = integer(0),
na_rm = TRUE,
na_pad = FALSE

)

Arguments

x numeric vector which running function is calculated on

k (integer`` vector or single value)\cr Denoting size of the running window. If kis a single value then window size is constant for all elements, otherwise iflength(k)
== length(x)‘ different window size for each element.

lag (integer vector or single value)
Denoting window lag. If lag is a single value then window lag is constant for
all elements, otherwise if length(lag) == length(x) different window size for
each element. Negative value shifts window forward.

idx (integer, Date, POSIXt)
Optional integer vector containing sorted (ascending) index of observation. By
default idx is index incremented by one. User can provide index with varying
increment and with duplicated values. If specified then k and lag are depending
on idx. Length of idx have to be equal of length x.

at (integer, Date, POSIXt, character vector)
Vector of any size and any value defining output data points. Values of the vector
defines the indexes which data is computed at.

na_rm logical single value (default na_rm = TRUE) - if TRUE sum is calculating ex-
cluding NA.

na_pad (logical single value)
Whether incomplete window should return NA (if na_pad = TRUE) Incomplete
window is when some parts of the window are out of range.

Value

mean (numeric) vector of length equals length of x.



minmax_run 7

Examples

set.seed(11)
x1 <- rnorm(15)
x2 <- sample(c(rep(NA, 5), rnorm(15)), 15, replace = TRUE)
k <- sample(1:15, 15, replace = TRUE)
mean_run(x1)
mean_run(x2, na_rm = TRUE)
mean_run(x2, na_rm = FALSE)
mean_run(x2, na_rm = TRUE, k = 4)

minmax_run Running min/max

Description

min_run calculates running minimum-maximum on given x numeric vector, specified k window
size.

Usage

minmax_run(x, metric = "min", na_rm = TRUE)

Arguments

x (vector, data.frame, matrix, xts, grouped_df)
Input in runner custom function f.

metric character what to return, minimum or maximum

na_rm logical single value (default na_rm = TRUE) - if TRUE sum is calculating ex-
cluding NA.

Value

list.

min_run Running minimum

Description

min_run calculates running min on given x numeric vector, specified k window size.



8 min_run

Usage

min_run(
x,
k = integer(0),
lag = integer(1),
idx = integer(0),
at = integer(0),
na_rm = TRUE,
na_pad = FALSE

)

Arguments

x (vector, data.frame, matrix, xts, grouped_df)
Input in runner custom function f.

k (integer vector or single value)
Denoting size of the running window. If k is a single value then window size is
constant for all elements, otherwise if length(k) == length(x) different win-
dow size for each element. One can also specify k in the same way as by
argument in base::seq.POSIXt(). See ’Specifying time-intervals’ in details
section.

lag (integer vector or single value)
Denoting window lag. If lag is a single value then window lag is constant for
all elements, otherwise if length(lag) == length(x) different window size
for each element. Negative value shifts window forward. One can also specify
lag in the same way as by argument in base::seq.POSIXt(). See ’Specifying
time-intervals’ in details section.

idx (integer, Date, POSIXt)
Optional integer vector containing sorted (ascending) index of observation. By
default idx is index incremented by one. User can provide index with varying
increment and with duplicated values. If specified then k and lag are depending
on idx. Length of idx have to be equal of length x.

at (integer, Date, POSIXt, character vector)
Vector of any size and any value defining output data points. Values of the vector
defines the indexes which data is computed at. Can be also POSIXt sequence
increment used in at argument in base::seq.POSIXt(). See ’Specifying time-
intervals’ in details section.

na_rm logical single value (default na_rm = TRUE) - if TRUE sum is calculating ex-
cluding NA.

na_pad (logical single value)
Whether incomplete window should return NA (if na_pad = TRUE) Incomplete
window is when some parts of the window are out of range.

Value

min (numeric) vector of length equals length of x.



runner 9

Examples

set.seed(11)
x1 <- sample(c(1, 2, 3), 15, replace = TRUE)
x2 <- sample(c(NA, 1, 2, 3), 15, replace = TRUE)
k <- sample(1:4, 15, replace = TRUE)
min_run(x1)
min_run(x2, na_rm = TRUE)
min_run(x2, na_rm = TRUE, k = 4)
min_run(x2, na_rm = FALSE, k = k)

runner Apply running function

Description

Applies custom function on running windows.

Usage

runner(
x,
f = function(x) x,
k = integer(0),
lag = integer(1),
idx = integer(0),
at = integer(0),
na_pad = FALSE,
simplify = TRUE,
cl = NULL,
...

)

## Default S3 method:
runner(
x,
f = function(x) x,
k = integer(0),
lag = integer(1),
idx = integer(0),
at = integer(0),
na_pad = FALSE,
simplify = TRUE,
cl = NULL,
...

)

## S3 method for class 'data.frame'



10 runner

runner(
x,
f = function(x) x,
k = attr(x, "k"),
lag = if (!is.null(attr(x, "lag"))) attr(x, "lag") else integer(1),
idx = attr(x, "idx"),
at = attr(x, "at"),
na_pad = if (!is.null(attr(x, "na_pad"))) attr(x, "na_pad") else FALSE,
simplify = TRUE,
cl = NULL,
...

)

## S3 method for class 'grouped_df'
runner(
x,
f = function(x) x,
k = attr(x, "k"),
lag = if (!is.null(attr(x, "lag"))) attr(x, "lag") else integer(1),
idx = attr(x, "idx"),
at = attr(x, "at"),
na_pad = if (!is.null(attr(x, "na_pad"))) attr(x, "na_pad") else FALSE,
simplify = TRUE,
cl = NULL,
...

)

## S3 method for class 'matrix'
runner(
x,
f = function(x) x,
k = integer(0),
lag = integer(1),
idx = integer(0),
at = integer(0),
na_pad = FALSE,
simplify = TRUE,
cl = NULL,
...

)

## S3 method for class 'xts'
runner(
x,
f = function(x) x,
k = integer(0),
lag = integer(1),
idx = integer(0),



runner 11

at = integer(0),
na_pad = FALSE,
simplify = TRUE,
cl = NULL,
...

)

Arguments

x (vector, data.frame, matrix, xts, grouped_df)
Input in runner custom function f.

f (function)
Applied on windows created from x. This function is meant to summarize win-
dows and create single element for each window, but one can also specify func-
tion which return multiple elements (runner output will be a list). By default
runner returns windows as is (f = function(x)).

k (integer vector or single value)
Denoting size of the running window. If k is a single value then window size is
constant for all elements, otherwise if length(k) == length(x) different win-
dow size for each element. One can also specify k in the same way as by
argument in base::seq.POSIXt(). See ’Specifying time-intervals’ in details
section.

lag (integer vector or single value)
Denoting window lag. If lag is a single value then window lag is constant for
all elements, otherwise if length(lag) == length(x) different window size
for each element. Negative value shifts window forward. One can also specify
lag in the same way as by argument in base::seq.POSIXt(). See ’Specifying
time-intervals’ in details section.

idx (integer, Date, POSIXt)
Optional integer vector containing sorted (ascending) index of observation. By
default idx is index incremented by one. User can provide index with varying
increment and with duplicated values. If specified then k and lag are depending
on idx. Length of idx have to be equal of length x.

at (integer, Date, POSIXt, character vector)
Vector of any size and any value defining output data points. Values of the vector
defines the indexes which data is computed at. Can be also POSIXt sequence
increment used in at argument in base::seq.POSIXt(). See ’Specifying time-
intervals’ in details section.

na_pad (logical single value)
Whether incomplete window should return NA (if na_pad = TRUE) Incomplete
window is when some parts of the window are out of range.

simplify (logical or character value)
should the result be simplified to a vector, matrix or higher dimensional array if
possible. The default value, simplify = TRUE, returns a vector or matrix if ap-
propriate, whereas if simplify = "array" the result may be an array of "rank"
(=length(dim(.))) one higher than the result of output from the function f
for each window. Consequences of simplify in runner are identical to sapply.



12 runner

cl (cluster) experimental
Create and pass the cluster to the runner function to run each window calcula-
tion in parallel. See parallel::makeCluster() in details.

... (optional)
other arguments passed to the function f.

Details

Function can apply any R function on running windows defined by x, k, lag, idx and at. Running
window can be calculated on several ways:

• Cumulative windows
applied when user doesn’t specify k argument or specify k = length(x), this would mean that
k is equal to number of available elements

• Constant sliding windows applied when user specify k as constant value keeping idx and at
unspecified. lag argument shifts windows left (lag > 0) or right (lag < 0).

• Windows depending on date
If one specifies idx this would mean that output windows size might change in size because of
unequally spaced indexes. Fox example 5-period window is different than 5-element window,
because 5-period window might contain any number of observation (7-day mean is not the
same as 7-element mean)



runner 13

• Window at specific indices
runner by default returns vector of the same size as x unless one specifies at argument. Each
element of at is an index on which runner calculates function - which means that output of the
runner is now of length equal to at. Note that one can change index of x by specifying idx.
Illustration below shows output of runner for at = c(18, 27, 45, 31) which gives windows
in ranges enclosed in square brackets. Range for at = 27 is [22, 26] which is not available
in current indices.

Specifying time-intervals:

at can also be specified as interval of the output defined by at = "<increment>" which results in
indices sequence defined by seq.POSIXt(min(idx), max(idx), by = "<increment>"). Incre-
ment of sequence is the same as in base::seq.POSIXt() function. It’s worth noting that incre-
ment interval can’t be more frequent than interval of idx - for Date the most frequent time-unit is
a "day", for POSIXt a sec.

k and lag can also be specified as using time sequence increment. Available time units are
"sec", "min", "hour", "day", "DSTday", "week", "month", "quarter" or "year".
To increment by number of units one can also specify <number> <unit>s for example lag = "-2
days", k = "5 weeks".

Setting k and lag as a sequence increment can be also a vector can be a vector which allows to
stretch and lag/lead each window freely on in time (on indices).

Parallel computing:

Beware that executing R call in parallel not always have the edge over single-thread even if the cl
<- registerCluster(detectCores()) was specified before.
Parallel windows are executed in the independent environment, which means that objects other
than function arguments needs to be copied to the parallel environment using parallel::clusterExport().
For example using f = function(x) x + y + z will result in error as clusterExport(cl, varlist
= c("y", "z")) needs to be called before.



14 runner

Value

vector with aggregated values for each window. Length of output is the same as length(x) or
length(at) if specified. Type of the output depends on the output from a function f.

Examples

# runner returns windows as is by default
runner(1:10)

# mean on k = 3 elements windows
runner(1:10, f = mean, k = 3)

# mean on k = 3 elements windows with different specification
runner(1:10, k = 3, f = function(x) mean(x, na.rm = TRUE))

# concatenate two columns
runner(

data.frame(
a = letters[1:10],
b = 1:10

),
f = function(x) paste(paste0(x$a, x$b), collapse = "+")

)

# concatenate two columns with additional argument
runner(

data.frame(
a = letters[1:10],
b = 1:10

),
f = function(x, xxx) {

paste(paste0(x$a, xxx, x$b), collapse = " + ")
},
xxx = "..."

)

# number of unique values in each window (varying window size)
runner(letters[1:10],

k = c(1, 2, 2, 4, 5, 5, 5, 5, 5, 5),
f = function(x) length(unique(x))

)

# concatenate only on selected windows index
runner(letters[1:10],

f = function(x) paste(x, collapse = "-"),
at = c(1, 5, 8)

)

# 5 days mean
idx <- c(4, 6, 7, 13, 17, 18, 18, 21, 27, 31, 37, 42, 44, 47, 48)
runner::runner(



runner 15

x = idx,
k = "5 days",
lag = 1,
idx = Sys.Date() + idx,
f = function(x) mean(x)

)

# 5 days mean at 4-indices
runner::runner(

x = 1:15,
k = 5,
lag = 1,
idx = idx,
at = c(18, 27, 48, 31),
f = mean

)

# runner with data.frame
df <- data.frame(

a = 1:13,
b = 1:13 + rnorm(13, sd = 5),
idx = seq(as.Date("2022-02-22"), as.Date("2023-02-22"), by = "1 month")

)
runner(

x = df,
idx = "idx",
at = "6 months",
f = function(x) {

cor(x$a, x$b)
}

)

# parallel computing
library(parallel)
data <- data.frame(

a = runif(100),
b = runif(100),
idx = cumsum(sample(rpois(100, 5)))

)
const <- 0
cl <- makeCluster(1)
clusterExport(cl, "const", envir = environment())

runner(
x = data,
k = 10,
f = function(x) {

cor(x$a, x$b) + const
},
idx = "idx",
cl = cl

)
stopCluster(cl)



16 run_by

# runner with matrix
data <- matrix(data = runif(100, 0, 1), nrow = 20, ncol = 5)
runner(

x = data,
f = function(x) {
tryCatch(

cor(x),
error = function(e) NA

)
}

)

run_by Set window parameters

Description

Set window parameters for runner(). This function sets the attributes to x (only data.frame)
object and saves user effort to specify window parameters in further multiple runner() calls.

Usage

run_by(x, idx, k, lag, na_pad, at)

Arguments

x (vector, data.frame, matrix, xts, grouped_df)
Input in runner custom function f.

idx (integer, Date, POSIXt)
Optional integer vector containing sorted (ascending) index of observation. By
default idx is index incremented by one. User can provide index with varying
increment and with duplicated values. If specified then k and lag are depending
on idx. Length of idx have to be equal of length x.

k (integer vector or single value)
Denoting size of the running window. If k is a single value then window size is
constant for all elements, otherwise if length(k) == length(x) different win-
dow size for each element. One can also specify k in the same way as by
argument in base::seq.POSIXt(). See ’Specifying time-intervals’ in details
section.

lag (integer vector or single value)
Denoting window lag. If lag is a single value then window lag is constant for
all elements, otherwise if length(lag) == length(x) different window size
for each element. Negative value shifts window forward. One can also specify
lag in the same way as by argument in base::seq.POSIXt(). See ’Specifying
time-intervals’ in details section.



streak_run 17

na_pad (logical single value)
Whether incomplete window should return NA (if na_pad = TRUE) Incomplete
window is when some parts of the window are out of range.

at (integer, Date, POSIXt, character vector)
Vector of any size and any value defining output data points. Values of the vector
defines the indexes which data is computed at. Can be also POSIXt sequence
increment used in at argument in base::seq.POSIXt(). See ’Specifying time-
intervals’ in details section.

Value

x object which runner() can be executed on.

Examples

## Not run:
library(dplyr)

data <- data.frame(
index = c(2, 3, 3, 4, 5, 8, 10, 10, 13, 15),
a = rep(c("a", "b"), each = 5),
b = 1:10

)

data %>%
group_by(a) %>%
run_by(idx = "index", k = 5) %>%
mutate(

c = runner(
x = .,
f = function(x) {

paste(x$b, collapse = ">")
}

),
d = runner(

x = .,
f = function(x) {

sum(x$b)
}

)
)

## End(Not run)

streak_run Running streak length

Description

Calculates running series of consecutive elements



18 streak_run

Usage

streak_run(
x,
k = integer(0),
lag = integer(1),
idx = integer(0),
at = integer(0),
na_rm = TRUE,
na_pad = FALSE

)

Arguments

x any type vector which running function is calculated on

k (integer vector or single value)
Denoting size of the running window. If k is a single value then window size is
constant for all elements, otherwise if length(k) == length(x) different win-
dow size for each element. One can also specify k in the same way as by
argument in base::seq.POSIXt(). See ’Specifying time-intervals’ in details
section.

lag (integer vector or single value)
Denoting window lag. If lag is a single value then window lag is constant for
all elements, otherwise if length(lag) == length(x) different window size
for each element. Negative value shifts window forward. One can also specify
lag in the same way as by argument in base::seq.POSIXt(). See ’Specifying
time-intervals’ in details section.

idx (integer, Date, POSIXt)
Optional integer vector containing sorted (ascending) index of observation. By
default idx is index incremented by one. User can provide index with varying
increment and with duplicated values. If specified then k and lag are depending
on idx. Length of idx have to be equal of length x.

at (integer, Date, POSIXt, character vector)
Vector of any size and any value defining output data points. Values of the vector
defines the indexes which data is computed at. Can be also POSIXt sequence
increment used in at argument in base::seq.POSIXt(). See ’Specifying time-
intervals’ in details section.

na_rm logical single value (default na_rm = TRUE) - if TRUE sum is calculating ex-
cluding NA.

na_pad (logical single value)
Whether incomplete window should return NA (if na_pad = TRUE) Incomplete
window is when some parts of the window are out of range.

Value

streak numeric vector of length equals length of x containing number of consecutive occurrences.



sum_run 19

Examples

set.seed(11)
x1 <- sample(c("a", "b"), 15, replace = TRUE)
x2 <- sample(c(NA_character_, "a", "b"), 15, replace = TRUE)
k <- sample(1:4, 15, replace = TRUE)
streak_run(x1) # simple streak run
streak_run(x1, k = 2) # streak run within 2-element window
streak_run(x2, na_pad = TRUE, k = 3) # streak run within k=3 with padding NA
streak_run(x1, k = k) # streak run within varying window size specified by vector k

sum_run Running sum

Description

Running sum in specified window of numeric vector.

Usage

sum_run(
x,
k = integer(0),
lag = integer(1),
idx = integer(0),
at = integer(0),
na_rm = TRUE,
na_pad = FALSE

)

Arguments

x numeric vector which running function is calculated on

k (integer`` vector or single value)\cr Denoting size of the running window. If kis a single value then window size is constant for all elements, otherwise iflength(k)
== length(x)‘ different window size for each element.

lag (integer vector or single value)
Denoting window lag. If lag is a single value then window lag is constant for
all elements, otherwise if length(lag) == length(x) different window size for
each element. Negative value shifts window forward.

idx (integer, Date, POSIXt)
Optional integer vector containing sorted (ascending) index of observation. By
default idx is index incremented by one. User can provide index with varying
increment and with duplicated values. If specified then k and lag are depending
on idx. Length of idx have to be equal of length x.

at (integer, Date, POSIXt, character vector)
Vector of any size and any value defining output data points. Values of the vector
defines the indexes which data is computed at.



20 which_run

na_rm logical single value (default na_rm = TRUE) - if TRUE sum is calculating ex-
cluding NA.

na_pad (logical single value)
Whether incomplete window should return NA (if na_pad = TRUE) Incomplete
window is when some parts of the window are out of range.

Value

sum numeric vector of length equals length of x.

Examples

set.seed(11)
x1 <- rnorm(15)
x2 <- sample(c(rep(NA, 5), rnorm(15)), 15, replace = TRUE)
k <- sample(1:15, 15, replace = TRUE)
sum_run(x1)
sum_run(x2, na_rm = TRUE)
sum_run(x2, na_rm = FALSE)
sum_run(x2, na_rm = TRUE, k = 4)

which_run Running which

Description

min_run calculates running which - returns index of element where x == TRUE.

Usage

which_run(
x,
k = integer(0),
lag = integer(1),
idx = integer(0),
at = integer(0),
which = "last",
na_rm = TRUE,
na_pad = FALSE

)

Arguments

x (vector, data.frame, matrix, xts, grouped_df)
Input in runner custom function f.



which_run 21

k (integer vector or single value)
Denoting size of the running window. If k is a single value then window size is
constant for all elements, otherwise if length(k) == length(x) different win-
dow size for each element. One can also specify k in the same way as by
argument in base::seq.POSIXt(). See ’Specifying time-intervals’ in details
section.

lag (integer vector or single value)
Denoting window lag. If lag is a single value then window lag is constant for
all elements, otherwise if length(lag) == length(x) different window size
for each element. Negative value shifts window forward. One can also specify
lag in the same way as by argument in base::seq.POSIXt(). See ’Specifying
time-intervals’ in details section.

idx (integer, Date, POSIXt)
Optional integer vector containing sorted (ascending) index of observation. By
default idx is index incremented by one. User can provide index with varying
increment and with duplicated values. If specified then k and lag are depending
on idx. Length of idx have to be equal of length x.

at (integer, Date, POSIXt, character vector)
Vector of any size and any value defining output data points. Values of the vector
defines the indexes which data is computed at. Can be also POSIXt sequence
increment used in at argument in base::seq.POSIXt(). See ’Specifying time-
intervals’ in details section.

which character value "first" or "last" denoting if the first or last TRUE index is re-
turned from the window.

na_rm logical single value (default na_rm = TRUE) - if TRUE sum is calculating ex-
cluding NA.

na_pad (logical single value)
Whether incomplete window should return NA (if na_pad = TRUE) Incomplete
window is when some parts of the window are out of range.

Value

integer vector of indexes of the same length as x.

Examples

set.seed(11)
x1 <- sample(c(1, 2, 3), 15, replace = TRUE)
x2 <- sample(c(NA, 1, 2, 3), 15, replace = TRUE)
k <- sample(1:4, 15, replace = TRUE)
which_run(x1)
which_run(x2, na_rm = TRUE)
which_run(x2, na_rm = TRUE, k = 4)
which_run(x2, na_rm = FALSE, k = k)



22 window_run

window_run List of running windows

Description

Creates list of windows with given arguments settings. Length of output list is equal

Usage

window_run(
x,
k = integer(0),
lag = integer(1),
idx = integer(0),
at = integer(0),
na_pad = FALSE

)

Arguments

x (vector, data.frame, matrix, xts, grouped_df)
Input in runner custom function f.

k (integer vector or single value)
Denoting size of the running window. If k is a single value then window size is
constant for all elements, otherwise if length(k) == length(x) different win-
dow size for each element. One can also specify k in the same way as by
argument in base::seq.POSIXt(). See ’Specifying time-intervals’ in details
section.

lag (integer vector or single value)
Denoting window lag. If lag is a single value then window lag is constant for
all elements, otherwise if length(lag) == length(x) different window size
for each element. Negative value shifts window forward. One can also specify
lag in the same way as by argument in base::seq.POSIXt(). See ’Specifying
time-intervals’ in details section.

idx (integer, Date, POSIXt)
Optional integer vector containing sorted (ascending) index of observation. By
default idx is index incremented by one. User can provide index with varying
increment and with duplicated values. If specified then k and lag are depending
on idx. Length of idx have to be equal of length x.

at (integer, Date, POSIXt, character vector)
Vector of any size and any value defining output data points. Values of the vector
defines the indexes which data is computed at. Can be also POSIXt sequence
increment used in at argument in base::seq.POSIXt(). See ’Specifying time-
intervals’ in details section.

na_pad (logical single value)
Whether incomplete window should return NA (if na_pad = TRUE) Incomplete
window is when some parts of the window are out of range.



window_run 23

Value

list of vectors (windows). Length of list is the same as length(x) or length(at) if specified, and
length of each window is defined by k (unless window is out of range).

Examples

window_run(1:10, k = 3, lag = -1)
window_run(letters[1:10], k = c(1, 2, 2, 4, 5, 5, 5, 5, 5, 5))



Index

base::seq.POSIXt(), 3–5, 8, 11, 13, 16–18,
21, 22

fill_run, 2

lag_run, 3
length_run, 3

max_run, 4
mean_run, 6
min_run, 7
minmax_run, 7

numeric, 18

parallel::clusterExport(), 13
parallel::makeCluster(), 12

run_by, 16
runner, 9
runner(), 16, 17

streak_run, 17
sum_run, 19

which_run, 20
window_run, 22

24


	fill_run
	lag_run
	length_run
	max_run
	mean_run
	minmax_run
	min_run
	runner
	run_by
	streak_run
	sum_run
	which_run
	window_run
	Index

