Package ‘scapesClassification’

October 14, 2022
Title User-Defined Classification of Raster Surfaces
Version 1.0.0
Depends R (>=3.5.0)

Description Series of algorithms to translate users' mental models of seascapes,
landscapes and, more generally, of geographic features into computer representations
(classifications). Spaces and geographic objects are classified with user-defined
rules taking into account spatial data as well as spatial relationships among
different classes and objects.

License GPL (>=3)
Encoding UTF-8
RoxygenNote 7.1.2

Suggests gifski, knitr, leafem, leaflet, leafpop, mapview, raster,
spelling, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3
Imports terra, methods

VignetteBuilder knitr

URL https://github.com/ghTaranto/scapesClassification,

https://ghtaranto.github.io/scapesClassification/

BugReports https://github.com/ghTaranto/scapesClassification/issues
Language en-US

NeedsCompilation no

Author Gerald H. Taranto [aut, cre] (<https://orcid.org/0000-0002-7968-1982>)
Maintainer Gerald H. Taranto <gh.taranto@gmail.com>

Repository CRAN

Date/Publication 2022-03-16 13:30:02 UTC

https://github.com/ghTaranto/scapesClassification
https://ghtaranto.github.io/scapesClassification/
https://github.com/ghTaranto/scapesClassification/issues
https://orcid.org/0000-0002-7968-1982

2

R topics documented:

Index

anchorcell
anchorseed
anchor.svo
attTbl
classifyaall,
condd.all
cond4nofn
cond.parseo
condreclass
conditions
CV.2rast e
ngb8
ngbList L
objborder,
objmbs.
peakcell
piadd
plsgm

anchor.cell

................... 25

anchor.cell

Cell numbers to class vector

Description

Converts a vector of cell numbers into a class vector.

Usage

anchor.cell(

attThl,
r,
anchor,
class,

classVector

class2cell = TRUE,
class2nbs = TRUE,
overwrite_class = FALSE,
plot = FALSE,
writeRaster = NULL,
overWrite = FALSE

anchor.cell

Arguments

attTbl

r

anchor

class

classVector

class2cell

class2nbs

overwrite_class

plot
writeRaster

overWrite

Details

data.frame, the attribute table returned by the function attTbl.

single or multi-layer raster of the class SpatRaster (see help("rast”, terra))
used to compute the attTbl.

integer vector of raster cell numbers.

numeric, the classification number to assign to all cells that meet the function
conditions.

numeric vector, if provided, it defines the cells in the attribute table that have
already been classified and that have to be ignored by the function (unless the
argument overwrite_class = TRUE).

logic, attribute the classification number to the cells of the argument anchor.
If there is a classVector input, the classification number is only assigned to
classVector NA-cells.

logic, attribute the classification number to cells adjacent to the ones of the ar-
gument anchor. If there is a classVector input, the classification number is
only assigned to classVector NA-cells.

logic, if there is a classVector input, reclassify cells that were already classi-
fied and that meet the function conditions.

logic, plot the class vector output.
filename, if a raster name is provided, save the class vector in a raster file.

logic, if the raster names already exist, the existing file is overwritten.

Converts a vector of cell numbers into a class vector. If there is a classVector input, then the class
vector is updated assigning a classification number to all cells that meet the function conditions.

Value

Update classVector with the new cells that were classified by the function. If there is no classVector

input, the function returns a new class vector. See conditions for more details about class vectors.

See Also

conditions(), anchor.svo(), attThl()

Examples

DUMMY DATA

HEHHHHHREEHHEHHHEHBHEHEHREEEEHEEHEEHHEHEAEHEEEEHEHHEH RS HHHEHREEEEHEEEEEHREEHEHR
LOAD LIBRARIES AND DATA
library(scapesClassification)

library(terra)

CELL NUMBERS OF A DUMMY RASTER (7X7)

anchor.cell

r_cn <- terra::rast(matrix(1:49, nrow = 7, byrow = TRUE), extent=c(0,1,0,1))

COMPUTE ATTRIBUTE TABLE AND LIST OF NEIGHBORHOODS

at <- attTbhl(r_cn, "dummy_var")

nbs <- ngbList(r_cn)

HHHHHHHEEEE AR AR AR A

HHHHHHARHEE A AR A
ANCHOR.CELL
HHHHHHEREEEE A R AR
cvl <- anchor.cell(attTbl = at, r = r_cn, anchor = 1:7, class = 10,

class2cell = TRUE, class2nbs = FALSE)

cv2 <- anchor.cell(attTbl = at, r = r_cn, anchor = 1:7, class = 10,
class2cell = FALSE, class2nbs = TRUE)

cv3 <- anchor.cell(attTbl = at, r = r_cn, anchor = 1:7, class = 10,
class2cell = TRUE, class2nbs = TRUE)

Convert class vectors to rasters

r_cvl <- cv.2.rast(r = r_cn, index = at$Cell, classVector = cv1)

r_cv2 <- cv.2.rast(r = r_cn, index = at$Cell, classVector = cv2)

r_cv3 <- cv.2.rast(r = r_cn, index = at$Cell, classVector = cv3)

AR AR AR AR

HHHHHHHHHHAHHEHEHHHAH AR
PLOTS

S HEHHRHEHEH R E AR AR AR HEHREEEEHRHEREHR
oldpar <- par(mfrow = c(2,2))

m=c(1, 3.5, 2.5, 3.5)

1)
plot(r_cvl, type="classes"”, axes=FALSE, legend=FALSE, asp=NA,colNA="#818792",col="#78b2c4" ,mar=m)
text(r_cn)
mtext(side=3, line=1, adj=0, cex=1, font=2, "ANCHOR.CELL")
mtext(side=3, line=0, adj=0, cex=0.9, "anchor cells '1:7'")
mtext(side=1, line=0, cex=0.9, adj=0, "class2cell = TRUE; class2nbs = FALSE")
legend("bottomright”, ncol = 1, bg = "white"”, fill = c("#78b2c4", "#818792"),
legend = c("Classified cells”,"”Unclassified cells"))

2)
plot(r_cv2,type="classes"”,6 axes=FALSE, legend=FALSE, asp=NA,colNA="#818792",col="#78b2c4" ,mar=m)
text(r_cn)
mtext(side=3, line=1, adj=0, cex=1, font=2, "ANCHOR.CELL")
mtext(side=3, line=0, adj=0, cex=0.9, "anchor cells '1:7'")
mtext(side=1, line=0, cex=0.9, adj=0, "class2cell = FALSE; class2nbs = TRUE")
legend("bottomright”, ncol = 1, bg = "white"”, fill = c("#78b2c4", "#818792"),

legend = c("Classified cells”,"”Unclassified cells"))

3)

plot(r_cv3, type="classes"”, axes=FALSE, legend=FALSE, asp=NA, colNA="#818792",col="#78b2c4" ,mar=m)
text(r_cn)

mtext(side=3, line=1, adj=0, cex=1, font=2, "ANCHOR.CELL")

anchor.seed

mtext(side=3, line=0, adj=0, cex=0.9, "anchor cells '1:7'")

mtext(side=1, line=0, cex=0.9, adj=0, "class2cell = TRUE; class2nbs = TRUE")

legend("bottomright”, ncol = 1, bg = "white"”, fill = c("#78b2c4", "#818792"),
legend = c("Classified cells”,"”Unclassified cells"))

par(oldpar)

anchor. seed

Identify seed cells

Description

Returns a vector of cell numbers at the locations of seed cells and growth buffers.

Usage

anchor. seed(
attThl,
ngbList,
rNumb = FALSE
class = NULL,
cond.filter =
cond. seed,

’

NULL,

cond.growth = NULL,
lag.growth = Inf,
cond.isol = NULL,

lag.isol =1,

sort.col = NULL,
sort.seed = "max",
saveRDS = NULL,
overWrite = FALSE,
isol.buff = FALSE,
silent = FALSE

Arguments
attTbl
ngbList

rNumb

class

data.frame, the attribute table returned by the function attTbl.
list, the list of neighborhoods returned by the function ngbList.

logic, the neighborhoods of the argument ngbList are identified by cell numbers
(rNumb=FALSE) or by row numbers (rNumb=TRUE) (see ngbList). It is advised
to use row numbers for large rasters.

numeric, the classification number to assign to all cells that meet the function
conditions. If NULL, a new class number is assigned every time a new seed cell is
identified. Growth buffers have the same classification number as the seed cell
to which they refer.

cond.filter

cond. seed

cond. growth

lag.growth

cond.isol

lag.isol

sort.col

sort.seed

saveRDS
overWrite
isol.buff

silent

Details

anchor.seed

character string, defines for what cells the arguments cond. seed, cond.growth
and cond. isol have to be evaluated. It can be NULL. Absolute conditions can
be used (see conditions).

character string, the conditions to identify seed cells. Absolute conditions can
be used (see conditions). It cannot be NULL.

character string, the conditions to define a growth buffer around seed cells. It
can be NULL. Absolute and focal cell conditions can be used (see conditions).

0 or Inf, defines the evaluation lag of focal cell conditions in cond. growth.

character string, the conditions to define an isolation buffer around seed cells
and growth buffers. It can be NULL. Absolute and focal cell conditions can be
used (see conditions).

0 or Inf, defines the evaluation lag of focal cell conditions in cond. isol.

character, the column name in the attTbl on which the sort. seed is based on.
It determines in what order seed buffers are computed.

character, the order seed buffers are computed is based on the value seed cells

have in the column of attribute table column named sort.col. If sort. seed="max",

buffers are computed from the seed cell having the maximum value to the seed
cell having the minimum value. If sort.seed="min", buffers are computed in
the opposite order.

filename, if a file name is provided save the class vector as an RDS file.
logic, if the RDS names already exist, existing files are overwritten.
logic, return the isolation buffer (class =-999).

logic, progress is not printed on the console.

This function implements an algorithm to identify seed cells, growth buffers and isolation buffers.

Condition arguments

The function takes as inputs four sets of conditions with cond.growth and cond. isol taking into
account class contiguity and continuity (see conditions):

1. cond.filter, the conditions to define what cells have to be evaluated by the function.

2. cond. seed, the conditions to identify, at each iteration, the seed cell. The seed cell is the cell
around which growth and isolation conditions are applied.

3. cond.growth, the conditions to define a buffer around the seed cell.

4. cond.isol, the conditions to isolate one seed cell (and its growth buffer) from another.

Iterations

The argument cond. filter defines the set of cells to be considered by the function.

1. A seed cell is identified based on cond. seed and receives a classification number as specified
by the argument class. If class=NULL, then a new class is assigned to every new seed cell.

anchor.seed 7

2. Cells connected with the seed cell meeting the conditions of cond.growth are assigned to
the same class of the seed cell (growth buffer). The rule evaluation take into account class
continuity (see conditions).

3. Cells connected with the seed cell (or with its growth buffer) meeting the conditions of
cond.isol are assigned to the isolation buffer (class = -999). The rule evaluation take into
account class continuity (see conditions).

4. A new seed cell is identified based on cond. seed which is now only evaluated for cells that
were not identified as seed, growth or isolation cells in previous iterations.

5. A new iteration starts. Seed, growth and isolation cells identified in previous iteration are
ignored in successive iterations.

6. The function stops when it cannot identify any new seed cell.

Relative focal cell conditions and evaluation lag
* The arguments lag.growth and lag.isol control the evaluation lag of relative focal cell
conditions (see conditions).

* When lag. x are set to 0, relative focal cell conditions have a standard behavior and compare
the values of the test cells against the value of the focal cell.

* When lag.* are set to Inf, relative focal cell conditions compare the values of the test
cells against the value of the seed cell identified at the start of the iteration.

Value

Class vector. See conditions for more details about class vectors.

See Also

conditions(), attTbl(), ngbList()

Examples

DUMMY DATA

HHHHHHHEEEE AR AR R
LOAD LIBRARIES

library(scapesClassification)

library(terra)

LOAD THE DUMMY RASTER

r <- list.files(system.file("extdata"”, package = "scapesClassification"),
pattern = "dummy_raster\\.tif"”, full.names = TRUE)

r <- terra::rast(r)

COMPUTE THE ATTRIBUTE TABLE
at <- attTbl(r, "dummy_var")

COMPUTE THE LIST OF NEIGBORHOODS
nbs <- ngbList(r)

anchor.seed

B S ST
EXAMPLE PLOTS
AR
oldpar <- par(mfrow = c(1,2))

m <- c(4.5, 0.5, 2, 3.2)

1a. Do not show isol.buff
as <- anchor.seed(attThl = at, ngbList = nbs, rNumb = FALSE, class = NULL, silent = TRUE,
cond.filter = "dummy_var > 1", cond.seed = "dummy_var == max(dummy_var)",
cond.growth = "dummy_var<dummy_var[] & dummy_var>2",
cond.isol = "dummy_var<dummy_var[]")

plot(cv.2.rast(r,classVector=as), type="classes"”", mar=m, col=c("#00A600", "#E6E600"),
axes=FALSE, plg=list(x=1, y=1, cex=.80, title="Classes"))

text(r); lines(r)

mtext(side=3, line=0, cex=1, font=2, adj=0, "l1a. Do not show 'isol.buff'")

mtext(side=1, line=0, cex=1, font=2, adj=1, "cond.filter:")

mtext(side=1, line=1, cex=1, font=2, adj=1, "cond.seed:")

mtext(side=1, line=2, cex=1, font=2, adj=1, "cond.growth:")

mtext(side=1, line=3, cex=1, font=2, adj=1, "cond.isol:")

text(xFromCell(r,c(20,43)),yFromCell(r,c(20,43))-0.05,"SEED",col="red",cex=0.80)

1b. Show isol.buff
as <- anchor.seed(attThl = at, ngbList = nbs, rNumb = FALSE, class = NULL, silent = TRUE,
cond.filter = "dummy_var > 1", cond.seed = "dummy_var == max(dummy_var)",
cond.growth = "dummy_var<dummy_var[] & dummy_var>2",
cond.isol = "dummy_var<dummy_var[]", isol.buff = TRUE)

plot(cv.2.rast(r,classVector=as), type="classes"”, col=c("#00000040", "#00A600", "#EGE600"),
mar=m, axes=FALSE, plg=list(x=1, y=1, cex=.80, title="Classes"))

text(r); lines(r)

mtext(side=3, line=0, cex=1, font=2, adj=0, "1b. Show 'isol.buff' (class=-999)")

mtext(side=1, line=0, cex=1, adj=0, "dummy_var > 1")

mtext(side=1, line=1, cex=1, adj=0, "dummy_var == max(dummy_var)")

mtext(side=1, line=2, cex=1, adj=0, "dummy_var<dummy_var[] & dummy_var>2")

mtext(side=1, line=3, cex=1, adj=0, "dummy_var<dummy_var[]")

text(xFromCell(r,c(20,43)),yFromCell(r,c(20,43))-0.05,"SEED",col="red",cex=0.80)

2a. Lag.growth = Inf
as <- anchor.seed(attTbl = at, ngbList = nbs, rNumb = FALSE, class = NULL, silent = TRUE,
cond.filter = "dummy_var > 1", cond.seed = "dummy_var == max(dummy_var)",
cond.growth = "dummy_var<dummy_var[]"”, lag.growth = Inf)

plot(cv.2.rast(r,classVector=as), type="classes”, mar=m, col=c("#00A600"),
axes=FALSE, plg=list(x=1, y=1, cex=.80, title="Classes"))

text(r); lines(r)

mtext(side=3, line=0, cex=1, font=2, adj=0, "2a. Lag.growthx = Inf")

mtext(side=1, line=0, cex=1, font=2, adj=1, "cond.filter:")

mtext(side=1, line=1, cex=1, font=2, adj=1, "cond.seed:")

mtext(side=1, line=2, cex=1, font=2, adj=1, "cond.growthx:")

mtext(side=1, line=3, cex=1, font=2, adj=1, "cond.isol:")

text(xFromCell(r,c(20)),yFromCell(r,c(20))-0.05,"SEED",col="red",cex=0.80)

anchor.svo 9

2b. Lag.growth = @
as <- anchor.seed(attThl = at, ngbList = nbs, rNumb = FALSE, class = NULL, silent = TRUE,
cond.filter = "dummy_var > 1", cond.seed = "dummy_var == max(dummy_var)",
cond.growth = "dummy_var<dummy_var[]", lag.growth = @)

plot(cv.2.rast(r,classVector=as), type="classes”, mar=m, col=c("#00A600", "#EG6E600"),
axes=FALSE, plg=list(x=1, y=1, cex=.80, title="Classes"))

text(r); lines(r)

mtext(side=3, line=0, cex=1, font=2, adj=0, "2b. Lag.growthx = @")

mtext(side=1, line=0, cex=1, adj=0, "dummy_var > 1")

mtext(side=1, line=1, cex=1, adj=0, "dummy_var == max(dummy_var)")

mtext(side=1, line=2, cex=1, adj=0, "dummy_var < dummy_var[]")

mtext(side=1, line=3, cex=1, adj=0, "NULL")

text(xFromCell(r,c(20,43)),yFromCell(r,c(20,43))-0.05,"SEED",col="red",cex=0.80)

3a. Without sorting

as <- anchor.seed(attThl = at, ngbList = nbs, rNumb = FALSE, class = NULL, silent = TRUE,
cond.filter = "dummy_var > 1", cond.seed = "dummy_var >= 5",
cond.isol = "dummy_var<dummy_var[]", isol.buff = TRUE)

seeds <- which(!is.na(as) & as !=-999)
cc <- c("#00000040", terrain.colors(8)[8:1])
plot(cv.2.rast(r,classVector=as), type="classes”, mar=m, col=cc,
axes=FALSE, plg=list(x=1, y=1, cex=.80, title="Classes"))
text(r); lines(r)
mtext(side=3, line=0, cex=1, font=2, adj=0, "3a. Without sorting"”)
mtext(side=1, line=0, cex=1, font=2, adj=1, "cond.filter:")
mtext(side=1, line=1, cex=1, font=2, adj=1, "cond.seed:")
mtext(side=1, line=2, cex=1, font=2, adj=1, "cond.growth:")
mtext(side=1, line=3, cex=1, font=2, adj=1, "cond.isol:")
text(xFromCell(r,seeds),yFromCell(r,seeds)-0.05,"SEED",col="red",cex=0.80)

3b. Sort buffer evaluation based on 'dummy_var' values
as <- anchor.seed(attTbl = at, ngbList = nbs, rNumb = FALSE, class = NULL, silent = TRUE,

cond.filter = "dummy_var > 1", cond.seed = "dummy_var >= 5",
cond.isol = "dummy_var<dummy_var[]", isol.buff = TRUE,
sort.col = "dummy_var”, sort.seed = "max")

seeds <- which(!is.na(as) & as !=-999)

plot(cv.2.rast(r,classVector=as), type="classes"”,col=c("#00000040", "#00A600", "#E6E600"),
mar=m, axes=FALSE, plg=list(x=1, y=1, cex=.80, title="Classes"))

text(r); lines(r)

mtext(side=3, line=0, cex=1, font=2, adj=0, "3b. Sort.col='dummy_var'; Sort.seed='max'")

mtext(side=1, line=0, cex=1, adj=0, "dummy_var > 1")

mtext(side=1, line=1, cex=1, adj=0, "dummy_var >= 5")

mtext(side=1, line=2, cex=1, adj=0, "NULL")

mtext(side=1, line=3, cex=1, adj=0, "dummy_var < dummy_var[]; isol.buff = -999")

text(xFromCell(r,seeds),yFromCell(r,seeds)-0.05,"SEED",col="red", cex=0.80)

par(oldpar)

anchor.svo Anchor cells from spatial vector objects

10

Description

anchor.svo

Returns a vector of raster cell numbers extracted at the locations of a spatial object.

Usage

anchor.svo(

dsn,

only_NAs = FALSE,
fill_NAs = FALSE,

plot = FALSE,

saveRDS = NULL,

writeRaster =

NULL,

overWrite = FALSE

Arguments

r
dsn

only_NAs

fill_NAs

plot
saveRDS
writeRaster

overWrite

Details

single or multi-layer raster of the class SpatRaster (see help("rast"”, terra)).
data source name (filename) or an sf, a Spatial or a SpatVector object.

logic, cell numbers extracted only for incomplete cases at the locations of a
spatial object. Incomplete cases are cells having an NA-value in one or more
layers of the raster object.

logic, cell numbers extracted at the locations of a spatial object and at contiguous
locations that are incomplete cases.

logic, plot anchor cells.
filename, if a file name is provided save the anchor cell vector as an RDS file.
filename, if a raster name is provided save the anchor cell vector as a raster file.

logic, if RDS and raster names already exist, existing files are overwritten.

When the arguments only_NA and fill_NAs are FALSE the numeric output is equivalent to the
output of the function terra: :extract(r, dsn, cells = TRUE)[["cell”]].

Value

Numeric vector of raster cell numbers.

Examples

DUMMY DATA

HHH A
LOAD LIBRARIES AND DATA
library(scapesClassification)

library(terra)

anchor.svo 11

CELL NUMBERS OF A DUMMY RASTER (7X7)
r_cn <- terra::rast(matrix(1:49, nrow = 7, byrow = TRUE), extent=c(0,1,0,1))

SET SOME NA-VALUE
r_cnlc(9, 10, 11, 17, 18)]1 <- NA

BULD A DUMMY POLYGON

pol <- rbind(c(@,0.95), c(0.28,1), c(0.24, ©.72), c(0.05,0.72), c(0,0.95))

pol <- terra::vect(pol, type="polygons")

HHHHHHEREEEE A R AR

AR AR R AR
ANCHOR.SVO

HHHHHHARHEE A AR AR
acl <- anchor.svo(r_cn, pol, only_NAs = FALSE, fill_NAs = FALSE)

ac2 <- anchor.svo(r_cn, pol, only_NAs = TRUE, fill_NAs = FALSE)

ac3 <- anchor.svo(r_cn, pol, only_NAs = FALSE, fill_NAs = TRUE)

ac4 <- anchor.svo(r_cn, pol, only_NAs = TRUE, fill_NAs = TRUE)

RASTER CELL NUMBERS 2 RASTER
ri <- r_cn; r1[] <= NA; ri1[ac1] <- 1
r2 <- r_cn; r2[] <= NA; r2[ac2] <- 1
r3 <- r_cn; r3[] <= NA; r3[ac3] <- 1
r4 <- r_cn; r4[] <- NA; r4fac4] <- 1

S HEHHRE R HHE PR PR HHEHE

AR AR R R A
PLOTS

HHH A AR AR A A
oldpar <- par(mfrow = c(2,2))

m = c(1, 3.5, 2.5, 3.5)

#1)
plot(r1, type="classes"”, col="#78b2c4", colNA="grey", axes=FALSE, legend=FALSE, asp=NA, mar=m)
plot(pol, add = TRUE, lwd = 2.5, border = "red")
text(r_cn)
mtext(side=3, line=1, cex=0.9, adj=0, "only_NAs = FALSE")
mtext(side=3, line=0, cex=0.9, adj=0, "fill_NAs = FALSE")
acl <- paste("ac =", paste@(sort(acl), collapse = ","))
mtext(side=1, line=0, cex=0.9, adj=0, acl)
legend("bottomleft”, ncol = 1, bg = "white”,
legend = c("Anchor cell (ac)", "Polygon"), fill = c("#78b2c4", "red"))

2)
plot(r2, type="classes”, col="#78b2c4"”, colNA="grey", axes=FALSE,legend=FALSE, asp=NA, mar=m)
plot(pol, add = TRUE, lwd = 2.5, border = "red")
text(r_cn)
mtext(side=3, line=1, cex=0.9, adj=0, "only_NAs = TRUE")
mtext(side=3, line=0, cex=0.9, adj=0, "fill_NAs = FALSE")
ac2 <- paste("ac =", paste@(sort(ac2), collapse = ","))
mtext(side=1, line=0, cex=0.9, adj=0, ac2)
legend("bottomleft”, ncol = 1, bg = "white",
legend = c("Anchor cell (ac)”, "Polygon"”), fill = c("#78b2c4", "red"))

12 attTbl

#3)
plot(r3, type="classes”, col="#78b2c4"”, colNA="grey", axes=FALSE, legend=FALSE, asp=NA, mar=m)
plot(pol, add = TRUE, 1lwd = 2.5, border = "red")
text(r_cn)
mtext(side=3, line=1, cex=0.9, adj=0, "only_NAs = FALSE")
mtext(side=3, line=0, cex=0.9, adj=0, "fill_NAs = TRUE")
ac3 <- paste("ac =", paste@(sort(ac3), collapse = ","))
mtext(side=1, line=0, cex=0.9, adj=0, ac3)
legend("bottomleft”, ncol = 1, bg = "white",
legend = c("Anchor cell (ac)", "Polygon"), fill = c("#78b2c4", "red"))

4)

plot(r4, type="classes", col="#78b2c4", colNA="grey", axes=FALSE, legend=FALSE, asp=NA, mar=m)
plot(pol, add = TRUE, lwd = 2.5, border = "red")

text(r_cn)

mtext(side=3, line=1, cex=0.9, adj=0, "only_NAs = TRUE")
mtext(side=3, line=0, cex=0.9, adj=0, "fill_NAs = TRUE")
ac4 <- paste("ac =", paste@d(sort(ac4), collapse = ","))

mtext(side=1, line=0, cex=0.9, adj=0, ac4)
legend("bottomleft”, ncol = 1, bg = "white",

legend = c("Anchor cell (ac)", "Polygon"), fill = c("#78b2c4", "red"))
par(oldpar)

attTbl Attribute table

Description

Converts a single or a multi-layer raster into an attribute table (data. frame).

Usage

attTbl(r, var_names = NULL)

Arguments
r single or multi-layer raster of the class SpatRaster (see help("rast”, terra)).
var_names character vector, raster layers’ names in the attribute table. If NULL, then the
original layers’ names are used.
Details

Attribute tables come with a column named "Cell” which stores raster cell numbers and associate
each row of the attribute table with a cell of the raster object. The remaining columns of the attribute
table store the data contained in the raster layers. Note that only raster cells having no missing value
in no layer (complete cases) are included in the attribute table.

attTbl 13

Value

data.frame

Note

Attribute table contains only complete cases, i.e., raster cells having a value for every layer of the
stack.

Examples

library(scapesClassification)
library(terra)

CREATE A DUMMY RASTER

r <- terra::rast(matrix(c(NA,100,100,NA,100,100,0,0,0),
nrow = 3,
ncol = 3,
byrow = TRUE))

RASTER CELL NUMBERS
rcn <- r; ren[] <= 1:9

PLOT DATA AND CELL NUMBERS
oldpar <- par(mfrow = c(1,2))
m<-c(4, 1, 4, 1)

plot(r, col="grey90", colNA="red3"”, mar=m, asp = NA, axes=FALSE, legend=FALSE)
text(r)
lines(r)
mtext(side=3, line=0.2, adj=0, cex=1.5, font=2, "Dummy_var")
legend("bottomright”, ncol=1, bg="white", fill=c("red3"),

legend = c("NA cells (1 and 4)"))

plot(rcn, col="grey90", mar=m, asp=NA, axes=FALSE, legend=FALSE)
text(rcn)

lines(rcn)

mtext(side=3, line=0.2, adj=0, cex=1.5, font=2, "Cell numbers")
par(oldpar)

VISUALIZE ATTRIBUTE TABLE

at <- attTbl(r, var_names = c("dummy_var"))
at

Note that cells 1 and 4 have missing values and therefore are not included in the table
any(at$Cell %in% c(1,4))

14 classity.all

classify.all Classify All Unclassified Cells

Description
Classify all cells in classVector that have not yet been classified based on contiguity and continu-
ity conditions.

Usage

classify.all(attTbl, ngblList, rNumb = FALSE, classVector)

Arguments
attTbhl data.frame, the attribute table returned by the function attTbl.
ngbList list, the list of neighborhoods returned by the function ngbList.
rNumb logic, the neighborhoods of the argument ngbList are identified by cell numbers
(rNumb=FALSE) or by row numbers (rNumb=TRUE) (see ngbList). It is advised
to use row numbers for large rasters.
classVector numeric vector, defines the cells in the attribute table that have already been
classified. See conditions for more information about class vectors.
Details

The neighborhood of unclassified cells is considered. Among neighbors, the class with the highest
number of members is assigned to the unclassified cell. If two or more classes have the same
number of members, then one of these classes is assigned randomly to the unclassified cell. The
function considers class continuity, thus, even cells that at first were not contiguous to any class
will be classified if continuous with at least one cell having a class (see conditions).

Value

Update classVector with the new cells that were classified by the function. See conditions for
more details about class vectors.

See Also

attThl(), ngbList(), conditions()

Examples

DUMMY DATA

HHH
LOAD LIBRARIES

library(scapesClassification)

library(terra)

classity.all 15

LOAD THE DUMMY RASTER

r <- list.files(system.file("extdata”, package = "scapesClassification”),
pattern = "dummy_raster\\.tif"”, full.names = TRUE)

r <- terra::rast(r)

COMPUTE THE ATTRIBUTE TABLE
at <- attTbl(r, "dummy_var")

COMPUTE THE LIST OF NEIGBORHOODS
nbs <- ngbList(r)

AR AR R AR
CLASSIFY.ALL
HHHHHHARHEE A AR AR
compute example class vector
cv <- cond.4.all(attThl = at, cond = "dummy_var <= 1", class = 1)
update example calss vector
cv <- cond.4.all(attThl = at, cond = "dummy_var <= 3", class = 2,
classVector = cv) # input previous class vector

classify all unclassified cells
ca <- classify.all(attThl = at, ngbList = nbs, rNumb = TRUE, classVector = cv)

Convert class vectors into rasters

r_cv <- cv.2.rast(r, at$Cell, classVector = cv)

r_ca <- cv.2.rast(r, at$Cell,classVector = ca)

S HEHHRHEHEH R E AR AR AR HEHREEEEHRHEREHR
PLOTS

HHEHHHHHHHHERE AR AR R AR
oldpar <- par(mfrow = c(1,2))

m<-c¢c(3, 1,5, 1)

#1)

plot(r_cv, type="classes"”, axes=FALSE, legend=FALSE, asp=NA, mar=m,
CcoINA="#818792", col=c("#78b2c4", "#cfclaf"))

text(r)

mtext(side=3, line=2, adj=0, cex=1, font=2, "COND.4.ALL")

mtext(side=3, line=1, adj=0, cex=0.9, "Stepl: 'dummy_var<=1',6 Class: 1")

mtext(side=3, line=0, adj=0, cex=0.9, "Step2: 'dummy_var<=3', Class: 2")

legend("bottomright”, bg = "white", fill = c("#78b2c4", "#cfclaf", "#818792"),

legend = c("Class 1", "Class 2", "Unclassified cells"))

2)

plot(r_ca, type="classes"”, axes=FALSE, legend=FALSE, asp=NA, mar=m,
COoINA="#818792", col=c("#78b2c4", "#cfclaf"))

text(r)

mtext(side=3, line=2, adj=@, cex=1, font=2, "CLASSIFY.ALL")

mtext(side=3, line=1, adj=0, cex=0.9, "Classify all unclassified cells"”)

legend("bottomright”, bg = "white", fill = c("#78b2c4", "#cfclaf", "#818792"),

legend = c("Class 1", "Class 2"))
par(oldpar)

16 cond.4.all

cond.4.all Test conditions for all cells

Description

Evaluate conditions for unclassified cells and classify them if conditions are true.

Usage

cond.4.all(attThl, cond, classVector = NULL, class, ovw_class = FALSE)

Arguments
attTbl data.frame, the attribute table returned by the function attTbl.
cond character string, the conditions a cell have to meet to be classified as indicated by
the argument class. If there is a classVector input, the classification number
is only assigned to unclassified cells unless the argument ovw_class = TRUE.
See conditions for more details.
classVector numeric vector, if provided, it defines the cells in the attribute table that have
already been classified. See conditions for more information about class vec-
tors.
class numeric, the classification number to assign to all cells that meet the function
conditions.
ovw_class logic, if there is a classVector input, reclassify cells that were already classi-
fied and that meet the function conditions.
Details

» The function evaluates the conditions of the argument conditions for all unclassified cells
(i.e., classVector NA-cells).

* Cells that meet the function conditions are classified as indicted by the argument class.

e Absolute test cell conditions can be used (see conditions).

Value
Update classVector with the new cells that were classified by the function. If there is no classVector
input, the function returns a new class vector. See conditions for more details about class vectors.
See Also

conditions(), attTbl(), cond.4.nofn(), cond.reclass()

cond.4.all 17

Examples

DUMMY DATA

S HEHHRHEHEH R E AR AR AR EHRHRHEHREEEEHRHEREHR
library(scapesClassification)

library(terra)

LOAD THE DUMMY RASTER

r <- list.files(system.file("extdata”, package = "scapesClassification”),
pattern = "dummy_raster\\.tif"”, full.names = TRUE)

r <- terra::rast(r)

COMPUTE THE ATTRIBUTE TABLE
at <- attTbl(r, "dummy_var")

COMPUTE THE LIST OF NEIGBORHOODS
nbs <- ngbList(r)

HHHHHHARHEEE A AR R
COND.4.ALL

HEHHHHHHHERHE AR AR HEHEREEEH R
compute new class vector

conditions: "dummy_var == 1"

cvl <- cond.4.all(attTbl = at, cond = "dummy_var <= 1", class = 1)

unique(cvl) # one class (class 1)

update class vector ‘cvi1®

conditions: "dummy_var <= 3"

cv2 <- cond.4.all(attThl = at, cond = "dummy_var <= 3", class = 2,
classVector = cvl) # input previous class vector

unique(cv2) # two classes (class 1 and class 2)
convert class vector 2 raster

r_cvl <- cv.2.rast(r, at$Cell, classVector = cvl)
r_cv2 <- cv.2.rast(r, at$Cell, classVector = cv2)

B S S S S S s s s i
PLOTS

HHHHHHHA AR HHEHHE AR A
oldpar <- par(mfrow = c(1,2))

m <- c(4.5, 0.5, 2, 3.2)

1.

r_cvl[which(is.na(values(r_cv1)))] <- 10

plot(r_cvl, type="classes”, mar=m, col=c("#78b2c4","#818792"), axes=FALSE,
plg=list(x=1, y=1, cex=.80, title="Classes"”,legend=c("1", "NA")))

text(r); lines(r)

mtext(side=3, line=1, adj=0, cex=1, font=2, "1. COND.4.ALL")

mtext(side=3, line=0, adj=0, cex=0.9, "New class vector")

mtext(side=1, line=0, cex=0.9, adj=0, "Rule: 'dummy_var <= 1'")

mtext(side=1, line=1, cex=0.9, adj=0, "Class: 1")

18 cond.4.nofn

2.

r_cv2[which(is.na(values(r_cv2)))] <- 10

plot(r_cv2, type="classes"”, mar=m, col=c("#78b2c4","#cfad89","#818792"), axes=FALSE,
plg=list(x=1, y=1, cex=.80, title="Classes"”,legend=c("1", "2", "NA")))

text(r); lines(r)

mtext(side=3, line=1, adj=@, cex=1, font=2, "2. COND.4.ALL")

mtext(side=3, line=0, adj=0, cex=0.9, "Update class vector (class 1 not overwritten)")

mtext(side=1, line=0, cex=0.9, adj=0, "Rule: 'dummy_var <= 3'")

mtext(side=1, line=1, cex=0.9, adj=0, "Class: 2")

par(oldpar)

cond.4.nofn Test conditions for neighbors and neighbors of neighbors

Description

Evaluate conditions for cells neighboring specific classes and classify them if conditions are true.

Usage

cond.4.nofn(
attThl,
ngblList,
rNumb = FALSE,
classVector,
class,
nbs_of,
cond,
min.bord = NULL,
max.iter = +Inf,
peval = 1,
directional = FALSE,
ovw_class = FALSE,
hgrowth = FALSE

)
Arguments

attTbl data.frame, the attribute table returned by the function attTbl.

ngbList list, the list of neighborhoods returned by the function ngbList.

rNumb logic, the neighborhoods of the argument ngbList are identified by cell numbers
(rNumb=FALSE) or by row numbers (rNumb=TRUE) (see ngbList). It is advised
to use row numbers for large rasters.

classVector numeric vector, defines the cells in the attribute table that have already been

classified. See conditions for more information about class vectors.

cond.4.nofn

class

nbs_of

cond

min.bord

max.iter

peval

directional

ovw_class

hgrowth

Details

19

numeric, the classification number to assign to all cells that meet the function
conditions.

numeric or numeric vector, indicates the class(es) of focal and anchor cells.
Conditions are only evaluated at positions adjacent to anchor and focal cells.
If the classification number assigned with the argument class is also included
in the argument nbs_of, the function takes into account class continuity (see
conditions).

character string, the conditions a cell have to meet to be classified as indicated by
the argument class. The classification number is only assigned to unclassified
cells unless the argument ovw_class = TRUE. See conditions for more details.

numeric value between 0 and 1. A test cell is classified if conditions are true and
if among its bordering cells a percentage equal or greater than min.bord belong
to one of the classes of nbs_of. Percentages are computed counting only valid
neighbors (i.e., neighbors with complete cases).

integer, the maximum number of iterations.

numeric value between 0 and 1. If absolute or relative neighborhood condi-
tions are considered, test cells are classified if the number of positive evalua-
tions is equal or greater than the percentage specified by the argument peval
(see conditions).

logic, absolute or relative neighborhood conditions are tested using the direc-
tional neighborhood (see conditions).

logic, reclassify cells that were already classified and that meet the function
conditions.

logic, if true the classes in nbs_of are treated as discrete raster objects and the
argument class is ignored.

* The function evaluates the conditions of the argument cond for all unclassified cells in the
neighborhood of focal and anchor cells (specified by the argument nbs_of). Unclassified
cells are NA-cells in classVector.

* Cells that meet the function conditions are classified as indicted by the argument class.

* Class continuity is considered if the classification number assigned with the argument class
is also included in the argument nbs_of. This means that, at each iteration, newly classified
cells become focal cells and conditions are tested in their neighborhood.

 All types of conditions can be used. The condition string can only include one neighborhood
condition ('{3}') (see conditions).

Homogeneous growth (hgrowth)

If the argument hgrowth is true the classes in nbs_of are treated as discrete raster objects and the
argument class is ignored. Iterations proceed as follow:

* cells contiguous to the first element of nbs_of are evaluated against the classification rules
and, when evaluations are true, cells are assigned to that element;

* the same process is repeated for cells contiguous to the second element of nbs_of, then for
cells contiguous to the third element and so on until the last element of nbs_of;

20 cond.4.nofn

* once cells contiguous to the last element of nbs_of are evaluated the iteration is complete;
e cells classified in one iteration become focal cells in the next iteration;

* a new iteration starts as long as new cells were classified in the previous iteration and if the
iteration number < max. iter.

Value

Update classVector with the new cells that were classified by the function. See conditions for
more details about class vectors.

See Also

conditions(), attTbl(), ngbList()

Examples

DUMMY DATA
B s S R
LOAD LIBRARIES

library(scapesClassification)

library(terra)

LOAD THE DUMMY RASTER

r <- list.files(system.file("extdata”, package = "scapesClassification”),
pattern = "dummy_raster\\.tif"”, full.names = TRUE)

r <- terra::rast(r)

COMPUTE THE ATTRIBUTE TABLE
at <- attTbl(r, "dummy_var")

COMPUTE THE LIST OF NEIGBORHOODS
nbs <- ngbList(r)

SET A DUMMY FOCAL CELL (CELL #25)
at$cvlat$Cell == 25] <- @

SET FIGURE MARGINS
m<- c(2, 8, 2.5, 8)

AR AR
ABSOLUTE TEST CELL CONDITION - NO CLASS CONTINUITY
A

conditions: "dummy_var >= 3"
cvl <- cond.4.nofn(attTbl = at, ngblList = nbs,

CLASS VECTOR - INPUT
classVector = at$cv,

CLASSIFICATION NUMBER
class = 1,

cond.4.nofn 21

FOCAL CELL CLASS
nbs_of = 0,

ABSOLUTE TEST CELL CONDITION
cond = "dummy_var >= 3")

CONVERT THE CLASS VECTOR INTO A RASTER
r_cvl <- cv.2.rast(r, at$Cell,classVector = cvl, plot = FALSE)

PLOT
plot(r_cvl, type="classes"”, axes=FALSE, legend = FALSE, asp = NA, mar = m,
COINA="#818792", col=c("#78b2c4", "#cfad89"))

text(r)

mtext(side=3, line=1, adj=0, cex=1, font=2, "CONDITION: ABSOLUTE TEST CELL")

mtext(side=3, line=0, adj=0, cex=1, "Class continuity: NO")

mtext(side=1, line=0, cex=0.9, adj=0, "Rule: 'dummy_var >= 3'")

legend("bottomright”, bg = "white", fill = c("#78b2c4", "#cfad89", "#818792"),
legend = c("Focal cell”, "Classified cells”, "Unclassified cells"))

R
ABSOLUTE TEST CELL CONDITION - WITH CLASS CONTINUITY
A

conditions: "dummy_var >= 3"
cv2 <- cond.4.nofn(attThl = at, ngbList = nbs, classVector = at$cv,

CLASSIFICATION NUMBER
class = 1,

nbs_of = c(@, # FOCAL CELL CLASS
1), # CLASSIFICATION NUMBER

ABSOLUTE CONDITION
cond = "dummy_var >= 3")

CONVERT THE CLASS VECTOR INTO A RASTER
r_cv2 <- cv.2.rast(r, at$Cell,classVector = cv2, plot = FALSE)

PLOT
plot(r_cv2, type="classes"”, axes=FALSE, legend = FALSE, asp = NA, mar = m,
COINA="#818792", col=c("#78b2c4", "#cfad89"))

text(r)

mtext(side=3, line=1, adj=0, cex=1, font=2, "CONDITION: ABSOLUTE TEST CELL")

mtext(side=3, line=0, adj=0, cex=1, "Class continuity: YES")

mtext(side=1, line=0, cex=0.9, adj=0, "Rule: 'dummy_var >= 3'")

legend("bottomright”, bg = "white”, fill = c("#78b2c4", "#cfad89", "#818792"),
legend = c("Focal cell”, "Classified cells”, "Unclassified cells"))

I
ABSOLUTE NEIGHBORHOOD CONDITION
R

conditions: "dummy_var{} >= 3"

22

cond.4.nofn

cv3 <- cond.4.nofn(attTbl = at, ngbList = nbs, classVector = at$cv, nbs_of = c(0,1), class =1,

ABSOLUTE NEIGHBORHOOD CONDITION
cond = "dummy_var{} >= 3",

RULE HAS TO BE TRUE FOR 100% OF THE EVALUATIONS
peval = 1)

CONVERT THE CLASS VECTOR INTO A RASTER
r_cv3 <- cv.2.rast(r, at$Cell,classVector = cv3, plot = FALSE)

#PLOT
plot(r_cv3, type="classes"”, axes=FALSE, legend = FALSE, asp = NA, mar = m,
colNA="#818792", col=c("#78b2c4", "#cfad89"))

text(r)

mtext(side=3, line=1, adj=0@, cex=1, font=2, "CONDITION: ABSOLUTE NEIGHBORHOOD")

mtext(side=3, line=0, adj=0, cex=1, "Class continuity: YES")

mtext(side=1, line=0, cex=0.9, adj=0, "Rule: 'dummy_var{ } >= 3'")

mtext(side=1, line=0, cex=0.9, adj=1, "('{ }' cell neighborhood)")

mtext(side=1, line=1, cex=0.9, adj=0, "Fn_perc: 1 (100%)")

legend("bottomright”, bg = "white”, fill = c("#78b2c4"”, "#cfad89", "#818792"),
legend = c("Focal cell”, "Classified cells”, "Unclassified cells"))

A
RELATIVE NEIGHBORHOOD CONDITION
R

conditions: "dummy_var > dummy_var{}"
cv4 <- cond.4.nofn(attTbl = at, ngbList = nbs, classVector = at$cv, nbs_of = c(0,1), class =1,

RELATIVE NEIGHBORHOOD CONDITION
cond = "dummy_var > dummy_var{}",

RULE HAS TO BE TRUE FOR AT LEAST 60% OF THE EVALUATIONS
peval = 0.6)

CONVERT THE CLASS VECTOR INTO A RASTER
r_cv4d <- cv.2.rast(r, at$Cell, classVector = cv4, plot = FALSE)

#PLOT
plot(r_cv4, type="classes"”, axes=FALSE, legend = FALSE, asp = NA, mar = m,
COINA="#818792", col=c("#78b2c4", "#cfad89"))

text(r)

mtext(side=3, line=1, adj=0, cex=1, font=2, "CONDITION: RELATIVE NEIGHBORHOOD")

mtext(side=3, line=0, adj=0@, cex=1, "Class continuity: YES")

mtext(side=1, line=0, cex=0.9, adj=0, "Rule: 'dummy_var > dummy_var{ }'")

mtext(side=1, line=0, cex=0.9, adj=1, "('{ }' cell neighborhood)")

mtext(side=1, line=1, cex=0.9, adj=0, "Fn_perc: 0.6 (60%)")

legend("bottomright”, bg = "white", fill = c("#78b2c4", "#cfad89", "#818792"),
legend = c("Focal cell”, "Classified cells"”, "Unclassified cells"))

R A

cond.4.nofn 23

RELATIVE FOCAL CELL CONDITION
I

conditions: "dummy_var > dummy_var[]"
cv5 <- cond.4.nofn(attTbl = at, ngbList = nbs, classVector = at$cv, nbs_of = c(0,1), class =1,

RELATIVE FOCAL CELL CONDITION
cond = "dummy_var > dummy_var[]")

CONVERT THE CLASS VECTOR INTO A RASTER
r_cvb <- cv.2.rast(r, at$Cell,classVector = cv5, plot = FALSE)

#PLOT
plot(r_cv5, type="classes”, axes=FALSE, legend = FALSE, asp = NA, mar = m,
colNA="#818792", col=c("#78b2c4", "#cfad89"))

text(r)

mtext(side=3, line=1, adj=0, cex=1, font=2, "CONDITION: RELATIVE FOCAL CELL")

mtext(side=3, line=0, adj=@, cex=1, "Class continuity: YES")

mtext(side=1, line=0, cex=0.9, adj=0, "Rule: 'dummy_var > dummy_var[1'")

mtext(side=1, line=0, cex=0.9, adj=1, "('[]' focal cell)")

legend("bottomright”, bg = "white”, fill = c("#78b2c4", "#cfad89", "#818792"),
legend = c("Focal cell”, "Classified cells”, "Unclassified cells"))

R
HOMOGENEOUS GROWTH
B S S S S S s S s

Dummy raster objects 1 and 2

ro <- as.numeric(rep(NA, NROW(at)))
ro[which(at$dummy_var == 10)] <- 1
rofwhich(at$dummy_var == 8)] <- 2

Not homogeneous growth

nhg <- cond.4.nofn(attThl = at, ngbList = nbs, classVector = ro,
nbs_of = 1, class = 1, # GROWTH ROBJ 1
cond = "dummy_var <= dummy_var[] & dummy_var != 1")

nhg <- cond.4.nofn(attThl = at, ngbList = nbs, classVector = nhg, # UPDATE nhg
nbs_of = 2, class = 2, # GROWTH ROBJ 2
cond = "dummy_var <= dummy_var[] & dummy_var != 1")

Homogeneous growth

hg <- cond.4.nofn(attTbl = at, ngbList = nbs, classVector = ro,
nbs_of = c¢(1, 2), class = NULL,
cond = "dummy_var <= dummy_var[] & dummy_var != 1",
hgrowth = TRUE) # HOMOGENEOUS GROWTH

Convert class vectors into rasters
r_nhg <- cv.2.rast(r, at$Cell,classVector = nhg, plot = FALSE)
r_hg <- cv.2.rast(r, at$Cell,classVector = hg, plot = FALSE)

24 cond.parse

Plots
oldpar <- par(mfrow = c(1,2))
m<-c(3, 1,5, 1)

Original raster objects (for plotting)
r_nhglat$dummy_var == 10] <- 3
r_nhglat$dummy_var == 8] <- 4

r_hglat$dummy_var == 10] <- 3
r_hglat$dummy_var == 8] <- 4
#t
1)
plot(r_nhg, type="classes"”, axes=FALSE, legend=FALSE, asp=NA, mar = m,
ColNA="#818792", col=c("#78b2c4", "#cfclaf", "#1088a0", "#cfad89"))

text(r)
mtext(side=3, line=1, adj=0, cex=1, font=2, "RASTER OBJECTS GROWTH")
mtext(side=3, line=0, adj=0, cex=0.9, "Not homogeneous (hgrowth = FALSE)")
mtext(side=1, line=0, cex=0.9, adj=0, "Growth rule:")
mtext(side=1, line=1, cex=0.9, adj=0, "'dummy_var<=dummy_var[] & dummy_var!=1'"")
legend("topleft”, bg = "white”, y.intersp= 1.3,

fill = c("#1088a0", "#cfclaf"”, "#78b2c4", "#cfclaf", "#818792"),

legend = c("RO1", "R02", "RO1 - growth”, "R0O2 - growth”, "Unclassified cells"))
2)
plot(r_hg, type="classes"”, axes=FALSE, legend=FALSE, asp=NA, mar = m,

coINA="#818792", col=c("#78b2c4", "#cfclaf", "#1088a0", "#cfad89"))

text(r)
mtext(side=3, line=1, adj=0, cex=1, font=2, "RASTER OBJECTS GROWTH")
mtext(side=3, line=0, adj=0, cex=0.9, "Homogeneous (hgrowth = TRUE)")
mtext(side=1, line=0, cex=0.9, adj=0, "Growth rule:")
mtext(side=1, line=1, cex=0.9, adj=0, "'dummy_var<=dummy_var[] & dummy_var!=1'"")
legend("topleft”, bg = "white", y.intersp= 1.3,

fill = c("#1088a0", "#cfclaf"”, "#78b2c4", "#cfclaf", "#818792"),

legend = c("RO1", "R02", "RO1 - growth”, "R02 - growth”, "Unclassified cells"))
par(oldpar)

cond.parse Parse conditions

Description

Parse the condition string so that it can be evaluated by the cond. * functions. Intended for internal
use only.

Usage

cond.parse(names_attThl, cond)

cond.reclass

Arguments

names_attTbl

cond

Value

25

character vector, the column (i.e. variable) names of the attribute table returned
by the function attTbl.

character string, the condition string used by the cond. * functions to classify
raster cells (see conditions).

The function returns a two-element list. The first element contains the parsed conditions to be
evaluated by the cond.* functions. The second element defines the condition type each variable

refers to.

See Also

cond.4.all(), cond.4.nofn(), anchor.seed(), cond.reclass(), conditions()

cond.reclass

Test conditions and reclassify

Description

Evaluate conditions for cells of a class and reclassify them if conditions are true.

Usage

cond.reclass(
attTbl,

ngblList = NULL,
rNumb = FALSE,

classVector,
class,

cond,
reclass,
peval = 1

Arguments

attThl
ngbList

rNumb

classVector

data.frame, the attribute table returned by the function attTbl.

list, the list of neighborhoods returned by the function ngbList. Only necessary
if using an absolute neighborhood condition (see conditions).

logic, the neighborhoods of the argument ngbList are identified by cell numbers
(rNumb=FALSE) or by row numbers (rNumb=TRUE) (see ngbList). It is advised
to use row numbers for large rasters.

numeric vector, defines the cells in the attribute table that have already been
classified. See conditions for more information about class vectors.

26

cond.reclass

class numeric or numeric vector, indicates the class(es) for which conditions have to
be evaluated.

cond character string, the conditions a cell have to meet to be classified as indicated
by the argument reclass. See conditions for more details.

reclass numeric, the classification number to assign to all cells that meet the function
conditions.

peval numeric value between 0 and 1. If absolute neighborhood conditions are con-

sidered, test cells are classified if the number of positive evaluations is equal or
greater than the percentage specified by the argument peval (see conditions).

Details

» The function evaluates the conditions of the argument cond for all cells in the classes of the
argument class.

¢ Cells that meet the function conditions are re-classified as indicted by the argument reclass.

» Absolute test cell and neighborhood conditions can be used. The condition string can only
include one neighborhood condition ('{}') (see conditions).

Value

Update classVector with the new cells that were classified by the function. See conditions for
more information about class vectors.

See Also

conditions(), attTbl(), ngbList()

Examples

DUMMY DATA
B s S S R
library(scapesClassification)

library(terra)

LOAD THE DUMMY RASTER

r <- list.files(system.file("extdata”, package = "scapesClassification”),
pattern = "dummy_raster\\.tif"”, full.names = TRUE)

r <- terra::rast(r)

COMPUTE THE ATTRIBUTE TABLE
at <- attTbl(r, "dummy_var")

COMPUTE THE LIST OF NEIGBORHOODS
nbs <- ngbList(r)

I
RECLASS.NBS
A

Compute an example class vector

conditions 27

cv <- cond.4.all(attThl = at, cond = "dummy_var > 1", class = 1)

Reclassify cells
cr <- cond.reclass(attThl = at, ngbList = nbs,

CLASS VECTOR COMPUTED WITH THE RULE "dummy_var > 1"
classVector = cv,

CELLS TO RECLASSIFY HAVE THIS CLASS
class = 1,

ABSOLUTE NEIGHBORHOOD CONDITION
cond = "dummy_var{} >= 5", peval =1,

NEW CLASSIFICATION NUMBER
reclass = 2)

Convert class vectors to rasters
r_cv <- cv.2.rast(r, cv)
r_cr <- cv.2.rast(r, cr)

S HEHHRE A HHE AR HHEHE
PLOTS

AR AR AR AR
oldpar <- par(mfrow = c(1,2))

m<-c(3, 1, 5, 4)

1.

r_cvlwhich(is.na(values(r_cv)))] <- 10

plot(r_cv, type="classes"”, mar=m, col=c("#78b2c4","#818792"), axes=FALSE,
plg=list(x=1, y=1, cex=.80, title="Classes"”,legend=c("1", "NA")))

text(r); lines(r)

mtext(side=3, line=1, adj=0, cex=1, font=2, "1. COND.4.ALL")

mtext(side=3, line=0, adj=0, cex=0.9, "New class vector")

mtext(side=1, line=0, cex=1, adj=0, "Class: 1")

mtext(side=1, line=1, cex=1, adj=@, "Rule: 'dummy_var > 1'")

2.

r_crfwhich(is.na(values(r_cr)))] <- 10

plot(r_cr, type="classes”, mar=m, col=c("#78b2c4","#cfad89","#818792"), axes=FALSE,
plg=list(x=1, y=1, cex=.80, title="Classes"”,legend=c("1", "reclass"”, "NA")))

text(r); lines(r)

mtext(side=3, line=1, adj=0, cex=1, font=2, "2. COND.RECLASS")

mtext(side=3, line=0, adj=0, cex=0.9, "Reclassify cells meeting conditions”)

mtext(side=1, line=0, cex=1, adj=0, "Class: 2")

mtext(side=1, line=1, cex=1, adj=0, "Rule: 'dummy_var{ } >= 5'; peval = 1")

par(oldpar)

conditions scapesClassification conditions

28 conditions

Description
Check for spelling and syntax errors in conditions (cond argument) and detect the type of conditions
being used.

Usage

conditions(names_attThl, cond, silent = FALSE)

Arguments

names_attTbl character vector, the column (i.e. variable) names of the attribute table returned
by the function attTbl.

cond character string, the condition string used by the cond. * functions to classify
raster cells (see conditions).
silent logic, when true, the function returns only error messages.
Details

Conditions (alias classification rules)
e Classification rules evaluate either to true or false and determine what raster cells have to be
classified.

» Conditions are passed to scapesClassification functions as a single character string. They
can consist of combination of variables names (as named in the attribute table, see attTbl),
arithmetic (+|-|*|/|*|%%|%/%), relational (>|<|>=|<=|==|!=|%/%) and logic operators
(&]) and base R functions (e.g., abs(variable_name)).

» All variables included in an attribute table (see attTb1l) can be included in a condition string
by name (e.g., var name = "dummy_var"; condition = "dummy_var > 1").

Class vectors

* Class vectors map raster cells to numeric classes.

¢ The n”th” element of a class vector stores the class of the raster cell stored in the n*th” row of
the corresponding attribute table (see attTbl).

* Class vectors can serve also as a function input. As inputs, they provide information about the
groups of cells that have already been classified.

* Every time a class vector is provided as a function input, it is updated by assigning a numeric
class to unclassified cells that meet function conditions.

* Unclassified cells are represented as NA values.

Rule evaluation: Global evaluation

* Classification rules are applied to all unclassified raster cells.

* Function using global evaluation: cond.4.all.

Rule evaluation: Focal evaluation

conditions 29

* Classification rules are applied only to raster cells at specific locations and are based on class
(dis)contiguity and class continuity.

* Class contiguity:
classification rules are applied only to raster cells contiguous to focal cells (identified in the
cond. x functions by the argument nbs_of).

¢ Class continuity:
join into the same class cells that respect the same rules and that are connected to the same
focal cells. This means that, at each iteration, newly classified cells become focal cells and
conditions are tested in their neighborhood.

* Function using focal evaluation: anchor.seed, cond.4.nofn, cond.reclass, reclass.nbs
and classify.all.

Focal evaluation: Definitions

* Cell neighborhood: a cell with coordinates (x, y) has 8 neighbors with coordinates: (x*1,
y), (x, yx1) and (xx1, y+1). Cells on the edge of a raster have less than 8 neighbors. See
ngblList.

* Focal cell: cells whose neighbors are evaluated against the classification rule(s). In the clas-
sification functions focal cells are identified by the argument nbs_of.

* Test cell: the cell in the neighborhood of the focal cell that is being tested. At turns all cells
in the neighborhood of a focal cell are tested against the classification rule(s).

 Directional neighborhood: it consists of the intersection between the focal and the test cell
neighborhoods.

Condition type: Absolute conditions

1) Absolute test cell condition: compares cell values against a threshold value.

* This type of condition applies to all functions with a conditions argument.

* In global evaluations all cells meeting absolute conditions receive a classification number. In
focal evaluations all test cells meeting absolute conditions receive a classification number.

» Examples of valid conditions: "variable_A > 1 & variable_B !=0"; "(variable_A"2 <50
& variable_B ==10) | abs(variable_C) > 50".
Functions: anchor.seed, cond.4.all, cond.4.nofn and cond. reclass.

2) Absolute neighborhood condition: compares the values of the test cell and of its neighborhood
against a threshold value.

* An absolute neighborhood condition is identified by a variable name followed by curly brack-
ets (e.g., "variable_name{}").

* A maximum of 9 evaluations are performed for each test cell (the test cell itself and the cells
of its neighborhood are compared against a threshold value).

* Test cells receive a classification number if the rule is true for at least as many evaluations as
the ones specified by the argument peval. The argument peval ranges from 0 to 1. When
9 evaluations are performed, peval = 1 means that all 9 evaluations have to be true; peval =
0.5 means that at least 4.5 (rounded to 5) evaluations have to be true.

conditions

* Only one neighborhood rule is allowed for each condition string (e.g., it is not possible to have
a condition string like "variable_A{} > 0@ & variable_B{} > 1").

¢ The function cond. 4.nofn can consider a directional neighborhood instead of the test cell
neighborhood by setting the argument directional = TRUE.

o Example of valid conditions: "variable_A{} > 1 & abs(variable_B) !=0".
Functions: cond.4.nofn and cond.reclass.

Condition type: Relative conditions

1) Relative focal cell condition: compares the test cell value against the focal cell value.

* A relative focal cell condition is identified by a variable name followed by square brackets
(e.g., "variable_name[]").

 Rules are defined repeating twice the same variable name, once with square brackets and once
without. Square brackets indicate the focal cell value. As an example, the rule "dummy_var <
dummy_var[]" compares the value of the the test cell ("dummy_var") against the value of the
focal cell ("dummy_var[]").

e Test cells are classified if the rule is true.

* Examples of valid conditions: "variable_A > variable_A[]"; " (variable_A > variable_A[]
& variable_B{} < 10) | variable_C > 1". Note that the last example is a combination of ab-
solute and focal cell conditions.

Functions: anchor.seed and cond.4.nofn.

2) Relative neighborhood condition: compares the values of the test cell against the values of
the test cell neighborhood.

* A relative neighborhood condition is identified by a variable name followed by curly brackets
(e.g., "variable_name{}").

* Rules are defined repeating twice the same variable name, once with curly brackets and
once without. Curly brackets indicate the test cell neighborhood. As an example, the rule
"dummy_var < dummy_var{}' compares the value of the the test cell (dummy_var) against the
values of cells included in the test cell neighborhood (dummy_var{3}).

* A maximum of § evaluations are performed for each test cell (the test cell is compared against
each cell included in its neighborhood).

* Test cells receive a classification number if the rule is true for at least as many evaluations as
the ones specified by the argument peval. The argument peval ranges from O to 1. When
8 evaluations are performed, peval = 1 means that all 8 evaluations have to be true; peval =
0.5 means that at least 4 evaluations have to be true.

* Only one neighborhood rule is allowed for each condition string (e.g., it is not possible to have
a condition string like "variable_A{} > @ & variable_B{} > variable_B").

¢ The function cond. 4.nofn can consider a directional neighborhood instead of the test cell
neighborhood by setting the argument directional = TRUE.

o Example of valid conditions: "variable_A > variable_A{}";"(variable_A > variable_A{}
& variable_B !=variable_B[]) | variable_C > 1". Note that the last example is a combi-
nation of absolute and relative conditions.

Functions: cond.4.nofn and cond.reclass.

conditions 31

Value

An error message if the function finds spelling or syntax errors or a string with the types of rules
detected in the condition string.

See Also

cond.4.all(), cond.4.nofn(), anchor.seed(), cond.reclass(), conditions()

anchor.seed(), attTb1l(), cond.4.all(), cond.4.nofn(), cond.reclass(), classify.all()

Examples

LOAD LIBRARIES
library(scapesClassification)
library(terra)

HHHHEHEH A
TYPES OF CONDITIONS
IR

As an example consider an attribute with the following columns
names_attTbl <- c("bathymetry”, "slope")

And the following conditions
cond <- "bathymetry>10"
conditions(names_attThl, cond)

cond <- "bathymetry[I>bathymetry | abs(slope{}) < 5"
conditions(names_attThl, cond)

cond <- "bathymetry[I>bathymetry | abs(slope{}) < slope”
conditions(names_attTbhl, cond)

AR AR R
FOCAL EVALUATION DEFINITIONS
A

CELL NUMBERS OF A DUMMY RASTER (7X7)
r <- terra::rast(matrix(1:49, nrow = 7, byrow = TRUE), extent=c(0,7,0,7))
nbs <- ngbList(r)

CLASS VECTOR WITH ONE TEST AND ONE FOCAL CELL

cv <- as.numeric(rep(NA, 49))

cvlc(32, 25)] <- c(1, 2) # tc (class 1), fc (class 2)
r_cv <- cv.2.rast(r, classVector = cv)

POLYGONS REPRESENTING NEIGHBORHOODS
fcn <= rbind(c(2,5), <(5,5), c(5,2), c(2,2), c(2,5))
fcn <- terra::vect(fcn, type="polygons")

tcn <- rbind(c(2,4), c(5,4), c(5,1), c(2,1), c(2,4))
tcn <- terra::vect(tcn, type="polygons")

32 cv.2.rast

PLOT - FOCAL EVALUATION DEFINITIONS
m <- c(3.5, 8, 1.2, 8)
plot(r_cv, type = "class”, asp = NA, legend = FALSE, axes = FALSE, mar = m,
col = c("goldenrod3"”,"#1088a0"), colNA= "grey90")
text(r)
mtext(side=3, line=0, adj=0, cex=1, font=2, "FOCAL EVALUATION")
mtext(side=1, line=0, adj=0, cex=0.9,
"Focal cell neighborhood: 17, 18, 19, 24, 26, 31, 32, 33")
mtext(side=1, line=1, cex=0.9, adj=0,
"Test cell neighborhood: 24, 25, 26, 31, 33, 38, 39, 40")
mtext(side=1, line=2, cex=0.9, adj=0,
"Directional neighborhood: 24, 25, 26, 31, 32, 33")
lines(fcn, col="#1088a0", 1lwd=2)
lines(tcn, col="#cfad8999", lwd=2)
legend("bottomleft”, ncol = 1, bg = "white”, y.intersp= 1.3,
legend = c("Focal cell”, "Test cell”), fill = c("#1088a0", "goldenrod3"))

cv.2.rast Class vector to raster

Description

Transform a class vector or a generic vector into a raster.

Usage

cv.2.rast(
r,
classVector,
index = NULL,
plot = FALSE,
type = "classes”,
writeRaster = NULL,
overWrite = FALSE

)
Arguments

r raster object.

classVector numeric vector, the values to be assigned to the cell numbers indicated by index.

index numeric vector, the cell numbers of the argument r to which assign the values
of the argument classVector. If NULL, the column Cell of the attribute table
attTb1l(r) is used (see attTbl).

plot logic, plot the raster.

type character, type of map/legend. One of "continuous", "classes", or "interval".

writeRaster filename, if a raster name is provided save the raster to a file.

overWrite logic, if the raster names already exist, the existing file is overwritten.

ngb8 33

Details

The arguments index and vector need to have the same length. The function assign the values of
vector at the positions of index to an empty raster having the same spatial properties of the raster
r.

Value

A class vector or a generic vector transformed into a raster.

Examples

library(scapesClassification)
library(terra)

LOAD THE DUMMY RASTER

r <- list.files(system.file("extdata”, package = "scapesClassification”),
pattern = "dummy_raster\\.tif"”, full.names = TRUE)

r <- terra::rast(r)

COMPUTE THE ATTRIBUTE TABLE
at <- attTbl(r, "dummy_var")

COMPUTE THE LIST OF NEIGBORHOODS
nbs <- ngbList(r)

Compute an example class vector
cv <- cond.4.all(attThl = at, cond = "dummy_var > 1", class = 1)

Class vector to raster
cv.2.rast(r, cv, plot = TRUE)
text(r) # add raster values

ngh8 Eight neighbors

Description

Return the 8 neighbors, as cell numbers, of each cell on a raster.

Usage

ngb8(n_row, n_col)

Arguments

n_row Integer. The number of rows of a Raster or object.

n_col Integer. The number of columns of a Raster object.

34 ngbList

Details

A cell with coordinates (x, y) has 8 neighbors with coordinates: (x*1, y), (x, y*1) and (x*1,
y+1). Cells on the edge of a raster have less than 8 neighbors. The function identifies the neighbors
of a cell as cell numbers.

Value

Named list, the nth element of the list corresponds to the 8 adjacent cell numbers of the nth cell on
the Rasterx object.

See Also

ngbList()

Examples

Matrix m mocking a raster of 3 rows and 4 columns
m <- matrix(1:12, nrow = 3, ncol = 4, byrow = TRUE)
m

nbs <- ngb8(3, 4)
nbs

ngbList List of neighborhoods

Description

Computes the neighborhoods of the cells of a raster. Neighborhoods are not computed for cells with
missing values.

Usage

ngbList(r, rNumb = FALSE, attTbl = NULL)

Arguments
r single or multi-layer raster of the class SpatRaster (see help("rast"”, terra)).
rNumb logic, the neighbors of a raster cell are identified by cell numbers (rNumb=FALSE)
or by row numbers (rNumb=TRUE). If true, the argument attTbl cannot be
NULL.
attTbl data.frame, the attribute table returned by the function attTbl (see attTbl). It

is required only if the argument rNumb=TRUE.

ngbList 35

Details

Definition of neighborhood

* A cell with coordinates (x, y) has 8 neighbors with coordinates: (x*1, y), (x, y*1) and
(xx1, yx1). Cells on the edge of a raster have less than 8 neighbors.

Neighborhoods (rNumb=FALSE)
* Neighbors are identified by their cell numbers if the argument rNumb=FALSE.
Neighborhoods (rNumb=TRUE)

» Neighbors are identified by their positions in the attribute table (i.e. row numbers) if the
argument rNumb=TRUE;
* When the argument rNumb = TRUE, neighbors with missing values are omitted;

* (scapes)Classifications are faster when the list of neighborhoods uses row numbers.

Neighborhood names

The list of neighborhoods is named.

* When rNumb = FALSE, the element name identifies the raster cell to which the neighborhood
refers. For instance, the element with name "n" stores the neighborhood of the raster cell n.

* When rNumb = TRUE, the element name identifies the row number to which the neighborhood
refers. For instance, the element with name "n” stores the neighborhood of the raster cell
located in the nth row of the attribute table (attTb1$Cell[n]).

Value

Named list of integer vectors.

Note

» There is always a correspondence between the indices of the attribute table (attTbl) and the
indices of the list of neighborhoods: the 1st element of the list corresponds to the neighbors
of the cell stored in the 1st row of the attribute table; the 2nd element corresponds to the 2nd
row; etc.

* There is a correspondence between the raster cell number and the indices of the list of neigh-
borhoods only when no missing value is present in the raster.
See Also
ngb8(), attTbl()

Examples

library(scapesClassification)
library(terra)

CREATE A DUMMY RASTER AND COMPUTE ATTRIBUTE TABLE
r <- terra::rast(matrix(c(NA,100,100,NA,100,100,0,0,0),

36

nrow = 3,
ncol = 3,
byrow = TRUE))

at <- attTbl(r, var_names = c("dummy_var"))

RASTER CELL NUMBERS
rcn <- r; ren[] <- 1:9

PLOT DATA AND CELL NUMBERS
oldpar <- par(mfrow = c(1,2))
m<-c(4, 1, 4, 1)

plot(r, col="grey90", colNA="red3"”, mar=m, asp=NA, axes=FALSE, legend=FALSE)
text(r)
lines(r)
mtext(side=3, line=0.2, adj=0, cex=1.5, font=2, "Dummy_var")
legend("bottomright”, ncol = 1, bg = "white"”, fill = c("red3"),

legend = c(”"NA cells (1 and 4)"))

plot(rcn, col="grey90"”, mar=m, asp = NA, axes=FALSE, legend=FALSE)
text(rcn)

lines(rcn)

mtext(side=3, line=0.2, adj=0, cex=1.5, font=2, "Cell numbers")
par(oldpar)

NEIGHBORHOODS - CELL NUMBERS #i

Cells 1 and 4 are omitted because they are NAs
nbs_CELL <- ngbList(r, rNumb = FALSE)

nbs_CELL

NEIGHBORHOODS - ROW NUMBERS

Cells 1 and 4 are omitted because they are NAs
nbs_ROW <- ngbList(r, rNumb = TRUE, attTbl = at)
nbs_ROW

Numbers in 'nbs_ROW' refer to row numbers

(e.g. number 1 refers to the cell #2)

at$Celll1]

(e.g. number 2 refers to the cell #3)
at$Cell[2]

(e.g. number 5 refers to the cell #7)
at$Cell[5]
CONSIDER THE NEIGHBORHOOD OF CELL #2

Cell #2 corresponds to the 1st element of both 'nbs_CELL' and 'nbs_ROW'

ngbList

obj.border 37

because raster cell 1 is an NA-cell
rf1]

Neighborhood cell #2 corresponds to cells:
nbs_CELL[1]

Neighborhood cell #2 corresponds to rows:
nbs_ROW[1]

Rows can be converted to cell numbers
at$Celll nbs_ROWLL[11] 1

Note that 'at$Cell[nbs_ROWL[1]] 1' is not equal to 'nbs_CELL'
identical(at$Cell[nbs_ROW[L[1]]] , nbs_CELLL[1]])

This is because raster cells 1 and 4 (NA-cells) are omitted in 'nbs_ROW'
setdiff(nbs_CELLL[1]], at$Celll[nbs_ROWL[11] 1)
rlc(1,4)]

obj.border Borders of raster objects

Description

Identify the borders of raster objects.

Usage
obj.border(group, ngbList, silent = FALSE)

Arguments
group named list, each element represents a raster object composed of several raster
cells. If there are NA values on the raster surface, raster cells must be identified
by attribute table row indices (each corresponding to a raster cell) (see attTbl).
ngbList list, the list of neighborhoods returned by the function ngbList. The list of
neighborhoods has to be computed setting the argument rNumb=TRUE.
silent logic, progress bar is not printed on the console.
Value

The function returns a named list of object borders. List names identify the objects; list element
values identify the raster cells comprising the borders.

Note

* Note that group has to be a named list whose names correspond to raster object IDs.

» If there are NA values on the raster surface, raster cells must be identified by attribute table row
indices (each corresponding to a raster cell). Row indices can be converted into raster cells
using the Cell column of the attribute table (e.g. attTb1$Cell[indices]) (see attTbl).

38 obj.border

See Also

attTbl(), ngbList(), obj.nbs()

Examples

DUMMY DATA

HHHHHHHH AR AR A A
LOAD LIBRARIES

library(scapesClassification)

library(terra)

LOAD THE DUMMY RASTER

r <- list.files(system.file("extdata", package = "scapesClassification”),
pattern = "dummy_raster\\.tif"”, full.names = TRUE)

r <- terra::rast(r)

ADD NA-VALUE
rf11] <= NA

COMPUTE THE ATTRIBUTE TABLE
at <- attTbl(r, "dummy_var")

COMPUTE THE LIST OF NEIGBORHOODS
nbs <- ngbList(r, rNumb=TRUE, attTbl=at) # rnumb MUST be true to use obj.border

S
COMPUTE RASTER OBJECTS
S
at$cv <- anchor.seed(at, nbs, silent=TRUE, class = NULL, rNumb=TRUE,

cond.filter = "dummy_var > 1",

cond.seed = "dummy_var==max(dummy_var)",
cond.growth = "dummy_var<dummy_var[]",
lag.growth = 0)

Raster objects
RO <- split(1:NROW(at), at$cv)

print(RO) # values are attribute table row indices

HHHHHHHEHEE AR AR R
COMPUTE BORDERS

HHHHHHARHEE AR AR AR
RO_bd <- obj.border(RO, nbs, silent = TRUE)

RO_bd1 <- at$Cell[RO_bd[["1"]11] # Convert row numbers to cell numbers
RO_bd2 <- at$Cell[RO_bd[["2"]1] # Convert row numbers to cell numbers

print(RO_bd) # attribute table row indices
print(RO_bd1) # cell numbers
print(RO_bd2) # cell numbers

AR AR

obj.nbs 39

PLOT BORDERS

HHHHHHARHEEHE A R R

plot(cv.2.rast(r,at$cv), type="classes"”, col=c("#E6E600","#00A600"),
main="Borders")

points(terra::xyFromCell(r, RO_bd1), pch=20, col="blue")

points(terra::xyFromCell(r, RO_bd2), pch=20, col="red")

text(xyFromCell(r, 11), "NA\nvalue")

obj.nbs Shared borders of raster objects

Description

Identify the shared borders of neighboring raster objects.

Usage

obj.nbs(grp.bord, ngbList, only_grp = NULL, silent = FALSE)

Arguments
grp.bord named list, the list of borders returned by the function obj.border.
ngbList list, the list of neighborhoods returned by the function ngbList. The list of
neighborhoods has to be computed setting the argument rNumb=TRUE.
only_grp character vector. If NULL, all IDs in grp.bord are considered. If IDs are pro-
vided, then they are the only ones considered.
silent logic, progress bar is not printed on the console.
Value

The function returns a named list. Each element represents a raster object as identified by the list
names and contains a nested named list. The names of the nested lists are the IDs of neighboring
raster objects and their values identify the raster cells comprising the shared borders.

Note

If there are NA values on the raster surface, raster cells are identified by attribute table row indices
(each corresponding to a raster cell). Row indices can be converted into raster cells using the Cell
column of the attribute table (e.g. attTb1$Cell[indices]) (see attTbl).

See Also

attTbl(), ngbList(), obj.border()

40 obj.nbs

Examples

DUMMY DATA

S HEHHRHEHEH R AR R AR HEAHEH AR R E AR
LOAD LIBRARIES

library(scapesClassification)

library(terra)

LOAD THE DUMMY RASTER

r <- list.files(system.file("extdata”, package = "scapesClassification”),
pattern = "dummy_raster\\.tif"”, full.names = TRUE)

r <- terra::rast(r)

ADD ONE NA VALUE
rf11]1 <= NA

COMPUTE THE ATTRIBUTE TABLE
at <- attTbl(r, "dummy_var")

COMPUTE THE LIST OF NEIGBORHOODS
nbs <- ngbList(r, rNumb=TRUE, attTbl=at) # rnumb MUST be true to use obj.nbs

HHHEHHHEHEE AR AR AR
COMPUTE RASTER OBJECTS

HHHEHHARHEEEH A AR A
at$cv <- anchor.seed(at, nbs, silent=TRUE, class = NULL, rNumb=TRUE,

cond.filter = "dummy_var > 1",
cond.seed = "dummy_var==max(dummy_var)",
cond.growth = "dummy_var<dummy_var[]",

lag.growth = 0)
RO <- split(1:NROW(at), at$cv)
print(RO)

S
COMPUTE BORDERS
S
RO_bd <- obj.border(RO, nbs, silent = TRUE)

HHHHHHHEHEEE AR AR AR A
COMPUTE SHARED BORDERS

HHHHHHARHEE A AR AR
RO_sbd <- obj.nbs(RO_bd, nbs, silent = TRUE)

Convert row indices to cell numbers
RO_sbd1 <- RO_sbd[["1"]]
RO_sbd1 <- at$Celll[unlist(RO_sbhd1)]

RO_sbd2 <- RO_sbd[["2"]]
RO_sbd2 <- at$Celllunlist(RO_shd2)]

Borders in ‘RO_sbd‘ are identified by row indices

peak.cell 41

print(RO_sbd[["1"]]) # Row indices
print(RO_sbd1) # Cell numbers

print(RO_sbd[["2"]]) # Row indices
print(RO_sbd2) # Cell numbers

Neighbor objects
names(RO_sbd[["1"]1]) # RO1 has one neighbor, R02
names(RO_sbd[["2"]1]) # R0O2 has one neighbor, RO1

HHHHHHARHEE A AR A

PLOT BORDERS

HHHHHHEREEEH AR AR AR

plot(cv.2.rast(r,at$cv), type="classes"”, col=c("#E6E600","#00A600"),
main="Shared borders")

points(terra::xyFromCell(r, RO_sbd1), pch=20, col="blue")

points(terra: :xyFromCell(r, RO_sbd2), pch=20, col="red")

text(xyFromCell(r, 11), "NA\nvalue")

peak.cell Identify local maxima or minima

Description

Identify local maxima or minima on a raster surface.

Usage

peak.cell(attTbl, ngbList, rNumb = FALSE, p_col, p_fun = "max"”, p_edge = FALSE)

Arguments

attTbl data.frame, the attribute table returned by the function attTbl.

ngbList list, the list of neighborhoods returned by the function ngbList.

rNumb logic, the neighborhoods of the argument ngbList are identified by cell numbers
(rNumb=FALSE) or by row numbers (rNumb=TRUE) (see ngbList). It is advised
to use row numbers for large rasters.

p_col character, the column of the attribute table over which maxima or minima are
searched.

p_fun character, if 'max’ the function searches for local maxima; if 'min’ the function
searches for local minima.

p_edge logic, if false local maxima or minima are not searched on edge cells. Edge cells

are considered cells on the edge of the raster and cell neighboring NA-cells.

42 peak.cell

Details

* A cell constitutes a local maximum if its elevation value is larger than the values of all the cells
in its neighborhood (see ngbList).

e A cell constitutes a local minimum if its elevation value is smaller than the values of all the
cells in its neighborhood (see ngbList).

Value

A classVector with peak cells identified by the numeric class 1. See conditions for more details
about class vectors.

See Also

conditions(), attTbl(), ngbList()

Examples

DUMMY DATA

HEHHHHHHHEEHE AR AR HEHEREEEH R
LOAD LIBRARIES

library(scapesClassification)

library(terra)

LOAD THE DUMMY RASTER

r <- list.files(system.file("extdata”, package = "scapesClassification”),
pattern = "dummy_raster\\.tif"”, full.names = TRUE)

r <- terra::rast(r)

COMPUTE THE ATTRIBUTE TABLE
at <- attTbl(r, "dummy_var")

COMPUTE THE LIST OF NEIGBORHOODS
nbs <- ngbList(r)
HHEHHHHHHHEEHHRHHHEHRHHRHHREEREHRHHEEESEHEEEHREHEHE R R R

PEAK.CELL
B B 2 s T g I g i g i iy e i i iy
p_edge = FALSE
pc_a <- peak.cell(attTbl = at, ngbList = nbs, rNumb = FALSE,
p_col = "dummy_var”, p_fun = "max"”, p_edge = FALSE)

p_edge = TRUE
pc_b <- peak.cell(attTbl = at, ngbList = nbs, rNumb = FALSE,
p_col = "dummy_var”, p_fun = "max"”, p_edge = TRUE)

CONVERT THE CLASS VECTORS INTO RASTERS

r_pca <- cv.2.rast(r, at$Cell, classVector = pc_a, plot = FALSE)

r_pcb <- cv.2.rast(r, at$Cell, classVector = pc_b, plot = FALSE)
HEHHHHHHHEEHHBEHEEHBHEHHHHREEEEHEEHEEEHEHEHHEHEEEEEEEEE RS HEHHREEEEHEEEEEHEEHHEHRE

#PLOTS

pi.add 43

SHEHHHHHHEEEHEEEEEEHHHHHEHEEHHEHEHEHEHHHEHREEEEHEEHEEHEHHHEEEEBHBHEEHE R
oldpar <- par(mfrow = c(1,2))
m<-c(4, 1, 4, 1)

PLOT 1 - p_edge = FALSE
plot(r_pca, axes=FALSE, legend=FALSE, asp=NA, mar=m,
colNA="#818792", col=c("#78b2c4", "#cfad89"))
text(r)
mtext(side=3, line=1, adj=0, cex=1, font=2, "PEAK.CELL")
mtext(side=3, line=0, adj=0, cex=0.9, "p_edge = FALSE")
legend("bottomright”, bg = "white"”,
legend = c("Peak cell”, "Unclassified cells”),
fill = c("#cfad89", "#818792"))

PLOT 2 - p_edge = TRUE
plot(r_pcb, axes=FALSE, legend=FALSE, asp=NA, mar=m,
COINA="#818792", col=c("#78b2c4", "#cfad89"))
text(r)
mtext(side=3, line=1, adj=0, cex=1, font=2, "PEAK.CELL")
mtext(side=3, line=0, adj=0, cex=0.9, "p_edge = TRUE")
legend("bottomright”, bg = "white"”,
legend = c("Peak cell”, "Unclassified cells"”),
fill = c("#cfad89", "#818792"))
par(oldpar)

pi.add Position index addition

Description

Add new raster objects based on position index values.

Usage
pi.add(

attTbl,
ngbList,
rNumb = FALSE,
RO,
mainPI = NULL,
secPI = NULL,
add.mPI = NULL,
add.sPI = NULL,
cond.filter = NULL,
min.N = NULL,
plot = FALSE,
r = NULL

44

Arguments

attTbl
ngbList

rNumb

RO
mainPI
secPI
add.mPI

add. sPI

cond.filter

min.N

plot

r

Details

pi.add

data.frame, the attribute table returned by the function attTbl.
list, the list of neighborhoods returned by the function ngbList.

logic, the neighborhoods of the argument ngbList are identified by cell numbers
(rNumb=FALSE) or by row numbers (rNumb=TRUE) (see ngbList). It is advised
to use row numbers for large rasters.

column name, the name of the column with the raster object IDs.
column name, the name of the column with main position index values.
column name, the name of the column with secondary position index values.

numeric, threshold of main position index values. Cells with values above the
threshold are flagged as cells potentially being part of new raster objects.

numeric, threshold of secondary position index values. Cells with values above
the threshold flagged as cells potentially being part of new raster objects.

character string, defines what cells have to be considered by the function the
arguments. Test cell absolute conditions can be used (see conditions).

numeric, the minimum number of cells a raster object has to have to be included
in the function output.

logic, plot the results.

single or multi-layer raster of the class SpatRaster (see help("rast"”, terra))
used to compute the attribute table. Required only if plot = TRUE.

New raster objects are added based on position index values. Two different position indices can be
passed to the function (mainPI and secPI).

* Input raster objects are assigned to the same class to flag cells that are part of raster objects;

* Cells with values above mainPI OR above mainPI are flagged as cells potentially being part
of new raster objects;

* If not connected to any of the existing raster objects, the groups of cells above position index
values are assigned to new raster objects.

* Only raster objects with at least as many cells as specified by the argument min.N are included
in the function output.

 If both mainPI and secPI are equal to NULL, the function will exclusively filter raster objects
based on their size (min.N).

Value

The function returns a class vector with raster objects IDs. The vector has length equal to the
number of rows of the attribute table. NA values are assigned to cells that do not belong to any

raster object.

Note

Raster objects are added only if they do not share any border with input raster objects.

pi.add 45

See Also

attTbl(), ngbList(), rel.pi(), pi.sgm(), conditions()

Examples

DUMMY DATA

HHHHHHHHE AR A A
LOAD LIBRARIES

library(scapesClassification)

library(terra)

LOAD THE DUMMY RASTER

r <- list.files(system.file("extdata", package = "scapesClassification”),
pattern = "dummy_raster\\.tif"”, full.names = TRUE)

r <- terra::rast(r)

COMPUTE THE ATTRIBUTE TABLE
at <- attTbl(r, "dummy_var")

COMPUTE THE LIST OF NEIGBORHOODS
nbs <- ngbList(r, attTbl=at)

HEHHHHHHHEEHE A EHHHHHREEREH AR AR
COMPUTE RASTER OBJECTS
HHHHHHHEHEE A AR
at$RO[at$dummy_var==8] <- 1
at$RO <- cond.4.nofn(at, nbs, classVector = at$RO, class=1, nbs_of = 1,

cond = "dummy_var < dummy_var[] & dummy_var > 2")

One raster object
unique(at$rRO)

HHHHHHARHEAE A AR AR
POSITION INDEX

B e B R T e R a2 I i g i i Sy e i it iy
at$PI <- (at$dummy_var - mean(at$dummy_var))/stats::sd(at$dummy_var)

B B 2 e R a2 i g i i iy e i i iy
POSITION INDEX ADDITION
HHHHHHHEHEE AR AR R
RO1 <- pi.add(at, nbs,

RO = "RO", # Raster objects

mainPI = "PI", # PI addition layer

add.mPI = 1, # add disjoint objects with PI values > 1

plot = FALSE, r =r)

AR HEHEHEHHEHRAHEHHAHEHHAHEHEHE AR
PLOT
R
Convert class vectors to raster

r_ RO <- cv.2.rast(r = classVector = at$R0)

r_RO1 <- cv.2.rast(r = classVector = RO1)

r’
r?

46

Plot
oldpar <- par(mfrow = c(1,2))
m <- c(4.5, 0.5, 2, 3.2)

terra::plot(r_RO, type="classes"”, main="Raster objects - Input”, mar=m,

plg=list(x=1, y=1, cex=0.9))

terra::plot(r_RO1, type="classes"”, main="Raster objects - Output”, mar=m,

plg=list(x=1, y=1, cex=0.9))

Two raster object
unique(RO1)

text(xyFromCell(r,at$Cell), as.character(round(at$rPI,?2)),
cex = 0.8) # visualize relPI

text(0.01, 1, "Add on PI >= 1", adj=c(9,0), cex = 0.8)
par(oldpar)

pi.sgm

pi.sgm

Position index segmentation

Description

Usage
pi.sgm(

attThl,
ngblList,
rNumb = FALSE,
RO,
mainPI = NULL,
secPI = NULL,
cut.mPI = NULL,
cut.sPI = NULL,
min.N = NULL,
plot = FALSE,
r = NULL

Arguments

attThl
ngbList

rNumb

Segment raster objects based on position index values.

data.frame, the attribute table returned by the function attTbl.
list, the list of neighborhoods returned by the function ngbList.

logic, the neighborhoods of the argument ngbList are identified by cell numbers

(rNumb=FALSE) or by row numbers (rNumb=TRUE) (see ngbList). It is advised
to use row numbers for large rasters.

pi.sgm

RO
mainPI
secPI
cut.mPI

cut.sPI

min.N

plot

r

Details

47

column name, the name of the column with the raster object IDs.
column name, the name of the column with main position index values.
column name, the name of the column with secondary position index values.

numeric, threshold of main position index values. Cells with values below the
threshold are excluded from raster objects.

numeric, threshold of secondary position index values. Cells with values below
the threshold are excluded from raster objects.

numeric, the minimum number of cells a raster object has to have to be included
in the function output.

logic, plot the results.

single or multi-layer raster of the class SpatRaster (see help("rast”, terra))
used to compute the attribute table. Required only if plot = TRUE.

Raster objects are segmented based on position index values. Two different position indices can be
passed to the function (mainPI and secPI).

* Input raster objects are assigned to the same class to flag cells that are part of raster objects;

* Cells with values below mainPI OR below mainPI are flagged as not being part of any raster

object;

» Each non-continuous group of raster object cells will identify an output raster object.

* Only raster objects with at least as many cells as specified by the argument min.N are included
in the function output.

e If both mainPI and secPI are equal to NULL, the function will exclusively filter raster objects
based on their size (min.N).

Value

The function returns a class vector with raster objects IDs. The vector has length equal to the
number of rows of the attribute table. NA values are assigned to cells that do not belong to any

raster object.

See Also

attTbl(), ngbList(), rel.pi(), pi.add()

Examples

DUMMY DATA

AR A

LOAD LIBRARIES

library(scapesClassification)

library(terra)

LOAD THE DUMMY RASTER
r <- list.files(system.file("extdata"”, package = "scapesClassification"),

48

pi.sgm

pattern = "dummy_raster\\.tif"”, full.names = TRUE)
r <- terra::rast(r)

COMPUTE THE ATTRIBUTE TABLE
at <- attTbl(r, "dummy_var")

COMPUTE THE LIST OF NEIGBORHOODS
nbs <- ngbList(r, attTbl=at)

S
COMPUTE RASTER OBJECTS
S
at$RO <- anchor.seed(at, nbs, silent=TRUE, class = NULL, rNumb=TRUE,

cond.filter = "dummy_var > 1",
cond.seed = "dummy_var==max(dummy_var)",
cond.growth = "dummy_var<dummy_var[]",

lag.growth = Inf)

One input raster object
unique(at$R0)

S
NORMALIZED RELATIVE POSITION INDEX
W
at$relPI <- rel.pi(attThl = at, RO = "R0", el = "dummy_var”, type = "n")

AR AR R R
POSITION INDEX SEGMENTATION

HHHHEHHHHHEHEHHHHHHAHHHHAE A
RO1 <- pi.sgm(at, nbs,

RO = "RO", # Raster objects
mainPI = "relPI”, # PI segmentation layer
cut.mPI = @, # segment on relPI values <= @

plot = FALSE, r = r)

HEHHHHHHHEREE AR AR
PLOT

HHHHHHEHEE A AR AR
Convert class vectors to raster

r_ RO <- cv.2.rast(r = r, classVector = at$R0)

r_RO1 <- cv.2.rast(r = r, classVector = RO1)

Plot
oldpar <- par(mfrow = c(1,2))
m <- c(4.5, 0.5, 2, 3.2)

terra::plot(r_RO, type="classes"”, main="Raster objects - Input”, mar=m,
plg=list(x=1, y=1, cex=0.9))

terra::plot(r_RO1, type="classes"”, main="Raster objects - Output”, mar=m,
plg=list(x=1, y=1, cex=0.9))

text(xyFromCell(r,at$Cell), as.character(round(at$relPI,2))) # visualize relPI

text(0.01, 1, "Cut on relPI <= 0", adj=c(0,1), cex = 0.8)

reclass.nbs

par(oldpar)

49

Two output raster objects

unique(ROT)

reclass.nbs

Reclassify neighbors

Description

Evaluate if members of two classes are contiguous and, if they are, one of them is reclassified.

Usage

reclass.nbs(
attThl,
ngblList,

rNumb = FALSE,

classVector,
nbs_of,
class,
reclass,

reclass_all =

Arguments

attTbl
ngblList
rNumb
classVector
nbs_of
class

reclass

reclass_all

TRUE

data.frame, the attribute table returned by the function attTbl.
list, the list of neighborhoods returned by the function ngbList.

logic, the neighborhoods of the argument ngbList are identified by cell numbers
(rNumb=FALSE) or by row numbers (rNumb=TRUE) (see ngbList). It is advised
to use row numbers for large rasters.

numeric vector, defines the cells in the attribute table that have already been
classified. See conditions for more information about class vectors.

numeric or numeric vector, indicates the class(es) of focal and anchor cells.

numeric or numeric vector, cells of classes class adjacent to cells belonging
to one of the classes of nbs_of are reclassified as indicated by the argument
reclass.

numeric, the classification number to assign to all cells that meet the function
conditions.

logic, all cells of class class are also reclassified if they are connected to a
reclassified cell.

50 reclass.nbs

Details

 The function evaluates if a cell of class class is adjacent to a cell of class nbs_of and, if it is,
it is reclassifies as indicated by the argument reclass.

o If the argument reclass_all = TRUE, all cells of class class are also reclassified if they are
connected to a reclassified cell.

Value

Update classVector with the new cells that were classified by the function. See conditions for
more information about class vectors.

See Also
attTbl(), ngbList(), cond.reclass(), classify.all()

Examples

library(scapesClassification)
library(terra)

LOAD THE DUMMY RASTER

r <- list.files(system.file("extdata”, package = "scapesClassification”),
pattern = "dummy_raster\\.tif"”, full.names = TRUE)

r <- terra::rast(r)

COMPUTE THE ATTRIBUTE TABLE
at <- attTbl(r, "dummy_var")

COMPUTE THE LIST OF NEIGBORHOODS
nbs <- ngbList(r)

I
RECLASS.NBS
A

Compute an inital class vector with ‘cond.4.all®
cv <- cond.4.all(attThl = at, cond = "dummy_var > 5", class = 1)

Update the class vector with a second class

cv <- cond.4.all(attThl = at, cond = "dummy_var >= 2", class = 2,
classVector = cv)

Reclassify cells of class 2 adjacent to cells of class 1

reclass_all = FALSE
rcl <- reclass.nbs(attTbl = at, ngbList = nbs,

CLASS VECTOR ‘cv*®
classVector = cv,

reclass.nbs

CELLS OF CLASS...
class = 2,

...ADJACENT TO CELLS OF ANOTHER CLASS...
nbs_of = 1,

...WILL BE RECLASSIFIED...
reclass = 3,

NO MORE RECLASSIFICATIONS
reclass_all = FALSE)

reclass_all = TRUE
rc2 <- reclass.nbs(attThl = at, ngbList = nbs,

CLASS VECTOR ‘cv*®
classVector = cv,

CELLS OF CLASS...
class = 2,

...ADJACENT TO CELLS OF ANOTHER CLASS...
nbs_of =1,

...WILL BE RECLASSIFIED...
reclass = 3,

...AND SO ALL CELLS OF CLASS 1 CONNECTED TO A RECLASSIFIED CELL
reclass_all = TRUE)

Convert class vectors to rasters

r_cv <- cv.2.rast(r, at$Cell,classVector = cv, plot = FALSE)
r_rcl <- cv.2.rast(r, at$Cell,classVector = rcl, plot = FALSE)
r_rc2 <- cv.2.rast(r, at$Cell,classVector = rc2, plot = FALSE)

HEHHHHHHHEREE AR AR AR
PLOTS

HHHEHHHEHEE AR AR AR
oldpar <- par(mfrow = c(2,2))

m=c(0.1, 3.5, 3.2, 3.5)

#1)
plot(r_cv, type="classes"”, axes=FALSE, legend = FALSE, asp = NA, mar=m,
COINA="#818792", col=c("#1088a0", "#78b2c4"))
text(r)
mtext(side=3, line=2, adj=0, cex=1, font=2, "COND.4.ALL")
mtext(side=3, line=1, adj=0, cex=0.9, "Stepl: 'dummy_var > 5', class: 1")
mtext(side=3, line=0, adj=0, cex=0.9, "Step2: 'dummy_var > 3', class: 2")
legend("bottomright”, ncol = 1, bg = "white"”, y.intersp= 1.2,
legend = c("Class 1", "Class 2", "Unclassified cells"),
fill = c("#1088a0", "#78b2c4", "#818792"))

51

52 rel.pi

#2)
plot(r_rcl, type="classes"”, axes=FALSE, legend = FALSE, asp = NA, mar=m,
CoINA="#818792", col=c("#1088a0", "#78b2c4", "#cfad89"))
text(r)
mtext(side=3, line=2, adj=@, cex=1, font=2, "RECLASS.NBS")
mtext(side=3, line=1, adj=0, cex=0.9, "Reclass: class 2 adjacent to class 1")
mtext(side=3, line=0, adj=0, cex=0.9, "reclass_all = FALSE")
legend("bottomright”, ncol = 1, bg = "white"”, y.intersp= 1.2,
legend = c("Reclassified cells"”), fill = c("#cfad89"))

#3)
plot(r_rc2, type="classes"”, axes=FALSE, legend = FALSE, asp = NA, mar=m,
CcoINA="#818792", col=c("#1088a0", "#78b2c4", "#cfad89"))
text(r)
mtext(side=3, line=2, adj=0, cex=1, font=2, "RECLASS.NBS")
mtext(side=3, line=1, adj=0, cex=0.9, "Reclass: class 2 adjacent to class 1")
mtext(side=3, line=0, adj=0, cex=0.9, "reclass_all = TRUE")
legend("bottomright”, ncol = 1, bg = "white"”, y.intersp= 1.2,
legend = c("Reclassified cells”), fill = c("#cfad89"))
par(oldpar)

rel.pi Relative position index

Description

Compute the relative position index of raster objects.

Usage

rel.pi(attTbl, RO, el, type = "s", plot = FALSE, r = NULL)

Arguments

attTbl data.frame, the attribute table returned by the function attTbl.

RO column name, the name of the column with the raster object IDs.

el column name, the name of column with the elevation values on which the rela-
tive position index is computed

type character, defines if position index values are standardized ("s") or normalized
("n™).

plot logic, plot the results.

r single or multi-layer raster of the class SpatRaster (see help("rast"”, terra))

used to compute the attribute table. Required only if plot = TRUE.

rel.pi 53

Details
Position index values are computed only for cells that belong to a raster object.

* Standardized position index values (type="s") are computed with the formula (x - mean(x)
)/ sd(x);

* Normalized position index values (type="n") are computed with the formula (x - min(x))
/ (max(x) - min(x));

* Variable x represents the elevation values of individual raster object.

Value

The function returns a vector with relative position index values. The vector has length equal to
the number of rows of the attribute table. NA values are assigned to cells that do not belong to any
raster object.

See Also
attTh1l(), ngbList(), pi.add(), pi.sgm()

Examples

DUMMY DATA
B S s
LOAD LIBRARIES

library(scapesClassification)

library(terra)

LOAD THE DUMMY RASTER

r <- list.files(system.file("extdata”, package = "scapesClassification”),
pattern = "dummy_raster\\.tif"”, full.names = TRUE)

r <- terra::rast(r)

COMPUTE THE ATTRIBUTE TABLE
at <- attTbl(r, "dummy_var")

COMPUTE THE LIST OF NEIGBORHOODS
nbs <- ngbList(r, rNumb=TRUE, attTbl=at) # rnumb MUST be true to use obj.nbs

HHHHHHHEHEEEE AR AR AR A
COMPUTE RASTER OBJECTS

WA A R AR
at$RO <- anchor.seed(at, nbs, silent=TRUE, class = NULL, rNumb=TRUE,

cond.filter = "dummy_var > 1",
cond.seed = "dummy_var==max(dummy_var)",
cond.growth = "dummy_var<dummy_var[]",

lag.growth = 0)

Convert class vector at$RO to raster and plot

r_.RO <- cv.2.rast(r = r, classVector = at$RrR0)

terra::plot(r_RO, type="classes”, main="Raster objects”,
plg=list(x=1, y=1, cex=0.9))

54

HHHHHHARHEEHE A R R
STANDARDIZED RELATIVE POSITION INDEX
HEHHHHHHHHEHHEEHEEHBHEHHHREEEEHEEHEEEHEHEHHEHEEEEEEEEE RS HHHHREEEEHEEEEEHEEHHEHRE
relPI <- rel.pi(attTbl = at, RO = "R0O", el = "dummy_var”,

type = "s",

plot = TRUE, r = r)

Annotate relPI

points(terra::xFromCell(r, at$Cell[which(at$R0==1)]),
terra::yFromCell(r, at$Cell[which(at$R0==1)1) - 0.04,
pch=20, col="yellow")

points(terra::xFromCell(r, at$Cell[which(at$R0==2)]),
terra::yFromCell(r, at$Cell[which(at$R0==2)1) - 0.04,
pch=20, col="darkgreen")

text(xyFromCell(r,at$Cell), as.character(round(relPI,2)))

legend(1.02, 0.4, legend=c("1", "2"), bty = "n", title="R0O:", xpd=TRUE,

col=c("#EGE600", "#0Q0A600"), pch=20, cex=0.9, pt.cex = 1.5)

HHH A AR AR A
NORMALIZED RELATIVE POSITION INDEX
S HEHHRE A HHE PR HHEHE
Compute normalized relative position index
relPI <- rel.pi(attTbl = at, RO = "R0", el = "dummy_var”,

type = "n",

plot = TRUE, r =r)

Annotate relPI

points(terra::xFromCell(r, at$Cell[which(at$R0==1)]),
terra::yFromCell(r, at$Cell[which(at$RO==1)1) - 0.04,
pch=20, col="yellow")

points(terra::xFromCell(r, at$Cell[which(at$R0==2)]),
terra::yFromCell(r, at$Cell[which(at$R0==2)1) - 0.04,
pch=20, col="darkgreen")

text(xyFromCell(r,at$Cell), as.character(round(relPI,2)))

legend(1.02, 0.4, legend=c("1", "2"), bty = "n", title="RO:", xpd=TRUE,

col=c("#EGE60Q", "#00A600"), pch=20, cex=0.9, pt.cex = 1.5)

rel.pi

Index

anchor.cell, 2

anchor. seed, 5, 29, 30

anchor.seed(), 25, 31

anchor.svo, 9

anchor.svo(), 3

attThl, 3, 5, 12, 14, 16, 18, 25, 28, 32, 34, 35,
37,39,41,44, 46,49, 52

attThl(), 3, 7, 14, 16, 20, 26, 31, 35, 38, 39,
42,45,47, 50, 53

classify.all, 14, 29

classify.all(), 31, 50

cond.4.all, 16, 28, 29

cond.4.all(), 25, 31

cond.4.nofn, 18, 29, 30

cond.4.nofn(), 16, 25, 31

cond.parse, 24

cond.reclass, 25, 29, 30

cond.reclass(), 16, 25, 31, 50

conditions, 3,6, 7, 14, 16, 18-20, 25, 26, 27,
28, 42,44, 49, 50

conditions(), 3,7, 14, 16, 20, 25, 26, 31, 42,
45

cv.2.rast, 32

ngb8s, 33

ngb8(), 35

ngblList, 5, 14, 18, 25, 29, 34, 37, 39, 41, 42,
44, 46, 49

ngbList(), 7, 14, 20, 26, 34, 38, 39, 42, 45,
47,50, 53

obj.border, 37, 39
obj.border(), 39
obj.nbs, 39
obj.nbs(), 38

peak.cell, 41
pi.add, 43
pi.add(), 47,53

55

pi.sgm, 46
pi.sgm(), 45,53

reclass.nbs, 29, 49
rel.pi, 52
rel.pi(), 45,47

	anchor.cell
	anchor.seed
	anchor.svo
	attTbl
	classify.all
	cond.4.all
	cond.4.nofn
	cond.parse
	cond.reclass
	conditions
	cv.2.rast
	ngb8
	ngbList
	obj.border
	obj.nbs
	peak.cell
	pi.add
	pi.sgm
	reclass.nbs
	rel.pi
	Index

