Package ‘sarsop’

April 16, 2025
Type Package
Title Approximate POMDP Planning Software
Version 0.6.16

Description A toolkit for Partially Observed Markov Decision Processes (POMDP). Provides
bindings to C++ libraries implementing the algorithm SARSOP (Successive Approximations
of the Reachable Space under Optimal Policies) and described in Kurniawati et al (2008),
<doi:10.15607/RSS.2008.1V.009>. This package also provides a high-level interface
for generating, solving and simulating POMDP problems and their solutions.

License GPL-2
URL https://github.com/boettiger-1lab/sarsop

BugReports https://github.com/boettiger-1lab/sarsop/issues
RoxygenNote 7.1.1

Imports xml2, parallel, processx, digest, Matrix

Suggests testthat, roxygen2, knitr, covr, spelling

LinkingTo BH

Encoding UTF-8

Language en-US

SystemRequirements mallinfo, hence Linux, MacOS or Windows
NeedsCompilation yes

Author Carl Boettiger [cre, aut, cph]
(<https://orcid.org/0000-0002-1642-628X>),

Jeroen Ooms [aut],
Milad Memarzadeh [aut],
Hanna Kurniawati [ctb, cph],
David Hsu [ctb, cph],
Hanna Kurniawati [ctb, cph],
Wee Sun Lee [ctb, cph],
Yanzhu Du [ctb],
Xan Huang [ctb],
Trey Smith [ctb, cph],
Tony Cassandra [ctb, cph],

https://doi.org/10.15607/RSS.2008.IV.009
https://github.com/boettiger-lab/sarsop
https://github.com/boettiger-lab/sarsop/issues
https://orcid.org/0000-0002-1642-628X

alphas_from_log

Lee Thomason [ctb, cph],
Carl Kindman [ctb, cph],

Le Trong Dao [ctb, cph],
Amit Jain [ctb, cph],

Rong Nan [ctb, cph],

Ulrich Drepper [ctb],

Free Software Foundation [cph],
Tyge Lovset [ctb, cph],

Yves Berquin [ctb, cph],
Benjamin Griidelbach [ctb],
RSA Data Security, Inc. [cph]

Maintainer Carl Boettiger <cboettig@gmail.com>
Repository CRAN
Date/Publication 2025-04-16 04:50:08 UTC

Contents
alphas_from_log 2
assert_has_appl 3
compute_poliCy e e e e e e 4
fisheries_matrices L 5
f from_log e 6
hindcast_ pomdp e e 6
meta_from_log e 8
models_from_log 8
pomdpsol 9
read_poliCyX 11
SATSOP '« v v o v v e 12
sSim_pomdp e e e e e e e e 13
write_pomdpX e 15

Index 17

alphas_from_log alphas_from_log
Description

Read alpha vectors from a log file.

Usage

n

alphas_from_log(meta, log_dir = ".")

assert_has_appl 3

Arguments
meta a data frame containing the log metadata for each set of alpha vectors desired,
see meta_from_log
log_dir path to log directory
Value

a list with a matrix of alpha vectors for each entry in the provided metadata (as returned by sarsop).

Examples

takes > 5s

source(system.file("examples/fisheries-ex.R", package = "sarsop"))

log = tempfile()

alpha <- sarsop(transition, observation, reward, discount, precision = 10,
log_dir = log)

assert_has_appl test the APPL binaries

Description

Asserts that the C++ binaries for appl have been compiled successfully

Usage

assert_has_appl()

Value

Will return TRUE if binaries are installed and can be located and executed, and FALSE otherwise.

Examples

assert_has_appl()

4 compute_policy

compute_policy compute_policy

Description

Derive the corresponding policy function from the alpha vectors

Usage
compute_policy(
alpha,
transition,
observation,
reward,
state_prior = rep(1, dim(observation)[[111)/dim(observation)[[11],
a_o =1
)
Arguments
alpha the matrix of alpha vectors returned by sarsop
transition Transition matrix, dimensionn_s X n_s x n_a
observation Observation matrix, dimensionn_s X n_z xn_a
reward reward matrix, dimension n_s x n_a
state_prior initial belief state, optional, defaults to uniform over states
a_o previous action. Belief in state depends not only on observation, but on prior
belief of the state and subsequent action that had been taken.
Value

a data frame providing the optimal policy (choice of action) and corresponding value of the action
for each possible belief state

Examples

m <- fisheries_matrices()

Takes > 5s

if(assert_has_appl()){

alpha <- sarsop(m$transition, m$observation, m$reward, 0.95, precision = 10)
compute_policy(alpha, m$transition, m$observation, m$reward)

}

fisheries_matrices 5

fisheries_matrices fisheries_matrices

Description

Initialize the transition, observation, and reward matrices given a transition function, reward func-
tion, and state space

Usage

fisheries_matrices(
states = 0:20,
actions = states,
observed_states = states,
reward_fn = function(x, a) pmin(x, a),
f = ricker(1, 15),

sigma_g = 0.1,
sigma_m = 0.1,
noise = c("rescaled-lognormal”, "lognormal”, "uniform”, "normal")
)
Arguments
states sequence of possible states
actions sequence of possible actions

observed_states
sequence of possible observations

reward_fn function of x and a that gives reward for tacking action a when state is x
f transition function of state x and action a.
sigma_g half-width of uniform shock or equivalent variance for log-normal
sigma_m half-width of uniform shock or equivalent variance for log-normal
noise distribution for noise, "lognormal” or "uniform"

Details

assumes log-normally distributed observation errors and process errors

Value

list of transition matrix, observation matrix, and reward matrix

Examples

m <- fisheries_matrices()

6 hindcast_pomdp

f_from_log ffromlog

Description

Read transition function from log

Usage

f_from_log(meta)

Arguments
meta a data frame containing the log metadata for each set of alpha vectors desired,
see meta_from_log
Details

note this function is unique to the fisheries example problem and assumes that sarsop call is run
with logging specifying a column "model" that contains either the string "ricker" (corresponding to
a Ricker-type growth function) or "allen" (corresponding to an Allen-type.)

Value

the growth function associated with the model indicated.

Examples

takes > 5s

source(system.file("examples/fisheries-ex.R", package = "sarsop"”))

log = tempfile()

alpha <- sarsop(transition, observation, reward, discount, precision = 10,
log_dir = log)

hindcast_pomdp hindcast_pomdp

Description

Compare historical actions to what pomdp recommendation would have been.

hindcast_pomdp 7

Usage
hindcast_pomdp(
transition,
observation,
reward,
discount,
obs,
action,
state_prior = rep(1, dim(observation)[[1]]1)/dim(observation)[[1]],
alpha = NULL,
)
Arguments
transition Transition matrix, dimensionn_s xn_sxn_a
observation Observation matrix, dimensionn_sXxn_zxn_a
reward reward matrix, dimension n_s x n_a
discount the discount factor
obs a given sequence of observations
action the corresponding sequence of actions
state_prior initial belief state, optional, defaults to uniform over states
alpha the matrix of alpha vectors returned by sarsop
additional arguments to appl.
Value

a list, containing: a data frame with columns for time, obs, action, and optimal action, and an array
containing the posterior belief distribution at each time t

Examples

m <- fisheries_matrices()
Takes > 5s
if(assert_has_appl()){
alpha <- sarsop(m$transition, m$observation, m$reward, 0.95, precision = 10)
sim <- hindcast_pomdp(m$transition, m$observation, m$reward, 0.95,
obs = rnorm(21, 15, .1), action = rep(1, 21),
alpha = alpha)

8 models_from_log

meta_from_log meta from log

Description

load metadata from a log file

Usage
meta_from_log(
parameters,
log_dir = ".",
metafile = paste@(log_dir, "/meta.csv")
)
Arguments
parameters a data.frame with the desired parameter values as given in metafile
log_dir path to log directory
metafile path to metafile index, assumed to be meta.csv in log_dir
Value

a data.frame with the rows of the matching metadata.

Examples

takes > 5s

source(system.file("examples/fisheries-ex.R", package = "sarsop"”))

log = tempfile()

alpha <- sarsop(transition, observation, reward, discount, precision = 10,
log_dir = log)

models_from_log model from log

Description

Read model details from log file

Usage

models_from_log(meta, reward_fn = function(x, h) pmin(x, h))

pomdpsol 9

Arguments
meta a data frame containing the log metadata for each set of alpha vectors desired,
see meta_from_log
reward_fn a function f(x,a) giving the reward for taking action a given a system in state X.
Details
assumes transition can be determined by the f_from_log function, which is specific to the fisheries
example
Value

a list with an element for each row in the requested meta data frame, which itself is a list of the
three matrices: transition, observation, and reward, defining the pomdp problem.

Examples

takes > 5s

source(system.file("examples/fisheries-ex.R", package = "sarsop"”))

log = tempfile()

alpha <- sarsop(transition, observation, reward, discount, precision = 10,
log_dir = log)

pomdpsol APPL wrappers

Description

Wrappers for the APPL executables. The pomdpsol function solves a model file and returns the
path to the output policy file.

Usage

pomdpsol (
model,
output = tempfile(),
precision = 0.001,
timeout = NULL,
fast = FALSE,
randomization = FALSE,
memory = NULL,
improvementConstant = NULL,
timeInterval = NULL,
stdout = tempfile(),

10 pomdpsol

stderr = tempfile(),
spinner = TRUE
)

polgraph(
model,
policy,
output = tempfile(),
max_depth = 3,
max_branches = 10,
min_prob = 0.001,

stdout = "",
spinner = TRUE
)
pomdpsim(
model,
policy,
output = tempfile(),
steps = 100,
simulations = 3,
stdout = "",
spinner = TRUE
)
pomdpeval (
model,
policy,
output = tempfile(),
steps = 100,
simulations = 3,
stdout = "",
spinner = TRUE
)
pomdpconvert(model, stdout = "", spinner = TRUE)
Arguments
model file/path to the pomdp model file
output file/path of the output policy file. This is also returned by the function.
precision targetPrecision. Set targetPrecision as the target precision in solution quality;
run ends when target precision is reached. The target precision is le-3 by default.
timeout Use timeLimit as the timeout in seconds. If running time exceeds the specified
value, pomdpsol writes out a policy and terminates. There is no time limit by
default.
fast logical, default FALSE. use fast (but very picky) alternate parser for .pomdp

files.

read_policyx 11

randomization logical, default FALSE. Turn on randomization for the sampling algorithm.

memory Use memoryLimit as the memory limit in MB. No memory limit by default. If
memory usage exceeds the specified value, pomdpsol writes out a policy and
terminates. Set the value to be less than physical memory to avoid swapping.
improvementConstant
Use improvementConstant as the trial improvement factor in the sampling algo-
rithm. At the default of 0.5, a trial terminates at a belief when the gap between
its upper and lower bound is 0.5 of the current precision at the initial belief.

timeInterval Use timelnterval as the time interval between two consecutive write-out of pol-
icy files. If this is not specified, pomdpsol only writes out a policy file upon

termination.
stdout a filename where pomdp run statistics will be stored
stderr currently ignored.
spinner should we show a spinner while sarsop is running?
policy file/path to the policy file
max_depth the maximum horizon of the generated policy graph

max_branches maximum number of branches to show in the policy graph

min_prob the minimum probability threshold for a branch to be shown in the policy graph
steps number of steps for each simulation run
simulations as the number of simulation runs

Examples

if(assert_has_appl()){
model <- system.file("models”, "example.pomdp”, package = "sarsop”)
policy <- tempfile(fileext = ".policyx")
pomdpsol(model, output = policy, timeout = 1)

Other tools
evaluation <- pomdpeval(model, policy, stdout = FALSE)
graph <- polgraph(model, policy, stdout = FALSE)
simulations <- pomdpsim(model, policy, stdout = FALSE)
}

read_policyx read_policyx

Description

read a .policyx file created by SARSOP and return alpha vectors and associated actions.

12 sarsop

Usage

read_policyx(file = "output.policyx")

Arguments

file name of the policyx file to be read.

Value

a list, first element "vectors" is an n_states x n_vectors array of alpha vectors, second element is a
numeric vector "action” of length n_vectors whose i’th element indicates the action corresponding
to the i’th alpha vector (column) in the vectors array.

Examples

f <- system.file("extdata”, "out.policy"”, package="sarsop”, mustWork = TRUE)
policy <- read_policyx(f)

sarsop sarsop

Description

sarsop wraps the tasks of writing the pomdpx file defining the problem, running the pomdsol (SAR-
SOP) algorithm in C++, and then reading the resulting policy file back into R. The returned alpha
vectors and alpha_action information is then transformed into a more generic, user-friendly repre-
sentation as a matrix whose columns correspond to actions and rows to states. This function can
thus be used at the heart of most pomdp applications.

Usage

sarsop(
transition,
observation,
reward,
discount,
state_prior = rep(1, dim(observation)[[1]1])/dim(observation)[[1]],
verbose = TRUE,
log_dir = tempdir(),
log_data = NULL,
cache = TRUE,

sim_pomdp 13

Arguments
transition Transition matrix, dimensionn_sXxn_sxn_a
observation Observation matrix, dimensionn_s Xn_z xn_a
reward reward matrix, dimensionn_s X n_a
discount the discount factor
state_prior initial belief state, optional, defaults to uniform over states
verbose logical, should the function include a message with pomdp diagnostics (timings,
final precision, end condition)
log_dir pomdpx and policyx files will be saved here, along with a metadata file
log_data a data.frame of additional columns to include in the log, such as model param-
eters. A unique id value for each run can be provided as one of the columns,
otherwise, a globally unique id will be generated.
cache should results from the log directory be cached? Default TRUE. Identical func-
tional calls will quickly return previously cached alpha vectors from file rather
than re-running.
additional arguments to appl.
Value

amatrix of alpha vectors. Column index indicates action associated with the alpha vector, (1:n_actions),
rows indicate system state, x. Actions for which no alpha vector was found are included as all -Inf,
since such actions are not optimal regardless of belief, and thus have no corresponding alpha vectors

in alpha_action list.

Examples

Takes > 5s

Use example code to generate matrices for pomdp problem:
source(system.file("examples/fisheries-ex.R", package = "sarsop"”))

alpha <- sarsop(transition, observation, reward, discount, precision = 10)
compute_policy(alpha, transition, observation, reward)

sim_pomdp simulate a POMDP

Description

Simulate a POMDP given the appropriate matrices.

14 sim_pomdp

Usage

sim_pomdp (
transition,
observation,
reward,
discount,
state_prior = rep(1, dim(observation)[[1]])/dim(observation)[[1]],
X0,
a0 =1,
Tmax = 20,
policy = NULL,
alpha = NULL,
reps = 1,

Arguments

transition Transition matrix, dimensionn_s X n_s Xxn_a

observation
reward
discount

state_prior

Observation matrix, dimensionn_sXxn_zxn_a
reward matrix, dimension n_s x n_a
the discount factor

initial belief state, optional, defaults to uniform over states

X0 initial state

a0 initial action (default is action 1, e.g. can be arbitrary if the observation process
is independent of the action taken)

Tmax duration of simulation

policy Simulate using a pre-computed policy (e.g. MDP policy) instead of POMDP

alpha the matrix of alpha vectors returned by sarsop

reps number of replicate simulations to compute
additional arguments to mclapply

Details

simulation assumes the following order of updating: For system in state[t] at time t, an observation
of the system obs[t] is made, and then action[t] is based on that observation and the given policy,
returning (discounted) reward][t].

Value

a data frame with columns for time, state, obs, action, and (discounted) value.

write_pomdpx 15

Examples

m <- fisheries_matrices()
discount <- 0.95
Takes > 5s
if(assert_has_appl()){
alpha <- sarsop(m$transition, m$observation, m$reward, discount, precision = 10)
sim <- sim_pomdp(m$transition, m$observation, m$reward, discount,
x0 = 5, Tmax = 20, alpha = alpha)

write_pomdpx write pomdpx files

Description
A POMDPX file specifies a POMDP problem in terms of the transition, observation, and reward
matrices, the discount factor, and the initial belief.

Usage

write_pomdpx(

gamma,
b = rep(1/dim(0)[1], dim(0)[1]),
file = "input.pomdpx",

digits = 12,
digits2 = 12,
format = "f"
)
Arguments
P transition matrix
0 observation matrix
R reward
gamma discount factor
b initial belief
file pomdpx file to create
digits precision to round to before normalizing. Leave at 4 since sarsop seems unable
to do more?
digits2 precision to write solution to. Leave at 10, since normalizing requires additional

precision

16 write_pomdpx

format floating point format, because sarsop parser doesn’t seem to know scientific
notation

Examples

m <- fisheries_matrices()

f <- tempfile()

write_pomdpx(m$transition, m$observation, m$reward, 0.95,
file = f)

Index

alphas_from_log, 2
appl, 7, 13

appl (pomdpsol), 9
assert_has_appl, 3

compare_pomdp (hindcast_pomdp), 6
compute_policy, 4

f_from_log, 6
fisheries_matrices, 5

hindcast_pomdp, 6

meta_from_log, 3, 6, 8, 9
models_from_log, 8

polgraph (pomdpsol), 9
pomdpconvert (pomdpsol), 9
pomdpeval (pomdpsol), 9
pomdpsim (pomdpsol), 9
pomdpsol, 9

read_policyx, 11
SARSOP (pomdpsol), 9
sarsop, 3,4,7,12, 14
sim_pomdp, 13

write_pomdpx, 15

17

	alphas_from_log
	assert_has_appl
	compute_policy
	fisheries_matrices
	f_from_log
	hindcast_pomdp
	meta_from_log
	models_from_log
	pomdpsol
	read_policyx
	sarsop
	sim_pomdp
	write_pomdpx
	Index

