Package 'sazedR'

October 14, 2022

Type Package

Title Parameter-Free Domain-Agnostic Season Length Detection in Time Series

Version 2.0.2

Description Spectral and Average Autocorrelation Zero Distance Density ('sazed') is a method for estimating the season length of a seasonal time series. 'sazed' is aimed at practitioners, as it employs only domain-agnostic preprocessing and does not depend on parameter tuning or empirical constants. The computation of 'sazed' relies on the efficient autocorrelation computation methods suggested by Thibauld Nion (2012, URL: <https://etudes.tibonihoo.net/literate_musing/autocorrelations.html>) and by Bob Carpenter (2012, URL: <https://lingpipe-blog.com/2012/06/08/autocorrelation-fft-kiss-eigen/>).

License GPL-2

URL https://github.com/mtoller/autocorr_season_length_detection/

Encoding UTF-8

LazyData true

Imports bspec (>= 1.5), dplyr (>= 0.8.0.1), fftwtools (>= 0.9.8), pracma (>= 2.1.4), zoo (>= 1.8-3)

RoxygenNote 6.1.1

NeedsCompilation no

Author Maximilian Toller [aut], Tiago Santos [aut, cre], Roman Kern [aut]

Maintainer Tiago Santos <teixeiradossantos@tugraz.at>

Repository CRAN

Date/Publication 2020-09-29 18:30:02 UTC

R topics documented:

computeAcf	 	 · • • • • • • • • •	 3
downsample	 	 · • • • • • • • • •	 4
preprocessTs .	 	 	 4
S	 	 · · · · · · · · · · ·	 5
Sa	 	 · · · · · · · · · ·	 5
sazed	 	 · · · · · · · · · ·	 6
sazed.maj	 	 	 6
zed	 	 	 8
			9

Index

aze

Compute the AZE component of the SAZED ensemble

Description

aze estimates the season length of its argument from the mean autocorrelation zero distance

Usage

aze(y, preprocess = T)

Arguments

У	The input time series.
preprocess	If true, y is detrended and z-normalized before computation.

Value

The AZE season length estimate of y.

Examples

```
season_length <- 26
y <- sin(1:400*2*pi/season_length)
aze(y)
aze(y, preprocess = FALSE)</pre>
```

azed

Description

azed computes the autocorrelation of its argument, and then derives the season length from its the autocorrelations zero density.

Usage

azed(y, preprocess = T)

Arguments

У	The input time series.
preprocess	If true, y is detrended and z-normalized before computation.

Value

The AZED season length estimate of y.

Examples

season_length <- 26
y <- sin(1:400*2*pi/season_length)
azed(y)
azed(y, preprocess = FALSE)</pre>

computeAcf

Compute and shorten autocorrelation

Description

computeAcf computes the autocorrelation function of its argument and discards the zero lag and all lags greater than 2/3 of the argument's length

Usage

computeAcf(y)

Arguments

y The input time series.

Value

The shortened autocorrelation

Examples

```
season_length <- 26
y <- sin(1:400*2*pi/season_length)
computeAcf(y)</pre>
```

downsample

Downsample Time Series

Description

downsample samples down a time series with a rolling mean.

Usage

```
downsample(data, window_size = 2)
```

Arguments

data	The input time series.
window_size	The size of the rolling mean window used.

Value

The downsampled time series.

preprocessTs	Preprocess Time Series for SAZED ensemble	
--------------	---	--

Description

preprocessTs detrends and z-normalizes its argument.

Usage

preprocessTs(y)

Arguments

y The input time series.

Value

The detrended and z-normalized time series.

Examples

season_length <- 26 y <- sin(1:400*2*pi/season_length) preprocessTs(y)

4

S

Description

S computes the spectral density of its argument, and then derives the season length from it.

Usage

S(y, preprocess = T)

Arguments

У	The input time series.
preprocess	If true, y is detrended and z-normalized before computation.

Value

The S season length estimate of y.

Examples

season_length <- 26
y <- sin(1:400*2*pi/season_length)
S(y)
S(y, preprocess = FALSE)</pre>

Sa

Compute the SA component of the SAZED ensemble

Description

Sa computes the autocorrelation of its argument, and then derives the season length from its spectral density.

Usage

Sa(y, preprocess = T)

Arguments

У	The input time series.
preprocess	If true, y is detrended and z-normalized before computation.

Value

The SA season length estimate of y.

Examples

```
season_length <- 26
y <- sin(1:400*2*pi/season_length)
Sa(y)
Sa(y, preprocess = FALSE)</pre>
```

sazed

SAZED Ensemble (Optimum)

Description

sazed estimates a time series' season length by combining 3 different estimates computed on an input time series and its 10-fold self-composed autocorrelation.

Usage

sazed(y)

Arguments

у

The input time series.

Value

The season length of the input time series.

Examples

```
season_length <- 26
y <- sin(1:400*2*pi/season_length)
sazed(y)
```

sazed.maj

SAZED Ensemble (Majority)

Description

sazed.maj estimates a time series' season length by computing 6 different estimates and taking a majority vote.

Usage

```
sazed.maj(y, iter = 0, method = "down", preprocess = T)
```

6

sazedR

Arguments

У	The input time series.
iter	The recursion depth.
method	The method used for breaking ties. One of c("alt", "diff", "down").
preprocess	If true, y is detrended and z-normalized before computation.

Value

The season length of the input time series.

Examples

```
season_length <- 26
y <- sin(1:400*2*pi/season_length)
sazed.maj(y)</pre>
```

sazedR	sazedR: A package for for estimating the season length of a seasonal
	time series.

Description

The sazedR package provides the main function to compute season length, sazed, which is an ensemble of many season length estimation methods, also included in this package.

ze

Compute the ZE component of the SAZED ensemble

Description

ze estimates the season length of its argument from the mean zero distance

Usage

ze(y, preprocess = T)

Arguments

У	The input time series.
preprocess	If true, y is detrended and z-normalized before computation.

Value

The ZE season length estimate of y.

Examples

```
season_length <- 26
y <- sin(1:400*2*pi/season_length)
ze(y)
ze(y, preprocess = FALSE)</pre>
```

zed

Compute the ZED component of the SAZED ensemble

Description

zed computes the zero density of its argument, and then derives the season length from it.

Usage

zed(y, preprocess = T)

Arguments

У	The input time series.
preprocess	If true, y is detrended and z-normalized before computation.

Value

The ZED season length estimate of y.

Examples

```
season_length <- 26
y <- sin(1:400*2*pi/season_length)
zed(y)
zed(y, preprocess = FALSE)</pre>
```

Index

aze, 2 azed, 3 computeAcf, 3 downsample, 4 preprocessTs, 4 S, 5 Sa, 5 Sazed, 6 sazed.maj, 6 sazedR, 7 sazedR-package (sazedR), 7 ze, 7

zed, 8