Package ‘sequenceR’

January 13, 2025
Type Package

Title A Simple Sequencer for Data Sonification
Version 1.0.1

Description A rudimentary sequencer to define, manipulate and mix sound samples.
The underlying motivation is to sonify data, as demonstrated in the blog <https:
//globxblog.github.io/>, the presentation by Renard and Le Bescond (2022, <https:
//hal.science/hal-03710340v1>) or the poster by Renard et al. (2023, <https:
//hal.inrae.fr/hal-04388845v1>).

License GPL-3
Encoding UTF-8
LazyData true

URL https://github.com/benRenard/sequenceR

BugReports https://github.com/benRenard/sequenceR/issues
Depends R (>=3.5.0)

Imports tuneR

Suggests knitr, rmarkdown, ggplot2, gganimate, tidyr, dplyr, av
RoxygenNote 7.2.3

VignetteBuilder knitr

NeedsCompilation no

Author Benjamin Renard [aut, cre, cph]
(<https://orcid.org/0000-0001-8447-5430>),
INRAE [fnd],
European Commission [fnd] (This project has received funding from the
European Union’s Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement No 835496)

Maintainer Benjamin Renard <benjamin.renard@inrae.fr>
Repository CRAN
Date/Publication 2025-01-13 17:30:05 UTC

https://globxblog.github.io/
https://globxblog.github.io/
https://hal.science/hal-03710340v1
https://hal.science/hal-03710340v1
https://hal.inrae.fr/hal-04388845v1
https://hal.inrae.fr/hal-04388845v1
https://github.com/benRenard/sequenceR
https://github.com/benRenard/sequenceR/issues
https://orcid.org/0000-0001-8447-5430

2 Contents

Contents
applyDelay e 3
applyDisto 4
applyEnvelope 5
as.soundSample L 5
as.Wave . . .o e 6
bell . . . e 7
checkMaxSize L e 7
checkSeqArgs e 8
disto_clip 8
disto_tanh e 9
eNVEIOPE e e 9
getFrequencies 10
getHarmonics e e e 11
GEtNOLES o e e e 12
getSynth L. 12
getSynthNote 14
getTime 15
globalT e 15
hiHat o e 16
hiHat2 e 16
hiHat 0 e 17
INSITUMENE .« v ot et e e e e e e e e e e e e e e e e e e 17
kick . . . e 18
kick2 . . e 18
Listen o o e 19
mini%09 . . . 19
X . 0 v e e e e e e e e e e e e 20
noteFrequencyTable 21
oscillator L. e e 21
oscillator_pattern L. e e e e 22
oscillator_Saw oL 23
oscillator_Sine e 23
oscillator_square e 24
oscillator_triangle L. e 25
pitchMapping e e e e 26
play.instrument L. 26
plotenvelope 28
plot.soundSample e 28
read.soundSample 29
rescaleo L 29
ride ... 30
SEQUENICE .+ v v v v v v e e e e e e e e e e e e e e e e e 30
shiftPitch 31
SDATE .« v v v et e 32
SNATEZ . . . o o i e e e e e e e e e e e e e e e e e 32

applyDelay 3
soundSample e e e 35
tmeVeCtOr e e 35
WaggaWagga e e 36
WItEANSIUment o e e e e e e e e 36
write.soundSampleo L. 37

Index 38

applyDelay Delay effect

Description

Apply a delay to a sound sample. See https://en.wikipedia.org/wiki/Comb_filter

Usage

applyDelay(sample, type = "feedforward”, delayTime = @.6, echoes = c(0.8))

Arguments
sample

type
delayTime

echoes

Value

soundSample object, input sample
Character string, the delay type: feedforward or feedback
Numeric >0, delay time in s.

Numeric vector >0. The size of the vector gives the number of echoes, the values
the level of each echo (generally decreases to 0).

The sound sample with a delay effect

Examples

example code
notes=c('E3"', 'G3"'
synth=getSynth(no

,'A3','B3','D4"','E4",'G4")
tes)

raw=as.soundSample(play.instrument(synth,notes=notes[c(1,2,3,2,3,4,3,4,5,4,5,6,5,6,7)1))

plot(raw)

Not run:

All calls to fu
they rely on an

nction 'listen' are wrapped in \dontrun{} since
external audio player to listen to the audio samples.

See ?tuneR::setWavPlayer for setting a default player.

listen(raw)

End(Not run)

Single echo by
cooked=applyDelay
plot(cooked)

Not run: liste
Multiple echoes

default
(raw)

n(cooked)

4 applyDisto

cooked=applyDelay(raw,echoes=1/(1:10))

plot(cooked)

Not run: listen(cooked)

Feedback-type delay
cooked=applyDelay(raw,echoes=1/(1:10), type="'feedback')
plot(cooked)

Not run: listen(cooked)

applyDisto Distortion effect

Description

Apply a distortion to a sound sample

Usage

applyDisto(sample, type = c("clip”, "tanh"), level = 2, ..., rescale = FALSE)
Arguments

sample soundSample object, input sample

type Character string, the distortion type

level Numeric >0, distortion level

other parameters passed to the distortion transfer function

rescale Logical. If TRUE, the soundSample wave is rescaled to [-1,1]

Value

The distorted sound sample

Examples

example code
raw=oscillator(freq=110,duration=0.5)
plot(raw)

dist=applyDisto(raw, type='tanh',level=5)
plot(dist)

applyEnvelope

applyEnvelope Apply an envelope

Description

Apply a volume envelope to a sound sample.

Usage

applyEnvelope(sample, env)

Arguments

sample Sound sample object.

env Envelope object. Envelope values should all be between 0 and 1.
Value

A sound sample object.

Examples

Define the sound sample

sam <- soundSample(sin(2*pi*seq(0,0.5,1/44100)*220)) # 0.5-second A (220 Hz)
Define the envelope

env <- envelope(t=c(0,0.03,1),v=c(0,1,0))

Apply it

res <- applyEnvelope(sam,env)

Compare waveforms

plot(sam,main="before")

plot(res,main="after")

Not run:

This line of code is wrapped in \dontrun{} since it relies
on an external audio player to listen to the audio sample.
See ?tuneR::setWavPlayer for setting a default player.
listen(res)

End(Not run)

as.soundSample Cast to a sound sample

Description

Convert a tuneR::Wave object into a soundSample.

6 as.Wave

Usage

as.soundSample(w, pan = 0)

Arguments
w tuneR Wave object
pan Numeric in [-1;1], panoramic. -1 (resp. 1) only select the left (resp.
channel of w (if the latter is stereo). O averages both channels
Value

An object of class ’soundSample’.

Examples

w <- tuneR::Wave(left=sin(2*pi*seq(@,1,,44100)*440)) # 1-second A
sam <- as.soundSample(w)
plot(sam)

right)

as.Wave Cast to a tuneR::Wave object

Description

Convert a soundSample into a tuneR::Wave object.

Usage

as.Wave(x)

Arguments

X sound sample object.

Value

a tuneR Wave object.

Examples

sam <- soundSample(sin(2*pi*seq(@,1,,44100)*440)) # 1-second A (440 Hz)
w <- as.Wave(sam)
tuneR: :plot(w)

bell

bell Bell sample

Description

A ride cymbal (hit ion the bell) sound sample object

Usage

bell

Format

An object of class soundSample of length 4.

checkMaxSize Check wave size

Description

Check that the size of a wave does not exceed the maximum allowed size.

Usage

checkMaxSize(n, nmax)

Arguments
n integer, size to be checked
nmax integer, maximum allowed size
Value

nothing - just stops execution with an error message if n>nmax

8 disto_clip

checkSeqArgs Check sequencer arguments

Description

Check that the arguments used in sequencing functions (e.g. time, volume, pan, etc.) are valid.

Usage

checkSegArgs(arglList)

Arguments

arglist list, a named list containg the arguments

Value

nothing - just stops execution with an error message if something is invalid

disto_clip Clip distortion

Description

Transfer function for ’clip’ distortion

Usage

disto_clip(x, level)

Arguments
X Numeric vector in [-1,1], input signal
level Numeric (>=0), distortion level
Value

a numeric vector containing the distorted output signal

disto_tanh 9

disto_tanh Tanh distortion

Description

Transfer function for ’tanh’ distortion

Usage

disto_tanh(x, level)

Arguments
X Numeric vector in [-1,1], input signal
level Numeric (>=0), distortion level
Value

a numeric vector containing the distorted output signal

envelope Envelope constructor.

Description

Creates a new instance of an ’envelope’ object (https://en.wikipedia.org/wiki/Envelope_(music)).
In this package an envelop is viewed as a curve v(t), where t is the time and v the value of the
envelope. Time t is normalized between O and 1 so that 1 corresponds to the end of the sound
sample the envelope is applied to (and O to its beginning). The curve is defined by a discrete set of
points (t,v) (linear interpolation in between).

Usage

envelope(t, v)

Arguments
t Numeric vector, normalized time. Vector of increasing values starting at O and
ending at 1.
v Numeric vector, same size as t, envelop values v(t).
Value

An object of class "envelope’.

10 getFrequencies

Examples

A triangular envelop

env <- envelope(t=c(0,0.3,1),v=c(0,1,0))

An ADSR envelope (https://en.wikipedia.org/wiki/Envelope_(music)#ADSR)

env <- envelope(t=c(0,0.1,0.3,0.8,1),v=c(0,1,0.4,0.4,0))

An envelope that could be used for a 1-octave frequency modulation (from 440 to 220 Hz)
env <- envelope(t=c(0,1),v=c(440,220))

An envelope that could be used for phase modulation

(https://en.wikipedia.org/wiki/Phase_modulation)

env <- envelope(t=seq(0,1,0.01),v=(-pi/2)*sin(2*pi*4*xseq(0,1,0.01)))

getFrequencies Notes-to-frequencies function

Description

Get frequencies from note names (in scientific pitch notation).

Usage

getFrequencies(notes, minOctave = @, maxOctave = 8)

Arguments
notes Character vector, note names.
minOctave integer, smallest (lowest-pitched) octave
maxOctave integer, largest (highest-pitched) octave
Value

a numeric vector of frequencies (in Hz)

Examples

example code
getFrequencies(c('A3"','A4"' ,'A5",'C#6','Db6"','A9",'X0"))
getFrequencies(c('A3"','A4"','A5"','C#6"','Db6',"'A9",'X0"),max0ctave=9)

https://en.wikipedia.org/wiki/Scientific_pitch_notation

getHarmonics

11

getHarmonics

Harmonics sound sample

Description

Creates a sound sample corresponding to the kth harmonics of a given frequency

Usage

getHarmonics(

freq,
K,

peak = 0.03,
decay = 0.8,
duration = 1,

sustain =
type = "sine"

Arguments

freq

k

peak
decay
duration

sustain

type

Value

0.25,

Numeric, base frequency in Hz
Integer >=1, kth harmonics

Numeric, peak time in seconds
Numeric, end-of-decay time in seconds
Numeric, total duration in seconds
Numeric, sustain volume

String, oscillator type, one of ’sine’, ’saw’, "square’ or ’triangle’. If an unknowm
string is provided, a sine oscillator will be used.

An object of class ’soundSample’.

Examples

saml <- getHarmonics(440,1)

plot(saml)

sam2 <- getHarmonics(440,3)

plot(sam2)
Not run:

This line of code is wrapped in \dontrun{} since it relies
on an external audio player to listen to the audio sample.
See ?tuneR::setWavPlayer for setting a default player.

listen(sam2)
End(Not run)

12 getSynth

getNotes Frequencies-to-notes function

Description

Get notes (in scientific pitch notation) from frequencies. The note with the closest frequency is

returned.
Usage

getNotes(frequencies, minOctave = @, maxOctave = 8, option = "b")
Arguments

frequencies numeric vector, frequencies in Hz

minOctave integer, smallest (lowest-pitched) octave

maxOctave integer, largest (highest-pitched) octave

option character, use ’b’ or ’#’ in note names?
Value

a character vector of notes

Examples

example code
getNotes(seq(440,10000,100))
getNotes(seq(440,10000,100) ,maxOctave=10,option="#")

getSynth Synthesizer

Description

Creates an additive, Hammond-inspired Synthesizer. Higher harmonics decay faster and have
smaller sustain.

https://en.wikipedia.org/wiki/Scientific_pitch_notation

getSynth

Usage

getSynth(

13

notes,
nHarmonics = 5,
peak = 0.03,
decay = 0.8,
duration = 1,
sustain = 0.25,
decayPar = 1,
sustainPar = 4,
type = "sine”

Arguments

notes
nHarmonics
peak

decay
duration
sustain
decayPar

sustainPar

type

Value

Character vector, note names

Integer >=1, number of harmonics

Numeric, peak time in seconds

Numeric, end-of-decay time in seconds

Numeric, total duration in seconds

Numeric, sustain volume

Numeric, the higher the value the smaller the decay time for higher harmonics

Numeric, the higher the value the smaller the sustain volume for higher harmon-
ics

String, oscillator type, one of ’sine’, ’saw’, ’square’ or ’triangle’. If an unknown
string is provided, a sine oscillator will be used.

An object of class “instrument’.

Examples

synth <- getSynth(c('E2','B2','E3",'G3"','A3"))
w=play.instrument(synth,time=(0: (length(synth)-1))*0.5, fadeout=rep(Inf,length(synth)))

tuneR: :plot(w)

Not run:

This line of code is wrapped in \dontrun{} since it relies
on an external audio player to play the audio sample.
See ?tuneR::setWavPlayer for setting a default player.

tuneR: :play(w)
End(Not run)

14

getSynthNote

getSynthNote

Single note from a synthesizer

Description

Creates one note with frequency freq from an additive, Hammond-inspired synth. Higher harmonics
decay faster and have smaller sustain.

Usage

getSynthNote(
freq,
nHarmonics =
peak = 0.03,
decay = 0.8,
duration = 1,

5,

sustain = 0.25,

decayPar = 1,
sustainPar =
type = "sine”

Arguments

freq
nHarmonics
peak

decay
duration
sustain
decayPar

sustainPar

type

Value

An object of class

4,

Numeric, base frequency in Hz

Integer >=1, number of harmonics

Numeric, peak time in seconds

Numeric, end-of-decay time in seconds

Numeric, total duration in seconds

Numeric, sustain volume

Numeric, the higher the value the smaller the decay time for higher harmonics
Numeric, the higher the value the smaller the sustain volume for higher harmon-
ics

String, oscillator type, one of ’sine’, ’saw’, ’square’ or ’triangle’. If an unknown
string is provided, a sine oscillator will be used.

’soundSample’.

getTime 15

Examples

sam <- getSynthNote(440,nHarmonics=7)

plot(sam)

Not run:

This line of code is wrapped in \dontrun{} since it relies
on an external audio player to listen to the audio sample.
See ?tuneR::setWavPlayer for setting a default player.
listen(sam)

End(Not run)

getTime Get sampling time

Description

Get the times steps associated with a sound sample.

Usage

getTime(x)

Arguments

X sound sample object.

Value

a numeric vector containing the sampling times in second.

Examples

Define sound sample

sam <- soundSample(sin(2*pi*seq(@,1,,44100)*440)+0.1*xrnorm(44100)) # 1-second noisy A
Compute sampling times

timeSteps=getTime (sam)

globalT Global Temperature Anomalies dataset

Description

Times series of annual temperature anomalies at the global scale, 1850-2021. This time series
is the one used to create the Warming Stripes (https://www.climate-1lab-book.ac.uk/2018/
warming-stripes/).

https://www.climate-lab-book.ac.uk/2018/warming-stripes/
https://www.climate-lab-book.ac.uk/2018/warming-stripes/

16 hiHat2

Usage
globalT

Format

An object of class data. frame with 172 rows and 2 columns.

Source

https://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html

hiHat Hi-hat sample

Description

A hi-hat sound sample object

Usage
hiHat

Format

An object of class soundSample of length 4.

hiHat2 Hi-hat sample 2

Description

A hi-hat sound sample object

Usage
hiHat2

Format

An object of class soundSample of length 4.

Source

http://www.archive.org/details/OpenPathMusic44V1

https://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html
http://www.archive.org/details/OpenPathMusic44V1

hiHat o

17

hiHat_o Open Hi-hat sample

Description

An open hi-hat sound sample object

Usage

hiHat_o

Format

An object of class soundSample of length 4.

instrument Instrument constructor.

Description

Creates a new instance of an ’instrument’ object. An instrument is a named list of sound samples

(all with the same sampling rate).

Usage

instrument(samples, notes = as.character(1:length(samples)))

Arguments

samples list of sound samples

notes string vector, name given to each sample
Value

An object of class *Instrument’.

Examples

drumset <- instrument(samples=list(kick,snare,hiHat),notes=c('boom', 'tat’', 'cheet'))

18

kick?2

kick Kick sample

Description

A kick sound sample object

Usage

kick

Format

An object of class soundSample of length 4.

kick2 Kick sample2

Description

A kick sound sample object

Usage

kick?2

Format

An object of class soundSample of length 4.

Source

http://www.archive.org/details/OpenPathMusic44V1

http://www.archive.org/details/OpenPathMusic44V1

listen

19

listen Listen to a sound sample

Description

Listen to a sound sample. Based on tuneR function ’play’

Usage

listen(x)

Arguments

X sound sample object.

Value

nothing - listening function.

Examples

Define sound sample

sam <- soundSample(sin(2*pi*seq(@,1,,44100)*440)+0.1*rnorm(44100)) # 1-second noisy A
Not run:

This line of code is wrapped in \dontrun{} since it relies

on an external audio player to listen to the audio sample.

See ?tuneR::setWavPlayer for setting a default player.

listen(sam)

End(Not run)

mini909 TR-909 minimalistic drumkit

Description

An instrument containing a few basic sounds from a TR-909-inspired drumkit

Usage
mini909
Format

An object of class instrument of length 6.

Source

https://freesound.org/people/altemark/packs/1643/

https://freesound.org/people/altemark/packs/1643/

20 mix

mix Mix several waves

Description

Take several wave objects (package tuneR) and mix them according to volume and pan.

Usage

mix(waves, volume = rep(1, length(waves)), pan = rep(@, length(waves)))

Arguments

waves List of wave S4 objects (tuneR)

volume Numeric vector, volume between 0 and 1.

pan Numeric vector, pan between -1 (left) and 1 (right) (0 = centered).
Value

the result of th mix, an S4 Wave object (from package tuneR).

Examples

A 2-second drum groove (4/4 measure)

hi-hat on 16th notes

hh <- sequence(hiHat,time=2%(0:15)/16,volume=rep(c(1,rep(0.5,3)),4))
bass kick on 1 and 3

k <- sequence(kick,time=2xc(0,8)/16)

snare on 2 and 4

s <- sequence(snare,time=2*c(4,12)/16)

Mix the 3 tracks

ml <- mix(list(hh,k,s))

Not run:

All calls to function 'tuneR::play' ar wrapped in \dontrun{} since they rely
on an external audio player to play the audio sample.

See ?tuneR::setWavPlayer for setting a default player.

tuneR: :play(m1)

End(Not run)

Try with less hihat, more kick

m2 <- mix(list(hh,k,s),volume=c(0.3,1,0.8))

Not run: tuneR::play(m2)

noteFrequencyTable 21

noteFrequencyTable Note-frequency table

Description

Builds a dataframe containing notes (in scientific pitch notation) and corresponding frequencies.

Usage

noteFrequencyTable(minOctave = @, maxOctave = 8)

Arguments
minOctave integer, smallest (lowest-pitched) octave
maxOctave integer, largest (highest-pitched) octave
Value

a data frame with 4 columns: note name 1 (written with ’b’), note name 2 (written with ’#’),index
(in semitones with respect to A4) and frequency (in Hz)

Examples

example code
noteFrequencyTable()

oscillator General oscillator

Description

Creates a soundSample using a oscillator.

Usage
oscillator(type = "sine", freq = 440, duration = 1, phase = 0, rate = 44100)

Arguments
type String, oscillator type, one of ’sine’, ’saw’, ’square’ or 'triangle’. If an unknown
string is provided, a sine oscillator will be used.
freq Numeric, note frequency in Hz
duration Numeric, note duration in second
phase Numeric, phase in radians (typically between 0 and 2*pi)

rate Numeric, sampling rate in Hz

https://en.wikipedia.org/wiki/Scientific_pitch_notation

22 oscillator_pattern

Value

An object of class ’soundSample’.

Examples

sam <- oscillator(type='saw',freq=220,duration=0.1)
plot(sam)

Not run:

This line of code is wrapped in \dontrun{} since it relies
on an external audio player to listen to the audio sample.
See ?tuneR::setWavPlayer for setting a default player.
listen(sam)

End(Not run)

oscillator_pattern Pattern-based oscillator

Description

Creates a soundSample by repeating a user-provided pattern.

Usage

oscillator_pattern(pattern, freq = 440, duration = 1, rate = 44100)

Arguments
pattern Numeric vector, pattern.
freq Numeric, note frequency in Hz
duration Numeric, note duration in second
rate Numeric, sampling rate in Hz
Value

An object of class ’soundSample’.

Examples

sam <- oscillator_pattern(pattern=airquality$0zone,freq=110,duration=0.1)
plot(sam)

Not run:

This line of code is wrapped in \dontrun{} since it relies

on an external audio player to listen to the audio sample.

See ?tuneR::setWavPlayer for setting a default player.

listen(sam)

End(Not run)

oscillator_saw 23

oscillator_saw Saw oscillator

Description

Creates a soundSample using a saw oscillator.

Usage

oscillator_saw(freq = 440, duration = 1, phase = 0, rate = 44100)

Arguments
freq Numeric, note frequency in Hz
duration Numeric, note duration in second
phase Numeric, phase in radians (typically between 0 and 2*pi)
rate Numeric, sampling rate in Hz
Value

An object of class ’soundSample’.

Examples

sam <- oscillator_saw(freq=220,duration=0.1)

plot(sam)

Not run:

This line of code is wrapped in \dontrun{} since it relies
on an external audio player to listen to the audio sample.
See ?tuneR::setWavPlayer for setting a default player.
listen(sam)

End(Not run)

oscillator_sine Sine oscillator

Description

Creates a soundSample using a sine oscillator.

Usage

oscillator_sine(freq = 440, duration = 1, phase = 0, rate = 44100)

24 oscillator_square

Arguments
freq Numeric, note frequency in Hz
duration Numeric, note duration in second
phase Numeric, phase in radians (typically between 0 and 2*pi)
rate Numeric, sampling rate in Hz
Value

An object of class soundSample’.

Examples

sam <- oscillator_sine(freq=220,duration=0.1)

plot(sam)

Not run:

This line of code is wrapped in \dontrun{} since it relies
on an external audio player to listen to the audio sample.
See ?tuneR::setWavPlayer for setting a default player.
listen(sam)

End(Not run)

oscillator_square Square oscillator

Description

Creates a soundSample using a square oscillator.

Usage

oscillator_square(freq = 440, duration = 1, phase = 0, rate = 44100)

Arguments
freq Numeric, note frequency in Hz
duration Numeric, note duration in second
phase Numeric, phase in radians (typically between 0 and 2*pi)
rate Numeric, sampling rate in Hz
Value

An object of class ’soundSample’.

oscillator_triangle

Examples

sam <- oscillator_square(freq=220,duration=0.1)

plot(sam)

Not run:

This line of code is wrapped in \dontrun{} since it relies
on an external audio player to listen to the audio sample.
See ?tuneR::setWavPlayer for setting a default player.
listen(sam)

End(Not run)

oscillator_triangle Triangle oscillator

Description

Creates a soundSample using a triangle oscillator.

Usage

oscillator_triangle(freq = 440, duration = 1, phase = 0, rate = 44100)

Arguments
freq Numeric, note frequency in Hz
duration Numeric, note duration in second
phase Numeric, phase in radians (typically between 0 and 2*pi)
rate Numeric, sampling rate in Hz
Value

An object of class ’soundSample’.

Examples

sam <- oscillator_triangle(freq=220,duration=0.1)

plot(sam)

Not run:

This line of code is wrapped in \dontrun{} since it relies
on an external audio player to listen to the audio sample.
See ?tuneR::setWavPlayer for setting a default player.
listen(sam)

End(Not run)

26

play.instrument

pitchMapping Pitch mapping function

Description

Maps a series of values into pitches of notes

Usage

pitchMapping(x, notes)

Arguments
X Numeric vector
notes character vector, notes onto which values are map (i.e. the musical scakle).
Notes should be written in Scientific pitch notation, e.g. c("C4’,E4’,G4’) (see
https://en.wikipedia.org/wiki/Scientific_pitch_notation)
Value

a character vector representing the original values transformed into pitches

Examples

pitchMapping(x=1:10,notes=c('C4','E4"','G4"))

pitchMapping(rnorm(20),notes=c('E3','Gb3","'G3"',"A3"','B3"','C4"','D4"))

play.instrument Play an instrument

Description

Take a sound sample and repeat it following given timeline, volume and pan.

Usage

play.instrument(

inst,
notes = 1:length(inst),

time = seq(@, (length(notes) - 1) * 0.25, length.out = length(notes)),

volume = rep(1, length(notes)),
pan = rep(@, length(notes)),
fadein = rep(0.01, length(notes)),
fadeout = fadein,

env = NULL,

nmax = 10 * 10”6

https://en.wikipedia.org/wiki/Scientific_pitch_notation

play.instrument

Arguments
inst

notes

time

volume

pan

fadein

fadeout

env

nmax

Value

an S4 Wave object

Examples

Create an instr
samples=list(osci
osci
notes=c('A2','A3'
onTheMoon <- inst
Play it
w=play.instrument
View the result
tuneR: :plot(w)
Not run:
This line of co
on an external

27

Instrument object.

String or integer vector, the notes of the instrument to be played, either by name
or by index.

Numeric vector, time (in seconds) at which each note should be played. Should
be non-negative, non-decreasing and have same size as notes.

Numeric vector, volume between 0 and 1,

Numeric vector, pan between -1 (left) and 1 (right) (0 = centered). Same size as
notes.

Numeric vector, fade-in duration (in seconds), same size as notes.

Numeric vector, fade-out duration (in seconds), same size as notes. Use Inf for
’let ring’.

list of envelope objects, envelope applied to each note.

Integer, max number of values for each channel of the resulting Wave. Default
value (10*1076) roughly corresponds to a 150 Mb stereo wave, ~3 min 45s.

(from package tuneR).

ument
llator(freg=110),oscillator(freq=220),oscillator(freq=261.63),
llator(freq=293.66),oscillator(freq=392))

,'C4"','D4",'G4")

rument (samples,notes)

(onTheMoon)

de is wrapped in \dontrun{} since it relies
audio player to play the audio sample.

See ?tuneR::setWavPlayer for setting a default player.

tuneR: :play(w)

End(Not run)
Use options
w=play.instrument

View the result
tuneR: :plot(w)

Not run:

This line of co
on an external

(onTheMoon, time=c(0,0.2,0.4,0.6,0.8,0.9),
notes=c('A2','G4','D4"','C4"','A3"','A2"),
volume=seq(@.2,1,length.out=6),pan=c(0,-1,1,-1,1,0),
fadeout=c(Inf,0.01,0.01,0.01,Inf,Inf))

de is wrapped in \dontrun{} since it relies
audio player to play the audio sample.

See ?tuneR::setWavPlayer for setting a default player.

28

tuneR: :play(w)
End(Not run)

plot.soundSample

plot.envelope Plot

Description

Plot an envelope.

Usage
S3 method for class 'envelope'
plot(x, ...)
Arguments
X envelope object.
further arguments passed to the base plot function.
Value

nothing - plotting function.

Examples

Define envelope

env <- envelope(t=c(0,0.1,0.3,0.8,1),v=c(0,1,0.4,0.4,0))
plot it

plot(env)

plot.soundSample Plot a sound sample

Description

Plot a sound sample. Uses plotly to add zooming capability.

Usage
S3 method for class 'soundSample'
plot(x, ...)

Arguments
X sound sample object.

further arguments passed to tuneR plotting function.

read.soundSample

Value

nothing - plotting function.

Examples

Define sound sample

sam <- soundSample(sin(2*pi*seq(@,1,,44100)*440)+0.1*rnorm(44100)) # 1-second noisy A
plot it

plot(sam)

29

read. soundSample Read a sound sample

Description

Read a sound sample from a .mp3 or .wav file.

Usage
read.soundSample(file, ...)
Arguments
file string, file with extension .wav or.mp3
additional arguments passed to function tuneR::readWave
Value

An object of class ’soundSample’.

Examples

sam=try(read.soundSample(file="vignettes/07027201.mp3"))

rescale Rescale function

Description

Rescale a series between two bounds

Usage

rescale(x, low = @, high = 1)

30 sequence

Arguments
X Numeric vector
low Numeric, lower bound
high Numeric, higher bound
Value

a rescaled numeric vector

Examples

example code
rescale(1:10)
rescale(rnorm(10), 100, 101)

ride Ride sample

Description

A ride cymbal sound sample object

Usage

ride

Format

An object of class soundSample of length 4.

sequence Sequence a sound sample

Description

Take a sound sample and repeat it following given timeline, volume and pan.

Usage

sequence(
sample,
time,
letRing = TRUE,
volume = rep(1, NROW(time)),
pan = rep(@, NROW(time)),
nmax = 10 * 10”6

shiftPitch 31

Arguments
sample Sound sample object.
time Numeric vector, time (in seconds) at which sample should be repeated
letRing Logical. If TRUE overlapping samples are added; if FALSE, a new sample stops
the previous one (=> beware of the click!))
volume Numeric vector, volume between 0 and 1.
pan Numeric vector, pan between -1 (left) and 1 (right) (O = centered).
nmax Integer, max number of values for each channel of the resulting Wave. Default
value (10*1076) roughly corresponds to a 150 Mb stereo wave, ~3 min 45s.
Value

an S4 Wave object (from package tuneR).

Examples

EXAMPLE 1

Define a sound sample

sam <- soundSample(sin(2xpi*seq(@,1,,44100)*440)+0.1xrnorm(44100)) # 1-second noisy A
Sequence it

s <- sequence(sam,time=c(0,0.5,0.75),letRing=FALSE,volume=c(0.4,1,1),pan=c(-1,0,1))
View the result

tuneR: :plot(s)

Not run:

All calls to function 'tuneR::play' are wrapped in \dontrun{} since

they rely on an external audio player to play the audio sample.

See ?tuneR::setWavPlayer for setting a default player.

tuneR: :play(s)

End(Not run)

#' EXAMPLE 2 - make it funkyer

2-second sequence based on hi-hat sample

s <- sequence(hiHat, time=seq(9,2,,16),volume=rep(c(1,rep(0.5,3)),4))

View the result

tuneR: :plot(s)

Not run: tuneR::play(s)

shiftPitch Pitch shifter

Description

Shift the pitch of a sound sample by n semitones. Note that the duration of the resulting sample is
not the same as that of the original.

Usage
shiftPitch(sample, n)

32 snare2

Arguments

sample Sound sample object.

n numeric, number of semitones.
Value

A sound sample object.

Examples

Define a A sound sample and get a D by adding 5 semitones
A <- soundSample(sin(2xpi*seq(0,0.5,1/44100)*220)) # 0.5-second A (220 Hz)
D <- shiftPitch(A,5)

snare Snare sample

Description

A snare sound sample object

Usage

snare

Format

An object of class soundSample of length 4.

snare2 Snare sample 2

Description

A snare sound sample object

Usage

snare2

Format

An object of class soundSample of length 4.

Source

http://www.archive.org/details/OpenPathMusic44V1

http://www.archive.org/details/OpenPathMusic44V1

sonifyStripes 33

sonifyStripes Climate stripes sonification

Description

Sonification of climate stripes data, or more generally, of a time series of values. A smoothed
version of the time series is computed by moving average, then sonification proceeds as follows:

» Backtrack is a standard house-like tune, including a four-on-the-floor kick+hi-hat pattern on
the drum, a bass following the drum kick, and 3 chords played by a synthesizer

e The smoothed time series controls the master volume and the amount of ’distortion’ in the
synthesizer’s sound

» Large anomalies below / above the smoothed series trigger percussion sounds (by default a
snare and a hand clap) that are panned full left (negative anomalies) and full right (positive
anomalies)

Usage

sonifyStripes(
values = sequenceR::globalT$Anomaly,
bpm = 135,
minVol = 0.1,
nma = 10,
pClap = 0.15,
synthVar = 0.5,
kick = sequenceR::mini9@9%bass,
hihat = sequenceR::mini9@9%hihat,
openHihat = sequenceR::mini%@9%hihat_o,
posPercussion = sequenceR::mini909%snare,
negPercussion = sequenceR::mini9@9%clap,
bassNote = "E1",
chordl = c("E2", "E3", "G3", "D4", "Gb4"),
chord2 = c("E2", "D3", "Gb3", "A3", "E4"),
chord3 = c("E2", "B2", "Gb3", "G3", "D4"),
videoFile = NULL,
videoResFactor = 1

)
Arguments
values Numeric vector, values to sonify. Default is global temperature anomalies over
the period 1850-2021
bpm Numeric > 0, tempo in beat per minute

minVol Numeric >= 0, minimum volume reached when smoothed series is minimum

34

nma

pClap

synthVar

kick

hihat
openHihat
posPercussion
negPercussion
bassNote
chord1

chord2

chord3
videoFile

videoResFactor

Value

sonifyStripes

Numeric >=0 , number of moving average steps on each side of the current value
(i.e. moving average window is 2*nma+1 when possible, nma+1 on the series’
edges)

Numeric in (0,0.5). "Large" anomalies triggering claps/snare are defined as
anomalies below (resp. above) the pClap (resp. (1-pClap))-quantile of anoma-
lies.

Numeric >= 0, controls the variability of the synthesizer sound. When zero, the
synthesizer sound does not change. Large values induce more variability in the
synthesizer sound.

soundSample, sound sample used to play the kick drum.

soundSample, sound sample used to play the closed hi-hat.

soundSample, sound sample used to play the open hi-hat.

soundSample, sound sample used to play the positive-anomaly percussion.
soundSample, sound sample used to play the negative-anomaly percussion.
string, bass note (in scientific pitch notation).

string vector, first chord played by synthesizer.

string vector, second chord played by synthesizer.

string vector, third chord played by synthesizer.

file path, full path to video file. When NULL, video is not created.

Numeric > 0 , video resolution, 2 recommended for good-quality video.

A list with the following components:

* mix, tuneR::Wave object, the final mix of the sonification.

* dat, data frame with 4 columns: time step, raw value, smoothed value, anomaly

* quantiles, numeric vector of size 2, the quantiles defining large negative/positive anomalies

* waves, list of tuneR::Wave object, individual waves for each instrument in case you wish to
mix them in your own way.

Examples

w <- sonifyStripes()

https://en.wikipedia.org/wiki/Scientific_pitch_notation

soundSample 35

soundSample Sound sample constructor.

Description

Creates a new instance of a ’soundSample’ object. A sound sample can be viewed as a minimalistic
version of an "audio wave" object (see package tuneR for instance). It is necessarily mono and the
wave time series is normalized between -1 and 1.

Usage

soundSample(wave, rate = 44100)

Arguments

wave Numeric vector, wave time series

rate Numeric, sampling rate (default 44100 Hz)
Value

An object of class ’soundSample’.

Examples

sam <- soundSample(sin(2*pi*seq(@,1,,44100)*440)) # 1-second A (440 Hz)
sam <- soundSample(sin(2xpi*seq(@,1,,44100)*440)+0.1*xrnorm(44100)) # 1-second noisy A

timeVector timeVector function

Description

Compute the time vector starting from 0 associated with a duration and a sampling rate

Usage

timeVector(duration = 1, rate = 44100)

Arguments
duration Numeric
rate Numeric
Value

a numeric vector

36 write.instrument

WaggaWagga Wagga-Wagga dataset

Description
Times series of monthly temperatures and precipitations recorded at Wagga-Wagga, New South
Wales, Australia, 1940-2018

Usage
WaggaWagga

Format

An object of class data. frame with 79 rows and 3 columns.

Source

http://www.bom.gov.au/cgi-bin/climate/hgsites/site_data.cgi?period=annual&variable=meanT&station=072150

http://www.bom.gov.au/cgi-bin/climate/hgsites/site_data.cgi?period=annual&variable=rain&station=072150

write.instrument Write an instrument to file

Description

Write each sound sample of the instrument as a separate .wav or .mp3 file.

Usage
write.instrument(inst, dir = tempdir(), fmt = "wav")
Arguments
inst Instrument object.
dir String, directory where files should be written.
fmt String, *wav’ or 'mp3’.
Value

nothing - writing function.

Examples

Create an instrument

drumset <- instrument(samples=list(kick,snare,hiHat),notes=c('boom', 'tat’', 'cheet'))
Write to files (one per element)

write.instrument(drumset)

write.soundSample 37

write.soundSample Write a sound sample

Description

Write a sound sample in .wav or .mp3 format.

Usage

write.soundSample(x, file)

Arguments
X sound sample object.
file string, destination file. Default file format is .wav. If file extension is .mp3,
conversion to mp3 is attempted using ffmpeg, which hence needs to be available
(see https://ffmpeg.org/).
Value

nothing - writing function.

Examples

sam <- soundSample(sin(2*pi*seq(@,1,,44100)*440)) # 1-second A (440 Hz)
write.soundSample(sam,file=tempfile())

Index

+ datasets
bell, 7
globalT, 15
hiHat, 16
hiHat2, 16
hiHat_o, 17
kick, 18
kick2, 18
mini909, 19
ride, 30
snare, 32
snare2, 32
WaggaWagga, 36

applyDelay, 3
applyDisto, 4
applyEnvelope, 5
as.soundSample, 5
as.Wave, 6

bell, 7

checkMaxSize, 7
checkSeqArgs, 8

disto_clip, 8
disto_tanh, 9

envelope, 9

getFrequencies, 10
getHarmonics, 11
getNotes, 12
getSynth, 12
getSynthNote, 14
getTime, 15
globalT, 15

hiHat, 16
hiHat2, 16
hiHat_o, 17

38

instrument, 17

kick, 18
kick2, 18

listen, 19

mini909, 19
mix, 20

noteFrequencyTable, 21

oscillator, 21
oscillator_pattern, 22
oscillator_saw, 23
oscillator_sine, 23
oscillator_square, 24

oscillator_triangle, 25

pitchMapping, 26
play.instrument, 26
plot.envelope, 28
plot.soundSample, 28

read. soundSample, 29
rescale, 29
ride, 30

sequence, 30
shiftPitch, 31
snare, 32
snare2, 32
sonifyStripes, 33
soundSample, 35

timeVector, 35
WaggaWagga, 36

write.instrument, 36
write.soundSample, 37

	applyDelay
	applyDisto
	applyEnvelope
	as.soundSample
	as.Wave
	bell
	checkMaxSize
	checkSeqArgs
	disto_clip
	disto_tanh
	envelope
	getFrequencies
	getHarmonics
	getNotes
	getSynth
	getSynthNote
	getTime
	globalT
	hiHat
	hiHat2
	hiHat_o
	instrument
	kick
	kick2
	listen
	mini909
	mix
	noteFrequencyTable
	oscillator
	oscillator_pattern
	oscillator_saw
	oscillator_sine
	oscillator_square
	oscillator_triangle
	pitchMapping
	play.instrument
	plot.envelope
	plot.soundSample
	read.soundSample
	rescale
	ride
	sequence
	shiftPitch
	snare
	snare2
	sonifyStripes
	soundSample
	timeVector
	WaggaWagga
	write.instrument
	write.soundSample
	Index

