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Abstract

Seriation, i.e., finding a suitable linear order for a set of objects given data and a loss or
merit function, is a basic problem in data analysis. Caused by the problem’s combinatorial
nature, it is hard to solve for all but very small sets. Nevertheless, both exact solution
methods and heuristics are available. In this paper we present the package seriation

which provides an infrastructure for seriation with R. The infrastructure comprises data
structures to represent linear orders as permutation vectors, a wide array of seriation
methods using a consistent interface, a method to calculate the value of various loss and
merit functions, and several visualization techniques which build on seriation. To illustrate
how easily the package can be applied for a variety of applications, a comprehensive
collection of examples is presented.
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1. Introduction

A basic problem in data analysis, called seriation or sometimes sequencing, is to arrange all
objects in a set in a linear order given available data and some loss or merit function in order to
reveal structural information. Together with cluster analysis and variable selection, seriation
is an important problem in the field of combinatorial data analysis (Arabie and Hubert 1996).
Solving problems in combinatorial data analysis requires the solution of discrete optimization
problems which, in the most general case, involves evaluating all feasible solutions. Due to
the combinatorial nature, the number of possible solutions grows with problem size (number
of objects, n) by the order O(n!). This makes a brute-force enumerative approach infeasible
for all but very small problems. To solve larger problems (currently with up to 40 objects),
partial enumeration methods can be used. For example, Hubert, Arabie, and Meulman (2001)
propose dynamic programming and Brusco and Stahl (2005) use a branch-and-bound strategy.
For even larger problems only heuristics can be employed.

It has to be noted that seriation has a rich history in archaeology. Petrie (1899) was the first
to use seriation as a formal method. He applied it to find a chronological order for graves
discovered in the Nile area given objects found there. He used a cross-tabulation of grave
sites and objects and rearranged the table using row and column permutations till all large
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values were close to the diagonal. In the rearranged table graves with similar objects are
closer to each other. Together with the assumption that different objects continuously come
into and go out of fashion, the order of graves in the rearranged table suggests a chronological
order. Initially, the rearrangement of rows and columns of this contingency table was done
manually and the adequacy was only judged subjectively by the researcher. Later, Robinson
(1951), Kendall (1971) and others proposed measures of agreement between rows to quantify
optimality of the resulting table. A comprehensive description of the development of seriation
in archaeology is presented by Ihm (2005).

Techniques related to seriation are also popular in several other fields. Especially in ecology
scaling techniques are used under the name ordination. For these applications several R

packages already exist (e.g., ade4 (Chessel, Dufour, and Dray 2007; Dray and Dufour 2007)
and vegan (Oksanen, Kindt, Legendre, and O’Hara 2007)). This paper describes the new
package seriation which differs from existing packages in the following ways:

• seriation provides a flexible infrastructure for seriation;

• seriation focuses on seriation as a combinatorial optimization problem.

This paper starts with a formal introduction of the seriation problem as a combinatorial
optimization problem in Section 2. In Section 3 we give an overview of seriation methods. In
Section 4 we present the infrastructure provided by the package seriation. Several examples
and applications for seriation are given in Section 5. Section 6 concludes.

A previous version of this manuscript was published in the Journal of Statistical Software
(Hahsler, Hornik, and Buchta 2008).

2. Seriation as a combinatorial optimization problem

To seriate a set of n objects {O1, . . . , On} one typically starts with an n × n symmetric dis-
similarity matrix D = (dij) where dij for 1 ≤ i, j ≤ n represents the dissimilarity between
objects Oi and Oj , and dii = 0 for all i. We define a permutation function Ψ as a function
which reorders the objects in D by simultaneously permuting rows and columns. The seri-
ation problem is to find a permutation function Ψ∗ which optimizes the value of a given loss
function L or merit function M . This results in the optimization problems

Ψ∗ = argmin
Ψ

L(Ψ(D)) or Ψ∗ = argmax
Ψ

M(Ψ(D)), (1)

respectively.

A symmetric dissimilarity matrix is known as two-way one-mode data since it has columns and
rows (two-way) but only represents one set of objects (one-mode). Seriation is also possible
for two-way two-mode data which are represented by a general nonnegative matrix. In such
data columns and rows represent two sets of objects which are reordered simultaneously. For
loss/merit functions for two-way two-mode data the optimal order of columns can depend of
the order of rows and vice versa or it can be independent allowing for breaking the optimiza-
tion down into two separate problems, one for the columns and one for the rows. Another
way to deal with the seriation for two-way two-mode data is to calculate two dissimilarity
matrices, one for each mode, and then solve two seriation problems for two-way one-mode
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data. Furthermore, seriation can be generalized to k-way k-mode data in the form of a k-
dimensional array by defining suitable loss/merit functions for such data or by breaking the
problem down into several lower dimensional independent problems.

To assess the complexity of seriation of k-way k-mode data, let us assume the data is a k-
dimensional array with the dimensions containing n1, n2, . . . , nk objects. If the loss/merit
function allows for separating the problem into k independent problems, the problem size
is just the sum of the individual problems. By using complete enumeration the size is
O(

∑k
i=1 ni!). If the problem is not separable and the optimal seriation of each dimension

depends on the order of the objects of the other dimensions, the problem size is O((
∑k

i=1 ni)!).
For example for k = 5 and all dimensions containing 5 objects, the search space for separable
dimensions is only 600 while without separability it is larger than 1025 clearly too big to be
solvable in reasonable time. This shows that for data with even only a few dimensions and
a few objects each, finding the optimal solution is infeasible and loss/merit functions which
allow for separating the problem are highly desirable.

In the following subsections, we review some commonly employed loss/merit functions. Most
functions are used for two-way one-mode data but the measure of effectiveness and stress can
be also used for two-way two-mode data. For the implementation of various loss or merit
measures see function criterion() in Section 4.

2.1. Column/row gradient measures

A symmetric dissimilarity matrix where the values in all rows and columns only increase
when moving away from the main diagonal is called a perfect anti-Robinson matrix after the
statistician Robinson (1951). Formally, an n × n dissimilarity matrix D is in anti-Robinson
form if and only if the following two gradient conditions hold (Hubert et al. 2001):

within rows: dik ≤ dij for 1 ≤ i < k < j ≤ n; (2)

within columns: dkj ≤ dij for 1 ≤ i < k < j ≤ n. (3)

In an anti-Robinson matrix the smallest dissimilarity values appear close to the main diagonal,
therefore, the closer objects are together in the order of the matrix, the higher their similarity.
This provides a natural objective for seriation.

It has to be noted that D can be brought into a perfect anti-Robinson form by row and column
permutation whenever D is an ultrametric or D has an exact Euclidean representation in a
single dimension (Hubert et al. 2001). However, for most data only an approximation to the
anti-Robinson form is possible.

A suitable merit measure which quantifies the divergence of a matrix from the anti-Robinson
form was given by Hubert et al. (2001) as

M(D) =
∑

i<k<j

f(dik, dij) +
∑

i<k<j

f(dkj , dij) (4)

where f(·, ·) is a function which defines how a violation or satisfaction of a gradient condition
for an object triple (Oi, Ok and Oj) is counted. Hubert et al. (2001) suggest two functions.
The first function is given by:

f(z, y) = sign(y − z) =















+1 if z < y;

0 if z = y;

−1 if z > y.

(5)



4 Getting Things in Order

It results in the raw number of triples satisfying the gradient constraints minus triples which
violate the constraints.

The second function is defined as:

f(z, y) = |y − z|sign(y − z) = y − z (6)

It weighs each satisfaction or violation by its magnitude given by the absolute difference
between the values.

2.2. Anti-Robinson events

An even simpler loss function can be created in the same way as the gradient measures above
by concentrating on violations only.

L(D) =
∑

i<k<j

f(dik, dij) +
∑

i<k<j

f(dkj , dij) (7)

To only count the violations we use

f(z, y) = I(z, y) =

{

1 if z > y and

0 otherwise.
(8)

I(·) is an indicator function returning 1 only for violations. Chen (2002) presented a formu-
lation for an equivalent loss function and called the violations anti-Robinson events. Chen
(2002) also introduced a weighted versions of the loss function resulting in

f(z, y) = |y − z|I(z, y) (9)

using the absolute deviations as weights.

2.3. Hamiltonian path length

The dissimilarity matrix D can be represented as a finite weighted graph G = (Ω, E) where the
set of objects Ω constitute the vertices and each edge eij ∈ E between the objects Oi, Oj ∈ Ω
has a weight wij associated which represents the dissimilarity dij .

Such a graph can be used for seriation (see, e.g., Hubert 1974; Caraux and Pinloche 2005).
An order Ψ of the objects can be seen as a path through the graph where each node is visited
exactly once, i.e., a Hamiltonian path. Minimizing the Hamiltonian path length results in
a seriation optimal with respect to dissimilarities between neighboring objects. The loss
function based on the Hamiltonian path length is:

L(D) =
n−1
∑

i=1

di,i+1. (10)

Note that the length of the Hamiltonian path is equal to the value of the minimal span loss
function (as used by Chen 2002), and both notions are related to the traveling salesperson
problem (Gutin and Punnen 2002).
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2.4. Inertia criterion

Another way to look at the seriation problem is not to focus on placing small dissimilarity
values close to the diagonal, but to push large values away from it. A function to quantify
this is the moment of inertia of dissimilarity values around the diagonal (Caraux and Pinloche
2005) defined as

M(D) =
n

∑

i=1

n
∑

j=1

dij |i − j|2. (11)

|i − j|2 is used as a measure for the distance to the diagonal and dij gives the weight. This is
a merit function since the sum increases when higher dissimilarity values are placed farther
away from the diagonal.

2.5. Least squares criterion

Another natural loss function for seriation is to quantify the deviations between the dissim-
ilarities in D and the rank differences of the objects. Such deviations can be measured, e.g,
by the sum of squares of deviations (Caraux and Pinloche 2005) defined by

L(D) =
n

∑

i=1

n
∑

j=1

(dij − |i − j|)2, (12)

where |i − j| is the rank difference or gap between Oi and Oj .

The least squares criterion defined here is related to uni-dimensional scaling (de Leeuw 2005),
where the objective is to place all n objects on a straight line using a position vector z =
z1, z2, . . . , zn such that the dissimilarities in D are preserved by the relative positions in the
best possible way. The optimization problem of uni-dimensional scaling is to find the position
vector z∗ which minimizes

∑n
i=1

∑n
j=1(dij − |zi − zj |)2. This is close to the seriation problem,

but in addition to the ranking of the objects also takes the distances between objects on the
resulting scale into account.

Note that if Euclidean distance is used to calculate D from a data matrix X, using the order
of the elements in X as they occur projected on the first principal component of X minimizes
the loss function of uni-dimensional scaling (using squared distances). Using this order, also
provides a good solution for the least square seriation criterion.

2.6. Linear Seriation Criterion

The Linear Seriation Criterion (Hubert and Schultz 1976) weights the distances with the
absolute rank differences.

L(D)
n

∑

i=1

n
∑

j=1

dij(−|i − j|)

2.7. 2-Sum Problem

The 2-Sum loss criterion (Barnard, Pothen, and Simon 1993) multiplies the similarity between
objects with the squared rank differences.
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L(D)
p

∑

i,j=1

1

1 + dij

(i − j)2,

where sij = 1
1+dij

represents the similarity between objects i and j.

2.8. Measure of effectiveness

McCormick, Schweitzer, and White (1972) defined the measure of effectiveness (ME) for an
n × m matrix X = (xij) as

M(X) =
1

2

n
∑

i=1

m
∑

j=1

xij [xi,j+1 + xi,j−1 + xi+1,j + xi−1,j ] (13)

with, by convention x0,j = xn+1,j = xi,0 = xi,m+1 = 0. ME is maximized if each element is
as closely related numerically to its four neighboring elements as possible.

ME was developed for two-way two-mode data, however, ME can also be used for a symmetric
matrix (one-mode data) and gets maximal only if all large values are grouped together around
the main diagonal.

Note that the definition in equation (13) can be rewritten as

M(X) =
1

2

n
∑

i=1

m
∑

j=1

xij [xi,j+1 + xi,j−1] +
n

∑

i=1

m
∑

j=1

xij [xi+1,j + xi−1,j ] (14)

showing that the contributions of column and row order to the merit function are independent.

2.9. Stress

Stress measures the conciseness of the presentation of a matrix (two-mode data) and can be
seen as a purity function which compares the values in a matrix with their neighbors. The
stress measures used here are computed as the sum of squared distances of each matrix entry
from its adjacent entries. Niermann (2005) defined for an n × m matrix X = (xij) two types
of neighborhoods:

• The Moore neighborhood comprises the (at most) eight adjacent entries. The local
stress measure for element xij is defined as

σij =

min(n,i+1)
∑

k=max(1,i−1)

min(m,j+1)
∑

l=max(1,j−1)

(xij − xkl)
2 (15)

• The Neumann neighborhood comprises the (at most) four adjacent entries resulting in
the local stress of xij of

σij =

min(n,i+1)
∑

k=max(1,i−1)

(xij − xkj)2 +

min(m,j+1)
∑

l=max(1,j−1)

(xij − xil)
2 (16)
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Both local stress measures can be used to construct a global measure for the whole matrix
by summing over all entries which can be used as a loss function:

L(X) =
n

∑

i=1

m
∑

j=1

σij (17)

The major difference between the Moore and the Neumann neighborhood is that for the later
the contributions of row and column order to stress are independent.

Stress can be also used as a loss function for symmetric proximity matrices (one-mode data).
Note also, that stress with Neumann neighborhood is related to the measure of effectiveness
defined above (in Section 2.8) since both measures are optimal if for each cell the cell and its
four neighbors are numerically as similar as possible.

3. Seriation methods

Solving the discrete optimization problem for seriation with most loss/merit functions is
clearly very hard. The number of possible permutations for n objects is n! which makes an
exhaustive search for sets with a medium to large number of objects infeasible. In this section,
we describe some methods (partial enumeration, heuristics and other methods) which are
typically used for seriation. For each method we state for which type of loss/merit functions
it is suitable and whether it finds the optimum or is a heuristic. For the implementation of
various seriation methods see function seriate() in Section 4.

3.1. Partial enumeration methods

Partial enumeration methods search for the exact solution of a combinatorial optimization
problem. Exploiting properties of the search space, only a subset of the enormous num-
ber of possible combinations has to be evaluated. Popular partial enumeration methods
which are used for seriation are dynamic programming (Hubert et al. 2001) and branch-and-
bound (Brusco and Stahl 2005).

Dynamic programming recursively searches for the optimal solution checking and storing 2n−1
results. Although 2n − 1 grows at a lower rate than n! and is for n ≫ 3 considerably smaller,
the storage requirements of 2n − 1 results still grow fast, limiting the maximal problem size
severely. For example, for n = 30 more than one billion results have to be calculated and
stored, clearly a number too large for the main memory capacity of most current computers.

Branch-and-bound has only very moderate storage requirements. The forward-branching pro-
cedure (Brusco and Stahl 2005) starts to build partial permutations from left (first position)
to right. At each step, it is checked if the permutation is valid and several fathoming tests
are performed to check if the algorithm should continue with the partial permutation. The
most important fathoming test is the boundary test, which checks if the partial permutation
can possibly lead to a complete permutation with a better solution than the currently best
one. In this way large parts of the search space can be omitted. However, in contrast to the
dynamic programming approach, the reduction of search space is strongly data dependent and
poorly structured data can lead to very poor performance. With branch-and-bound slightly
larger problems can be solved than with dynamic programming in reasonable time. Brusco
and Stahl (2005) state that depending on the data, in some cases proximity matrices with 40
or more objects can be handled with current hardware.
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Partial enumeration methods can be used to find the exact solution independently of the
loss/merit function. However, partial enumeration is limited to only relatively small problems.

3.2. Traveling salesperson problem solver

Seriation by minimizing the length of a Hamiltonian path through a graph is equal to solving
a traveling salesperson problem. The traveling salesperson or salesman problem (TSP) is
a well known and well researched combinatorial optimization problem (see, e.g., Gutin and
Punnen 2002). The goal is to find the shortest tour that, starting from a given city, visits
each city in a given list exactly once and then returns to the starting city. In graph theory a
TSP tour is called a Hamiltonian cycle. But for the seriation problem, we are looking for a
Hamiltonian path. Garfinkel (1985) described a simple transformation of the TSP to find the
shortest Hamiltonian path. An additional row and column of 0’s is added (sometimes this is
referred to as a dummy city) to the original n×n dissimilarity matrix D. The solution of this
(n + 1)-city TSP, gives the shortest path where the city representing the added row/column
cuts the cycle into a linear path.

As the general seriation problem, solving the TSP is difficult. In the seriation case with n + 1
cities, n! tours have to be checked. However, despite this vast searching space, small instances
can be solved efficiently using dynamic programming (Held and Karp 1962) and larger in-
stances of several hundred objects can be solved using branch-and-cut algorithms (Padberg
and Rinaldi 1990). For even larger instances or if running time is critical, a wide array
of heuristics are available, ranging from simple nearest neighbor approaches to construct a
tour (Rosenkrantz, Stearns, and Philip M. Lewis 1977) to complex heuristics like the Lin-
Kernighan heuristic (Lin and Kernighan 1973). A comprehensive overview of heuristics and
exact methods can be found in Gutin and Punnen (2002).

3.3. Bond energy algorithm

The bond energy algorithm (BEA; McCormick et al. 1972) is a simple heuristic to rearrange
columns and rows of a matrix (two-way two-mode data) such that each entry is as closely
numerically related to its four neighbors as possible. To achieve this, BEA tries to maximize
the measure of effectiveness (ME) defined in Section 2.8. For optimizing the ME, columns
and rows can be treated separately since changing the order of rows does not influence the
ME contributions of the columns and vice versa. BEA consists of the following three steps:

1. Place one randomly chosen column.

2. Try to place each remaining column at each possible position left, right and between the
already placed columns and calculate every time the increase in ME. Choose the column
and position which gives the largest increase in ME and place the column. Repeat till
all columns are placed.

3. Repeat procedure with rows.

This greedy algorithm works fast and only depends on the choice of the first column/row. This
dependence can be reduced by repeating the procedure several times with different choices
and returning the solution with the highest ME.
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Although McCormick et al. (1972) use BEA also for non-binary data, Arabie and Hubert
(1990) argue that the measure of effectiveness only serves its intended purpose of finding an
arrangement which is close to Robinson form for binary data and should therefore only be
used for binary data.

Lenstra (1974) notes that the optimization problem of BEA can be stated as two independent
traveling salesperson problems (TSPs). For example, the row TSP for an n × m matrix X

consists of n cities with an n × n distance matrix D where the distances are

dij = −
m

∑

k=1

xikxjk.

BEA is in fact a simple suboptimal TSP heuristic using this distances and instead of BEA any
TSP solver can be used to obtain an order. With an exact TSP solver, the optimal solution
can be found.

3.4. Hierarchical clustering

Hierarchical clustering produces a series of nested clusterings which can be visualized by a
dendrogram, a tree where each internal node represents a split into subtrees and has a measure
of similarity/dissimilarity attached to it. As a simple heuristic to find a linear order of objects,
the order of the leaf nodes in a dendrogram structure can be used. This idea is used, e.g.,
by heat maps to reorder rows and columns with the aim to place more similar objects and
variables closer together.

The order of leaf nodes in a dendrogram is not unique. A binary (two-way splits only)
dendrogram for n objects has 2n−1 internal nodes and at each internal node the left and right
subtree (or leaves) can be swapped resulting in 2n−1 distinct leaf orderings. To find a unique
or optimal order, an additional criterion has to be defined. Gruvaeus and Wainer (1972)
suggest to obtain a unique order by requiring to order the leaf nodes such that at each level
the objects at the edge of each cluster are adjacent to that object outside the cluster to which
it is nearest.

Bar-Joseph, Demaine, Gifford, and Jaakkola (2001) suggest to rearrange the dendrogram such
that the Hamiltonian path connecting the leaves is minimized and called this the optimal leaf
order. The authors also present a fast algorithm with time complexity O(n4) to solve this
optimization problem. Note that this problem is related to the TSP described above, however,
the given dendrogram structure significantly reduces the number of permissible permutations
making the problem easier.

Although hierarchical clustering solves an optimization problem different to the seriation
problem discussed in this paper, hierarchical clustering still can produce useful orderings,
e.g., for visualization.

3.5. Rank-two ellipse seriation

Chen (2002) proposes to generate a sequence of correlation matrices R1, R2, . . .. R1 is the
correlation matrix of the original distance matrix D and

Rn+1 = φRn, (18)

where φ(·) calculates a correlation matrix.
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Chen (2002) shows that the rank of the matrix Rn falls with increasing n and that if the
sequence is continued till the first matrix in the sequence has a rank of 2, projecting all points
in this matrix on its first two eigenvectors, all points will fall on an ellipse. Chen (2002)
suggests to use the order of the points on this ellipse as a seriation where the ellipse can be
cut at any of the two interception points (top or bottom) with the vertical axis.

Although the rank-two ellipse seriation procedure does not try to solve a combinatorial opti-
mization problem, it still provides for some cases a useful ordering.

3.6. Spectral Seriation

Spectral seriation uses a relaxation to minimize the 2-Sum Problem (Barnard et al. 1993).
Rewriting the minimization problem using a permutation vector π, its inverse, rescaling to q
and using a Lagrangian multiplier for the constraint on the permutation yields (Ding and He
2004) the following equivalent optimization problem:

minq

qT LSq

qT q

where LS is the Laplacian of S.

The optimal order can be recovered by the sorting order of the Fiedler vector (i.e., the second
smallest eigenvector of the Laplacian of the similarity matrix).

3.7. Quadratic Assignment Problem

Both, the linear seriation criterion and the 2-Sum problem formulation can be written as a
Quadratic Assignment Problem (QAP). However, the QAP is in general NP-hard. Methods
include QIP, linearization, branch and bound and cutting planes as well as heuristics includ-
ing Tabu search, simulated annealing, genetic algorithms, and ant systems (Burkard, Cela,
Pardalos, and Pitsoulis 1998).

4. The package infrastructure

The seriation package provides the data structures and some algorithms to efficiently handle
seriation with R. As the input data for seriation R already provides

• for two-way one-mode data the class dist,

• for two-way two-mode data the class matrix, and

• for k-way k-mode data the class array.

However, R provides no classes for representing permutation vectors. seriation adds the neces-
sary data structure (using the S3 class system) as depicted in the UML class diagram (Fowler
2004) in Figure 1. In this diagram classes are represented by rectangles and different symbols
are used to state the type of relationship between the classes. The class ser_permutation in
Figure 1 represents the permutation information for k-mode data (including the cases of k = 1
and k = 2). It consists of k permutation vectors (class ser_permutation_vector). This re-
lationship is represented by the solid diamond and the star above the connection between
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ser_permutation ser_permutation_vector

integer vector hclust

*
<<abstract>>

<<implements>>

Figure 1: UML class diagram of the data structures for permutations provided by seriation

the two classes. Class ser_permutation_vector is defined abstract and only its concrete im-
plementations (classes connected with the triangle symbol) are used to store a permutation
vector. This design with an abstract class was chosen to allow to use different representations
for the permutation vectors. Currently, the permutation vector can be stored as a simple
integer vector or as an object of class hclust (defined in package stats). hclust describes
a hierarchical clustering tree (dendrogram) including an ordering for the tree’s node leaves
which provides a permutation for all objects (see Section 3.4).

Class ser_permutation_vector has a constructor ser_permutation_vector() which con-
verts data into the correct concrete subclass of ser_permutation_vector and checks if it
contains a proper permutation vector. For ser_permutation_vector the methods print(),
length() for the length of the permutation vector, get_method() to get the method used to
generate the permutation, and get_order() to access the raw (integer) permutation vector
are available. To use an additional class to represent permutations as a concrete subclass
of ser_permutation_vector only an appropriate accessor method get_order() has to be
implemented for the new class.

For ser_permutation a constructor is provided which can bind k ser_permutation_vector

objects together into an object for k-mode data. ser_permutation is implemented as a list
of length k and each element contains a ser_permutation_vector object. Methods like
length(), accessing elements with [[, [[<-, subsetting with [, and combining with c()

work as expected. Also a print() method is provided. Finally, direct access to the raw
permutation vectors is available using get_order(). Here a second argument (which defaults
to 1) specifies the dimension (mode) for which the order vector is requested.

All seriation algorithms are available via the function seriate() defined as:

seriate(x, method = NULL, control = NULL, ...)

where x is the input data, method is a string defining the seriation method to be used and
control can contain a list with additional information for the algorithm. seriate() returns
an object of class ser_permutation with a length conforming to the number of dimensions
of x. Typical input data are a dissimilarity matrix (class dist; see package stats for more
information) for one-mode two-way data, matrix for two-mode two-way data and array for
k-mode k-way data. For matrix and array the additional argument margin can be used
to restrict the dimensions which should be seriated (e.g., with margin = 1 only the first
dimension, i.e., the columns of a matrix, are seriated).
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Algorithm method Optimizes Input data

Simulated annealing "ARSA" Linear seriation crit. dist

Branch-and-bound "BBURCG" Gradient measure dist

Branch-and-bound "BBWRCG" Gradient measure
(weighted)

dist

TSP solver "TSP" Hamiltonian path
length

dist

Optimal leaf ordering "OLO"

"OLO_single"

"OLO_average"

"OLO_complete"

Hamiltonian path
length (restricted)

dist

Gruvaeus and Wainer "GW"

"GW_single"

"GW_average"

"GW_complete"

Hamiltonian path
length (restricted)

dist

MDS "MDS"

"MDS_metric"

"MDS_nonmetric"

"MDS_angle"

Least square crit. dist

Spectral seriation "Spectral"

"Spectral_norm"

2-Sum crit. dist

QAP "QAP_2SUM" 2-Sum crit. dist

"QAP_LS" Linear seriation crit. dist

"QAP_BAR" Banded AR form dist

"QAP_Inertia" Inertia crit. dist

Genetic Algorithm "GA"* various dist

DendSer "DendSer"* various dist

Hierarchical clustering "HC"

"HC_single"

"HC_average"

"HC_complete"

Other dist

Rank-two ellipse seriation "R2E" Other dist

Sorting Points Into Neighbor-
hoods

"SPIN_NH"

"SPIN_STS"

Other dist

Visual Assessment of (Clus-
tering) Tendency

"VAT" Other dist

Bond Energy Algorithm "BEA" Measure of effectiveness matrix

TSP to optimize ME "BEA_TSP" Measure of effectiveness matrix

Principal component analysis "PCA"

"PCA_angle"

Least square crit. matrix

Table 1: Currently implemented methods for seriation() (* methods need to be registered).
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Name method merit/loss Input data

Anti-Robinson events "AR_events" loss dist

Anti-Robinson deviations "AR_deviations" loss dist

Banded Anti-Robinson "BAR" loss dist

Gradient measure "Gradient_raw" merit dist

Gradient measure (weighted) "Gradient_weighted" merit dist

Hamiltonian path length "Path_length" loss dist

Inertia criterion "Inertia" merit dist

Least squares criterion "Least_squares" loss dist

Linear Seriation criterion "LS" loss dist

2-Sum criterion "2SUM" loss dist

Measure of effectiveness "ME" merit matrix

Stress (Moore neighborhood) "Moore_stress" loss matrix

Stress (Neumann neighborhood) "Neumann_stress" loss matrix

Table 2: Implemented loss/merit functions in function criterion().

Various seriation methods were already introduced in this paper in Section 3. In Table 1
we summarize the methods currently available in the package for seriation. The code for
the simulated annealing heuristic (Brusco, Köhn, and Stahl 2008) and the two branch-and-
bound implementations (Brusco and Stahl 2005) was obtained from the authors. The TSP
solvers (exact solvers and a variety of heuristics) is provided by package TSP (Hahsler and
Hornik 2007b,a). For optimal leaf ordering we implemented the algorithm by Bar-Joseph
et al. (2001). The BEA code was kindly provided by Fionn Murtagh. For the Gruvaeus
and Wainer algorithm, the implementation in package gclus (Hurley 2007) is used. For the
rank-two ellipse seriation we implemented the algorithm by Chen (2002). Spectral seriation is
described by Ding and He (2004). Note that some methods implemented (e.g., the rank-two
ellipse seriation) do not fall within the combinatorial optimization framework of this paper
and thus are not dealt with here in detail. They are included in the package since they can
be useful for various applications. A detailed empirical comparison of seriation methods and
criteria can be found in the study by Hahsler (2017).

To calculate the value of a loss/merit function for data and a certain permutation, the function

criterion(x, order = NULL, method = NULL, ...)

is provided. x is the data object, order contains a suitable object of class ser_permutation

(if omitted no permutation is performed) and method specifies the type of loss/merit function.
A vector of several methods can be used resulting in a named vector with the values of the
requested functions. If method is omitted (method = NULL), the values for all applicable
loss/merit functions are calculated and returned. We already defined different loss/merit
functions for seriation in Section 2. In Table 2 we indicate the loss/merit functions currently
available in the package.

All methods for seriate() and criterion() are managed by a registry mechanism which
makes the seriation framework easily extensible for users. For example, a new seriation
method can be registered using set_seriation_method() and then used in the same way as
the built-in methods with seriate(). All available methods in the registry can be viewed
using list_seriation_methods() and show_seriation_methods(). For criterion methods,
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the same interface is available by just substituting ‘seriation’ by ‘criterion’ in the function
names. An example for how to add new methods can be found in section 5.3 of this paper.

In addition the package offers the (generic) function

permute(x, order)

where x is the data (a dist object, a matrix, an array, a list or a numeric vector) to be
reordered and order is a ser_permutation object of suitable length.

For visualization, the package offers several options:

• Matrix shading with pimage(). In contrast to the standard image() in package graph-

ics, pimage() displays the matrix as is with the first element in the top left-hand corner
and using a gamma-corrected gray scale.

• Different heat maps (e.g., with optimally reordered dendrograms) with hmap().

• Visualization of data matrices in the spirit of Bertin (1981) with bertinplot().

• Dissimilarity plot, a new visualization to judge the quality of a clustering using matrix
shading and seriation with dissplot().

We will introduce the package usage and the visualization options in the examples in the next
section.

5. Examples and applications

We start this section with a simple first session to demonstrate the basic usage of the package.
Then we present and discuss several seriation applications.

5.1. A first session using seriation

In the following example, we use the well known iris data set (from R’s datasets package)
which gives the measurements in centimeters of the variables sepal length and width and
petal length and width, respectively, for 50 flowers from each of 3 species of the iris family
(Iris Setosa, Versicolor and Virginica).

First, we load the package seriation and the iris data set. We remove the species classification
and reorder the objects randomly since they are already sorted by species in the data set.
Then we calculate the Euclidean distances between objects.

> library("seriation")

> data("iris")

> x <- as.matrix(iris[-5])

> x <- x[sample(seq_len(nrow(x))),]

> d <- dist(x)

To seriate the objects given the dissimilarities, we just call seriate() with the default set-
tings.
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Figure 2: Matrix shading of the distance matrix for the iris data.

> o <- seriate(d)

> o

object of class ‘ser_permutation’, ‘list’

contains permutation vectors for 1-mode data

vector length seriation method

1 150 Spectral

The result is an object of class ser_permutation for one-mode data. The permutation
vector length is 150 for the 150 objects in the iris data set and the used seriation method is
"ARSA", a simulated annealing heuristic (see Table 1). The actual order can be accessed using
get_order(). In the following we show the first 15 elements in the permutation vector.

> head(get_order(o), 15)

[1] 63 101 8 28 52 127 100 31 27 16 10 3 7 50 148

To visually inspect the effect of seriation on the distance matrix, we use matrix shading with
pimage() (the result is shown in Figure 2).

> pimage(d, main = "Random")

> pimage(d, o, main = "Reordered")

We can also compare the improvement for different loss/merit functions using criterion().

> cbind(random = criterion(d), reordered = criterion(d, o))
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random reordered

2SUM 3.012e+07 1.782e+07

AR_deviations 9.472e+05 9.887e+03

AR_events 5.490e+05 5.492e+04

BAR 1.657e+05 5.661e+04

Gradient_raw 3.948e+03 9.921e+05

Gradient_weighted 8.721e+03 1.771e+06

Inertia 2.162e+08 3.569e+08

LS 5.663e+06 4.487e+06

Lazy_path_length 2.994e+04 6.706e+03

Least_squares 7.884e+07 7.649e+07

MDS_stress 7.865e-01 1.797e-01

ME 5.760e+03 7.254e+03

Moore_stress 1.217e+04 1.112e+03

Neumann_stress 6.419e+03 5.388e+02

Path_length 3.941e+02 9.129e+01

RGAR 4.979e-01 4.981e-02

Rho 2.644e-04 9.078e-01

Naturally, the reordered dissimilarity matrix achieves better values for all criteria. Note that
the gradient measures, inertia and the measure of effectiveness are merit functions and for
these measures larger values are better (use show_criterion_methods("dist") to find out
which measures are loss and merit functions).

To visually compare the original data matrix and the result of seriation, we can also use
pimage(). We standardize the data using scale such that the visualized value is the number
of standard deviations an object differs from the variable mean. For matrices containing
negative values, pimage uses automatically a divergent palette. After using pimage() for the
original random data matrix, we create a suitable ser_permutation object for the original
two-mode data. Since the seriation above only produced an order for the rows of the data, we
add an identity permutation vector for the columns (represented by NA) to the permutations
object using the combine function c(). This new permutation object for 2-mode data is used
for displaying the reordered scaled data. The two plots are shown in Figure 3.

> pimage(scale(x), main = "Random", prop = FALSE)

> o_2mode <- c(o, NA)

> pimage(scale(x), o_2mode, main = "Reordered", prop = FALSE)

5.2. Comparing different seriation methods

To compare different seriation methods we use again the randomized iris data set and the
distance matrix d from the previous example. We include in the comparison several seriation
methods for dissimilarity matrices described in Section 3.

> methods <- c("TSP","R2E", "ARSA", "HC", "GW", "OLO")

> o <- sapply(methods, FUN = function(m) seriate(d, m))
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Figure 3: Matrix shading of the iris data matrix.

Seriation Method TSP R2E ARSA HC GW OLO

Execution time [sec] 0.028 0.04 0.779 0.026 0.025 0.026

Table 3: Execution time of seriation of the iris data set for different methods.

Table 3 contains the execution times for running seriation with the different methods. Except
for the simulated annealing method (ARSA) the seriation only takes a fraction of a second.
The direction of the resulting orderings is first normalized (aligned) and then the orderings
are displayed using matrix shading (see Figure 4).

> o <- ser_align(o)

> for(s in o) pimage(d, s, main = get_method(s), key = FALSE)

The first row of matrices in Figure 4 contains the orders obtained by a TSP solver the rank-
two ellipse seriation by Chen and using the simulated annealing method (ARSA). The results
of Chen and ARSA are very similar (except that the order is reversed). The TSP solver
produces a smoother image with some lighter lines visible. The reason for these lines is that
the TSP only optimizes distances locally between two neighboring objects. Therefore it is
possible that in a quite homogeneous block several objects are enclosed gradually getting
more different and then getting more similar again (see, e.g., the light line close to the upper
left corner of the TSP image in Figure 4).

The second row of Figure 4 contains three images based on hierarchical clustering. The
visual impression gets better from left (just hierarchical clustering) to right (first using the
Gruvaeus Wainer heuristic and then optimal leaf ordering to rearrange the branches of the
dendrogram obtained by hierarchical clustering). The most striking feature in the image for
hierarchical clustering (HC in Figure 4) is the distinct cross going right through the center of
the plot. This indicates that several relatively dissimilar objects are caught in an otherwise
homogeneous block. This effect vanishes after rearranging the dendrogram branches (see GW
and OLO in Figure 4).

Finally, we compare the values of the loss/merit functions for the different seriation methods.
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TSP R2E ARSA

HC GW OLO

Figure 4: Image plot of the distance matrix for the iris data using rearrangement by different
seriation methods.

> crit <- sapply(o, FUN = function(x) criterion(d, x))

> t(crit)

2SUM AR_deviations AR_events BAR Gradient_raw Gradient_weighted

TSP 20561459 177424 274228 65200 553421 1340780

R2E 22155912 339681 397967 74532 305960 834354

ARSA 17811233 9439 54823 56363 992260 1772128

HC 18465472 53173 173922 62958 754044 1644968

GW 18310565 44719 171634 59224 758613 1664839

OLO 18321723 46900 174630 59361 752619 1660309

Inertia LS Lazy_path_length Least_squares MDS_stress ME

TSP 312888948 4774463 4125 77062766 0.4369 7314

R2E 262816237 5112080 6595 77738000 0.5946 7250

ARSA 356949760 4486897 6509 76487635 0.2290 7268

HC 345721249 4571670 5048 76657181 0.3054 7286

GW 346579101 4558424 4563 76630687 0.2947 7323

OLO 346172124 4561443 4089 76636726 0.2972 7337

Moore_stress Neumann_stress Path_length RGAR Rho

TSP 588.2 235.7 51.48 0.24871 0.7318

R2E 1143.1 514.8 91.30 0.36094 0.5746

ARSA 1039.1 480.3 86.14 0.04972 0.9089

HC 871.3 346.4 63.84 0.15774 0.8477

GW 607.2 249.3 57.45 0.15566 0.8637
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OLO 504.9 206.7 51.11 0.15838 0.8601

For easier comparison, Figure 5 contains a plot of the criteria Hamiltonian path length,
anti-Robinson events (AR_events) and stress using the Moore neighborhood. Clearly, the
methods which directly try to minimize the Hamiltonian path length (hierarchical clustering
with optimal leaf ordering (OLO) and the TSP heuristic) provide the best results concerning
the path length. For the number of anti-Robinson events, using the simulated annealing
heuristic (ARSA) provides the best result. Regarding stress, the simulated annealing heuristic
also provides the best result although, it does not directly minimize this loss function.

5.3. Registering new methods

New methods to calculate criterion values and to compute a seriation can be easily added
by the user via the method registry mechanism provided in seriation. Here we give a simple
example of how to implement and register a new seriation method.

In the registry we distinguish between methods for different types of input data. With the
following two commands we produce a list of the available seriation methods for input data
of class dist and matrix.

> list_seriation_methods("dist")

[1] "ARSA" "BBURCG" "BBWRCG" "Enumerate"

[5] "GSA" "GW" "GW_average" "GW_complete"

[9] "GW_single" "GW_ward" "HC" "HC_average"

[13] "HC_complete" "HC_single" "HC_ward" "Identity"

[17] "MDS" "MDS_angle" "OLO" "OLO_average"

[21] "OLO_complete" "OLO_single" "OLO_ward" "QAP_2SUM"

[25] "QAP_BAR" "QAP_Inertia" "QAP_LS" "R2E"

[29] "Random" "Reverse" "SGD" "SPIN_NH"

[33] "SPIN_STS" "Sammon_mapping" "Spectral" "Spectral_norm"

[37] "TSP" "VAT" "isoMDS" "isomap"

[41] "metaMDS" "monoMDS"

> list_seriation_methods("matrix")

[1] "AOE" "BEA" "BEA_TSP" "BK_unconstrained"

[5] "CA" "Heatmap" "Identity" "LLE"

[9] "Mean" "PCA" "PCA_angle" "Random"

[13] "Reverse"

To get detailed information on a seriation method use the following.

> get_seriation_method("dist", name = "ARSA")

name: ARSA

kind: dist
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Figure 5: Comparison of different methods and seriation criteria
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optimizes: LS (Linear seriation criterion)

randomized: TRUE

description: Minimize the linear seriation criterion using simulated

annealing (Brusco et al, 2008).

control:

default values help

cool 0.5 cooling factor (smaller means faster cooling)

tmin 0.0001 stopping temperature

swap_to_inversion 0.5 probability for swap vs inversion local move

try_multiplier 100 number of local move tries per object

verbose FALSE N/A

To add a new seriation method, we first have to implement the seriation code as a function
with the two formal arguments x and control, and for arrays also an additional argument
margin. x is the data object and control contains a list with additional information for the
method passed on from seriate(). The function has to return a list of objects which can be
coerced into ser_permutation_vector objects (e.g., a list of integer vectors). The elements
in the list have to be in order corresponding to the dimensions of x.

In this example we just create a method to return a permutation which reverses the original
order of the objects, i.e., which returns the reverse identity order.

> seriation_method_reverse <- function(x, control = NULL,

+ margin = seq_along(dim(x))) {

+ lapply(seq_along(dim(x)), function(i)

+ if (i %in% margin) rev(seq(dim(x)[i]))

+ else NA)

+ }

The function produces integer sequences of the correct lengths, one for each dimension of x

(control is not used). Since the function works for matrix and array we can register it for
both data types under the short name ‘Reverse’.

> set_seriation_method("matrix", "New_Reverse", seriation_method_reverse,

+ "Reverse identity order")

> set_seriation_method("array", "New_Reverse", seriation_method_reverse,

+ "Reverse identity order")

Now the new seriation method is registered and can be found by the user and applied to data.

> list_seriation_methods("matrix")

[1] "AOE" "BEA" "BEA_TSP" "BK_unconstrained"

[5] "CA" "Heatmap" "Identity" "LLE"

[9] "Mean" "New_Reverse" "PCA" "PCA_angle"

[13] "Random" "Reverse"
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> o <- seriate(matrix(1, ncol = 3, nrow = 4), "New_Reverse")

> o

object of class ‘ser_permutation’, ‘list’

contains permutation vectors for 2-mode data

vector length seriation method

1 4 New_Reverse

2 3 New_Reverse

> get_order(o, 1)

[1] 4 3 2 1

> get_order(o, 2)

[1] 3 2 1

Criterion methods can be added in the same way. We refer the interested reader to the
documentation accompanying the package for detailed information and an example.

If you have implemented a new criterion or seriation method, please consider submitting the
code to one of the maintainers of seriation for inclusion in a future release of the package.

5.4. Heat maps

A heat map is a shaded/color coded data matrix with a dendrogram added to one side and
to the top to indicate the order of rows and columns. Typically, reordering is done according
to row or column means within the restrictions imposed by the dendrogram. Heat maps
recently became popular for visualizing large scale genome expression data obtained via DNA
microarray technology (see, e.g., Eisen, Spellman, Browndagger, and Botstein 1998).

From Section 3.4 we know that it is possible to find the optimal ordering of the leaf nodes
of a dendrogram which minimizes the distances between adjacent objects in reasonable time.
Such an order might provide an improvement over using simple reordering such as the row
or column means with respect to presentation. In seriation we provide the function hmap()

which uses optimal ordering and can also use seriation directly on distance matrices without
using hierarchical clustering to produce dendrograms first.

For the following example, we use again the randomly reordered iris data set x from the
examples above. To make the variables (columns) comparable, we use standard scaling.

> x <- scale(x, center = FALSE)

To produce a heat map with optimally reordered dendrograms (using by default Optimal Leaf
Ordering), the function hmap() can be used with its default settings.

> hmap(x, margin = c(7, 4), cexCol = 1, row_labels = FALSE)
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Figure 6: Two presentations of the rearranged iris data matrix. (a) as an optimally reordered
heat map and (b) as a seriated data matrix with reordered dissimilarity matrices to the left
and on top.

With these settings, the Euclidean distances between rows and between columns are calculated
(with dist()), hierarchical clustering (hclust()) is performed, the resulting dendrograms are
optimally reordered, and heatmap.2() in package gplots is used for plotting (see Figure 6(a)
for the resulting plot).

> hmap(x, method = "MDS")

If a seriation method is used that does not depend on dendrograms, instead of hierarchical
clustering, seriation on the dissimilarity matrices for rows and columns is performed and the
reordered matrix with the reordered dissimilarity matrices to the left and on top is displayed
(see Figure 6(b)). A method argument can be used to choose different seriation methods.

5.5. Bertin’s permutation matrix

Bertin (1981, 1999) introduced permutation matrices to analyze multivariate data with
medium to low sample size. The idea is to reveal a more homogeneous structure in a data
matrix X by simultaneously rearranging rows and columns. The rearranged matrix is dis-
played and cases and variables can be grouped manually to gain a better understanding of
the data.

To find a rearrangement of columns and rows which reveals structure a purity function is
used. A possible purity function is: Given distances between rows and columns of the data
matrix, define purity as the sum of distances of adjacent rows/columns. Using this purity
function, finding the optimal permutation means solving two (independent) TSPs, one for the
columns and one for the rows which can be done very conveniently using the infrastructure
provided by seriation.
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As an example, we use the results of 8 constitutional referenda for 41 Irish communi-
ties (de Falguerolles, Friedrich, and Sawitzki 1997)1. To make values comparable across
columns (variables), the ranks of the values for each variable are used instead of the original
values.

> data("Irish")

> orig_matrix <- apply(Irish[,-6], 2, rank)

For seriation, we calculate distances between rows and between columns using the sum of
absolute rank differences (this is equal to the Minkowski distance with power 1). Then
we apply seriation (using a TSP heuristic) to both distance matrices and combine the two
resulting ser_permutation objects into one object for two-mode data. The original and the
reordered matrix are plotted using bertinplot().

> o <- c(

+ seriate(dist(orig_matrix, "minkowski", p = 1), method = "TSP"),

+ seriate(dist(t(orig_matrix), "minkowski", p = 1), method = "TSP")

+ )

> o

object of class ‘ser_permutation’, ‘list’

contains permutation vectors for 2-mode data

vector length seriation method

1 41 TSP

2 8 TSP

In a newer version of the package this can be also done with the new heatmap seriation
method for matrices.

> get_seriation_method("matrix", name = "heatmap")

name: Heatmap

kind: matrix

optimizes: Other

randomized: FALSE

description: Calculates distances for rows and columns and then

independently applies the specified seriation method for

distances.

control:

default values

dist_fun list(row = function (x, method

seriation_method list(row = "OLO_complete", col

seriation_control list(row = NULL, col = NULL)

1The Irish data set is included in this package. The original data and the text of the referenda can be

obtained from http://www.electionsireland.org/

http://www.electionsireland.org/
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scale "none"

verbose FALSE

help

dist_fun A named list with functions to calulate row and column distances

seriation_method A named list with row and column seriation methods

seriation_control named list with control parameters for the seriation methods

scale Scale "rows", "cols", or "none"

verbose N/A

> o <- seriate(orig_matrix, method = "heatmap", dist_fun = function(d) dist(d, "minkowski",

+ seriation_method = "TSP")

> o

object of class ‘ser_permutation’, ‘list’

contains permutation vectors for 2-mode data

vector length seriation method

1 41 Heatmap

2 8 Heatmap

> bertinplot(orig_matrix)

> bertinplot(orig_matrix, o)

The original matrix and the rearranged matrix are shown in Figure 7 as a matrix of bars where
high values are highlighted (filled blocks). Note that following Bertin, the cases (communities)
are displayed as the columns and the variables (referenda) as rows. Depending on the number
of cases and variables, columns and rows can be exchanged to obtain a better visualization.

Although the columns are already ordered (communities in the same city appear consecu-
tively) in the original data matrix in Figure 7(a), it takes some effort to find structure in the
data. For example, it seems that the variables ‘Marriage’, ‘Divorce’, ‘Right to Travel’ and
‘Right to Information’ are correlated since the values are all high in the block made up by
the columns of the communities in Dublin. The reordered matrix confirms this but makes
the structure much more apparent. Especially the contribution of low values (which are not
highlighted) to the overall structure becomes only visible after rearrangement.

5.6. Binary data matrices

Binary or 0-1 data matrices are quite common. Often such matrices are called incidence
matrices since a 1 in a cell indicates the incidence of an event. In archaeology such an event
could be that a special type of artifact was found at a certain archaeological site. This
can be seen as a simplification of a so-called abundance matrix which codes in each cell the
(relative) frequency or quantity of an artifact type at a site. See Ihm (2005) for a comparison
of incidence and abundance matrices in archaeology.

Here we are interested in binary data. For the example we use an artificial data set from Bertin
(1981) called Townships. The data set contains 9 binary characteristics (e.g., has a veterinary
or has a high school) for 16 townships. The idea of the data set is that townships evolve from
a rural to an urban environment over time.
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Figure 7: Bertin plot for the (a) original arrangement and the (b) reordered Irish data set.
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After loading the data set (which comes with the package), we use bertinplot() to visualize
the data (pimage() could also be used but bertinplot() allows for a nicer visualization).
Bars, the standard visualization of bertinplot(), do not make much sense for binary data.
We therefore use the panel function panel.squares() without spacing to plot black squares.

> data("Townships")

> bertinplot(Townships, panel = panel.tiles)

The original data in Figure 8(a) does not reveal structure in the data. To improve the display,
we run the bond energy algorithm (BEA) for columns and rows 10 times with random starting
points and report the best solution.

> o <- seriate_rep(Townships, method = "BEA", criterion = "ME", rep = 10)

Tries 10 ..........

Found orders with ‘ME’ in the range -64 to -62 - returning best

> bertinplot(Townships, o, panel = panel.tiles)

The reordered matrix is displayed in Figure 8(b). A clear structure is visible. The variables
(rows in a Bertin plot) can be split into the three categories describing different evolution
states of townships:

1. Rural: No doctor, one-room school and possibly also no water supply

2. Intermediate: Land reallocation, veterinary and agricultural cooperative

3. Urban: Railway station, high school and police station

The townships also clearly fall into these three groups which tentatively can be called villages
(first 7), towns (next 5) and cities (final 2). The townships B and C are on the transition to
the next higher group.

> rbind(

+ original = criterion(Townships),

+ reordered = criterion(Townships, o)

+ )

Cor_R ME Moore_stress Neumann_stress

original -0.028348 19 464 260

reordered -0.004137 64 218 84

BEA tries to maximize the measure of effectiveness which is much higher in the reordered
matrix (in fact, 65 is the maximum for the data set). Also the two types of stress are improved
significantly.
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Figure 8: The townships data set in original order (a) and reordered using BEA (b).
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5.7. Dissimilarity plot

Assessing the quality of an obtained cluster solution has been a research topic since the
invention of cluster analysis. This is especially important since all popular cluster algorithms
produce a clustering even for data without a “cluster” structure.

Matrix shading is an old technique to visualize clusterings by displaying the rearranged ma-
trices (see, e.g., Sneath and Sokal 1973; Ling 1973; Gale, Halperin, and Costanzo 1984).
Initially matrix shading was used in connection with hierarchical clustering, where the order
of the dendrogram leaf nodes was used to arrange the matrix. However, with some extensions,
matrix shading can also be used with any partitional clustering method.

Strehl and Ghosh (2003) suggest a matrix shading visualization called CLUSION where the
dissimilarity matrix is arranged such that all objects pertaining to a single cluster appear in
consecutive order in the matrix. The authors call this coarse seriation. The result of a “good”
clustering should be a matrix with low dissimilarity values forming blocks around the main
diagonal. However, using coarse seriation, the order of the clusters has to be predefined and
the objects within each cluster are unordered.

The dissimilarity plots implemented by the function dissplot() in seriation improve CLU-
SION using seriation methods. It aims at visualizing global structure (similarity between
different clusters is reflected by their position relative to each other) as well as the micro
structure within each cluster (position of objects).

To position the clusters in the dissimilarity plot, an inter-cluster dissimilarity matrix is calcu-
lated using the average between cluster dissimilarities. seriate() is used on this inter-cluster
dissimilarity matrix to arrange the clusters relative to each other resulting in on average more
similar clusters to appear closer together in the plot. Within each cluster, seriate() is used
again on the sub-matrix of the dissimilarity matrix concerning only the objects in the cluster.

For the example, we use again Euclidean distance between the objects in the iris data set.

> data("iris")

> iris <- iris[sample(seq_len(nrow(iris))), ]

> x_iris <- iris[, -5]

> d_iris <- dist(x_iris, method = "euclidean")

First, we use dissplot() without a clustering. We set method to NA to prevent reordering
and display the original matrix (see Figure 9(a)). Then we omit the method argument which
results in using the default seriation technique from seriate(). Since we did not provide a
clustering, the whole matrix is reordered in one piece. From the result shown in Figure 9(b)
it seems that there is a clear structure in the data which suggests a two cluster solution.

> ## plot original matrix

> dissplot(d_iris, method = NA)

> ## plot reordered matrix

> dissplot(d_iris, main = "Dissimilarity plot with seriation")

Next, we create a cluster solution using the k-means algorithm. Although we know that the
data set should contain 3 groups representing the three species of iris, we let k-means produce
a 10 cluster solution to study how such a misspecification can be spotted using dissplot().
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Dissimilarity Plot

0 1 2 3 4 5 6 7

(a)

Dissimilarity plot with seriation

0 1 2 3 4 5 6 7

(b)

Figure 9: Two dissimilarity plots. (a) the original dissimilarity matrix and (b) the seriated
dissimilarity matrix.

> l <- kmeans(x_iris, 10)$cluster

> #$

We create a standard dissimilarity plot by providing the cluster solution as a vector of labels.
The function rearranges the matrix and plots the result. Since rearrangement can be a time
consuming procedure for large matrices, the rearranged matrix and all information needed
for plotting is returned as the result.

> res <- dissplot(d_iris, labels = l,

+ main = "Dissimilarity plot - standard")

> res

object of class 'reordered_cluster_dissimilarity_matrix'

matrix dimensions: 150 x 150

dissimilarity measure: 'euclidean'

number of clusters k: 10

cluster description

position label size aggregated_dissimilarity avg_silhouette_width

1 1 3 11 0.5418 0.3129

2 2 2 23 0.4237 0.2516

3 3 10 16 0.8659 0.2398

4 4 6 7 0.5505 0.3640

5 5 5 21 0.5944 0.3187
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Dissimilarity plot − standard
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Dissimilarity plot − threshold

0 1 2 3 4 5 6 7

3 2 10 6 5 9 1 4 8 7

3

2

10

6

5

9

1

4

8

7

(b)

Figure 10: Dissimilarity plot for k-means solution with 10 clusters. (a) standard plot and (b)
plot with threshold.
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6 6 9 15 0.6136 0.3176

7 7 1 13 0.4323 0.1043

8 8 4 9 0.6048 0.3956

9 9 8 23 0.4607 0.3804

10 10 7 12 0.6284 0.3243

used seriation methods

inter-cluster: 'Spectral'

intra-cluster: 'Spectral'

dissimilarity aggregation method: 'avg'

The resulting plot is shown in Figure 10(a). The inter-cluster dissimilarities are shown as solid
gray blocks and the average object dissimilarity within each cluster as gray triangles below the
main diagonal of the matrix. Since the clusters are arranged such that more similar clusters
are closer together, it is easy to see in Figure 10(a) that clusters 6, 3 and 1 as well as clusters
10, 9, 5, 7, 8, 4 and 2 are very similar and form two blocks. This suggests again that a two
cluster solution would be reasonable.

Since slight variations of gray values are hard to distinguish, we plot the matrix again (us-
ing plot() on the result above) and use a threshold on the dissimilarity to suppress high
dissimilarity values in the plot.

> plot(res, options = list(main = "Seriation - threshold",

+ threshold = 3))

In the resulting plot in Figure 10(b), we see that the block containing 10, 9, 5, 7, 8, 4 and
2 is very well defined and cleanly separated from the other block. This suggests that these
clusters should form together a cluster in a solution with less clusters. The other block is less
well defined. There is considerable overlap between clusters 6 and 3, but also cluster 3 and 1
share similar objects.

Using the information stored in the result of dissplot() and the class information avail-
able for the iris data set, we can analyze the cluster solution and the interpretations of the
dissimilarity plot.

> #names(res)

> table(iris[res$order, 5], res$label)[,res$cluster_order]

3 2 10 6 5 9 1 4 8 7

setosa 11 23 16 0 0 0 0 0 0 0

versicolor 0 0 0 7 20 15 7 1 0 0

virginica 0 0 0 0 1 0 6 8 23 12

> #$

As the plot in Figure 10 indicated, the clusters 10, 9, 5, 7, 8, 4 and 2 should be a single
cluster containing only flowers of the species Iris Setosa. The clusters 6, 3 and 1 are more
problematic since they contain a mixture of Iris Versicolor and Virginica.
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Dissimilarity Plot

20 40 60 80 100 120 140

1 2 3

1

2
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Figure 11: Dissimilarity plot for k-means solution with 3 clusters for the Ruspini data set
with 4 groups.

To illustrate the results of the dissimilarity plot in case a clustering with a k smaller than
the actual number of groups in the data is used, we use the Ruspini data set which consists
of 75 points in four groups and is also often used to illustrate clustering techniques. We load
the data set, calculate distances, perform k-means clustering with k = 3 (although the real
number of groups is 4) and produce a dissimilarity plot.

> data("ruspini", package = "cluster")

> d <- dist(ruspini)

> l <- kmeans(ruspini, 3)$cluster

> dissplot(d, labels = l)

The dissimilarity plot in Figure 11 shows that cluster 3 actually should be two separate
clusters represented by the two clearly visible darker triangles next to the main diagonal.

The dissimilarity plot using seriation is a useful tool to inspect the result of clustering. It
is especially useful to spot misspecifications of the number of clusters employed. A more
detailed treatment of dissimilarity plots as a tool for exploring partitional clustering can be
found in Hahsler and Hornik (2011).

6. Conclusion
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In this paper we presented the infrastructure provided by the package seriation. The infras-
tructure contains the necessary data structures to store the linear order for one-, two- and
k-mode data. It also provides a wide array of seriation methods for different input data,
e.g., dissimilarities, binary and general data matrices focusing on combinatorial optimization.
New seriation methods can be easily incorporated into the seriation framework by the user
with the method registry mechanism provided.

Based on seriation, seriation features several visualization techniques. In particular, the
optimally reordered heat map, the Bertin plot and the dissimilarity plot present clear im-
provements over standard plots.

A natural extension to seriation is the synthesis of ensembles of seriations into a “consensus”
one. Such ensembles do not only arise when using different seriation methods, but also when
varying data or control parameters to obtain more robust solutions (see e.g. Jurman, Merler,
Barla, Paoli, Galea, and Furlanello (2008) for a recent application of such ideas in a molecular
profiling context). The R extension package relations (Hornik and Meyer 2008) contains a
variety of methods for obtaining consensus relations, covering consensus seriation (where the
relations are linear orders on the objects) as a special case.

Future work on seriation will focus on adding further seriation methods, such as for example
methods for higher dimensional arrays and methods for block seriation which aim at finding
simultaneous partitions of rows and columns in a data matrix (see, e.g., Marcotorchino 1987).
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