Package ‘shinymeta’

April 12, 2025
Type Package
Title Export Domain Logic from Shiny using Meta-Programming
Version 0.2.1

Description Provides tools for capturing logic in a Shiny app and expos-
ing it as code that can be run outside of Shiny (e.g., from an R console). It also pro-
vides tools for bundling both the code and results to the end user.

URL https://rstudio.github.io/shinymeta/,
https://github.com/rstudio/shinymeta

License GPL-3

Imports callr, fastmap, fs, rlang, htmltools, shiny (>= 1.6.0),
sourcetools, styler, utils

Encoding UTF-8
RoxygenNote 7.3.2

Suggests knitr, stringr, rmarkdown, testthat (>= 3.0), shinyAce,
clipr, dplyr, ggplot2, cranlogs, xfun, magrittr, zoo

Config/testthat/edition 3

Collate 'archive.R' 'display.R' 'format.R' 'imports.R' 'utils.R’
'metareactive.R' 'observe.R' 'globals.R' 'output-code.R'
'print.R' 'render.R' 'report.R' 'utils-format.R' 'zzz.R'

NeedsCompilation no

Author Joe Cheng [aut],
Carson Sievert [cre, aut] (<https://orcid.org/0000-0002-4958-2844>),
RStudio [cph]

Maintainer Carson Sievert <carson@rstudio.com>
Repository CRAN
Date/Publication 2025-04-11 22:20:07 UTC

https://rstudio.github.io/shinymeta/
https://github.com/rstudio/shinymeta
https://orcid.org/0000-0002-4958-2844

2 buildScriptBundle

Contents
buildScriptBundle 2
displayCodeModal 3
expandChain 5
formatCode e 9
MEtaACHiON e e 10
metaBXpro L e 11
metaObserve e e e e e 12
metaReactive e e e e e e 14
metaRender L. e e e e 16
outputCodeButton 18
withMetaMode e e e 19

Index 20

buildScriptBundle Produce a zip bundle of code and results
Description

Produce a zip bundle of code and results

Usage

buildScriptBundle(
code = NULL,
output_zip_path,
script_name = "script.R",
include_files = list(),
render = TRUE,
render_args = list()

)

buildRmdBundle(
report_template,
output_zip_path,
vars = list(),
include_files = list(),
render = TRUE,
render_args = list()

Arguments

code A language object.
output_zip_path
A filename for the resulting zip bundle.

displayCodeModal 3

script_name A name for the R script in the zip bundle.

include_files A named list consisting of additional files that should be included in the zip
bundle. The element names indicate the destination path within the bundle,
specified as a relative path; the element values indicate the path to the actual file
currently on disk, specified as either a relative or absolute path.

render Whether or not to call rmarkdown: : render () on the R script.

render_args Arguments to provide to rmarkdown: : render().
report_template
Filename of an Rmd template to be expanded by knitr: :knit_expand().

vars A named list of variables passed along to . .. in knitr::knit_expand().

Value

The path to a generated file.

See Also

knitr::knit_expand

displayCodeModal Display a shinyAce code editor via shiny modal

Description

Show a shinyAce: :aceEditor() in a shiny: :modalDialog().

Usage
displayCodeModal(
code,
title = NULL,

clip = "clipboard”,
footer = shiny::modalButton("Dismiss”),

SiZe = C("m“, “S“, Hlll)’
easyClose = TRUE,
fade = TRUE,

session = shiny::getDefaultReactiveDomain(),

Arguments
code Either a language object or a character string.
title An optional title for the dialog.
clip An shiny: :icon() name that a user can press to copy code to the clipboard. If

you wish to not have an icon, specify clip = NULL.

4 displayCodeModal

footer UI for footer. Use NULL for no footer.

size One of "s" for small, "m"” (the default) for medium, "1" for large, or "x1" for
extra large. Note that "x1"” only works with Bootstrap 4 and above (to opt-in
to Bootstrap 4+, pass bslib: :bs_theme() to the theme argument of a page
container like fluidPage()).

easyClose If TRUE, the modal dialog can be dismissed by clicking outside the dialog box,
or be pressing the Escape key. If FALSE (the default), the modal dialog can’t
be dismissed in those ways; instead it must be dismissed by clicking on a
modalButton(), or from a call to removeModal () on the server.

fade If FALSE, the modal dialog will have no fade-in animation (it will simply appear
rather than fade in to view).

session a shiny session object (the default should almost always be used).

arguments passed along to shinyAce: :aceEditor()

Value

nothing. Call this function for its side effects.

See Also

outputCodeButton

Examples

if (interactive()) {
library(shiny)
ui <- fluidPage(
sliderInput(”n”, label = "Number of samples”, min = 10, max = 100, value = 30),
actionButton("code”, icon("code")),
plotOutput(”p")
)
server <- function(input, output) {
output$p <- metaRender(renderPlot, {
plot(sample(.. (input$n)))
»
observeEvent (input$code, {
code <- expandChain(output$p())
displayCodeModal (code)
1)
}
shinyApp(ui, server)

}

expandChain 5

expandChain Expand code objects

Description

Use expandChain to write code out of one or more metaReactive objects. Each meta-reactive
object (expression, observer, or renderer) will cause not only its own code to be written, but that of
its dependencies as well.

Usage

newExpansionContext ()

expandChain(..., .expansionContext = newExpansionContext())

Arguments

All arguments must be unnamed, and must be one of: 1) calls to meta-reactive
objects, 2) comment string (e.g. "# A comment"), 3) language object (e.g. quote(print(1
+1))), or 4) NULL (which will be ignored). Calls to meta-reactive objects can
optionally be invisible(), see Details.
.expansionContext
Accept the default value if calling expandChain a single time to generate a cor-
pus of code; or create an expansion context object using newExpansionContext ()
and pass it to multiple related calls of expandChain. See Details.

Details

There are two ways to extract code from meta objects (i.e. metaReactive(), metaObserve(), and
metaRender()): withMetaMode() and expandChain(). The simplest is withMetaMode(obj()),
which crawls the tree of meta-reactive dependencies and expands each . . () in place.

For example, consider these meta objects:
nums <- metaReactive({ runif(100) 3})
obs <- metaObserve({
summary (.. (nums()))

hist(..(nums()))
»

When code is extracted using withMetaMode:
withMetaMode (obs())
The result looks like this:

summary (runif (100))
plot(runif(100))

6 expandChain

Notice how runif (1090) is inlined wherever . . (nums()) appears, which is not desirable if we wish
to reuse the same values for summary () and plot().

The expandChain function helps us workaround this issue by assigning return values of metaReactive()
expressions to a name, then replaces relevant expansion (e.g., .. (nums())) with the appropriate
name (e.g. nums).

expandChain(obs())

The result looks like this:

nums <- runif(100)
summary (nums)
plot(nums)

You can pass multiple meta objects and/or comments to expandChain.

expandChain(
"# Generate values”,
nums (),
"# Summarize and plot”,
obs()

)

Output:

Load data

nums <- runif(100)
nums

Inspect data
summary (nums)
plot(nums)

You can suppress the printing of the nums vector in the previous example by wrapping the nums ()
argument to expandChain() with invisible(nums()).

Value

The return value of expandChain() is a code object that’s suitable for printing or passing to
displayCodeModal (), buildScriptBundle(), or buildRmdBundle().

The return value of newExpansionContext is an object that should be passed to multiple expandChain()
calls.

expandChain 7

Preserving dependencies between expandChain() calls

Sometimes we may have related meta objects that we want to generate code for, but we want the
code for some objects in one code chunk, and the code for other objects in another code chunk; for
example, you might be constructing an R Markdown report that has a specific place for each code
chunk.

Within a single expandChain() call, all metaReactive objects are guaranteed to only be de-
clared once, even if they’re declared on by multiple meta objects; but since we’re making two
expandChain() calls, we will end up with duplicated code. To remove this duplication, we need
the second expandChain call to know what code was emitted in the first expandChain call.

We can achieve this by creating an "expansion context" and sharing it between the two calls.

exp_ctx <- newExpansionContext()
chunk1 <- expandChain(.expansionContext = exp_ctx,

invisible(nums())

)

chunk2 <- expandChain(.expansionContext = exp_ctx,
obs()

)

After this code is run, chunk1 contains only the definition of nums and chunk?2 contains only the
code for obs.

Substituting metaReactive objects

Sometimes, when generating code, we want to completely replace the implementation of ametaReactive.
For example, our Shiny app might contain this logic, using shiny: : fileInput():

data <- metaReactive2({
req(input$file_upload)
metaExpr(read.csv(..(input$file_upload$datapath)))
1))
obs <- metaObserve({
summary (.. (data()))
b))

Shiny’s file input works by saving uploading files to a temp directory. The file referred to by
input$file_upload$datapath won’t be available when another user tries to run the generated
code.

You can use the expansion context object to swap out the implementation of data, or any other
metaReactive:

ec <- newExpansionContext()
ec$substituteMetaReactive(data, function() {
metaExpr(read.csv("data.csv"))

D

expandChain(.expansionContext = ec, obs())

8 expandChain

Result:

data <- read.csv("data.csv")
summary (data)

Just make sure this code ends up in a script or Rmd bundle that includes the uploaded file as
data.csv, and the user will be able to reproduce your analysis.

The substituteMetaReactive method takes two arguments: the metaReactive object to sub-
stitute, and a function that takes zero arguments and returns a quoted expression (for the nicest
looking results, use metaExpr to create the expression). This function will be invoked the first time
the metaReactive object is encountered (or if the metaReactive is defined with inline = TRUE,
then every time it is encountered).

References

https://rstudio.github.io/shinymeta/articles/code-generation.html

Examples

input <- list(dataset = "cars")

varname is only required if srcref aren't supported
(R CMD check disables them for some reason?)
mr <- metaReactive({
get(..(input$dataset), "package:datasets”)
»

top <- metaReactive({
head(..(mr()))
»

bottom <- metaReactive({
tail(..(mrQ)))
B

obs <- metaObserve({
message("Top:")
summary (.. (top()))
message("Bottom:")
summary (. . (bottom()))
»

Simple case
expandChain(obs())

Explicitly print top
expandChain(top(), obs())

Separate into two code chunks
exp_ctx <- newExpansionContext()
expandChain(.expansionContext = exp_ctx,

https://rstudio.github.io/shinymeta/articles/code-generation.html

formatCode 9

invisible(top()),
invisible(bottom()))
expandChain(.expansionContext = exp_ctx,

obs())

formatCode Deparse and format shinymeta expressions

Description

Turn unevaluated shinymeta expressions into (formatted or styled) text.

Usage
formatCode(code, width = 500L, formatter = styleText, ...)
styleText(code, ...)

deparseCode(code, width = 500L)

Arguments
code Either an unevaluated expression or a deparsed code string.
width The width. cutoff to use when deparse()-ing the code expression.
formatter a function that accepts deparsed code (a character string) as the first argument.
arguments passed along to the formatter function.
Details

Before any formatting takes place, the unevaluated expression is deparsed into a string via deparseCode (),
which ensures that shinymeta comment strings (i.e., literal strings that appear on their own line,

and begin with one or more # characters.) are turned into comments and superfluous \{ are re-
moved. After deparsing, the formatCode() function then calls the formatter function on the
deparsed string to format (aka style) the code string. The default formatter, styleText(), uses
styler::style_text() with a couple differences:

* Pipe operators (%>%) are always followed by a line break.

* If the token appearing after a line-break is a comma/operator, the line-break is removed.

Value

Single-element character vector with formatted code

10 metaAction

Examples

options(shiny.suppressMissingContextError = TRUE)

x <- metaReactive({
"# Here's a comment”
sample(5) %>% sum()

»

code <- expandChain(x())

deparseCode (code)
formatCode(code)
formatCode(code, formatter = styler::style_text)

metaAction Run/capture non-reactive code for side effects

Description

Most apps start out with setup code that is non-reactive, such as library() calls, loading of static
data into local variables, or source-ing of supplemental R scripts. metaAction provides a conve-
nient way to run such code for its side effects (including declaring new variables) while making it
easy to export that code using expandChain(). Note that metaAction executes code directly in
the env environment (which defaults to the caller’s environment), so any local variables that are
declared in the expr will be available outside of metaAction as well.

Usage

metaAction(expr, env = parent.frame(), quoted = FALSE)

Arguments
expr A code expression that will immediately be executed (before the call to metaAction
returns), and also stored for later retrieval (i.e. meta mode).
env An environment.
quoted Is the expression quoted? This is useful when you want to use an expression that
is stored in a variable; to do so, it must be quoted with quote().
Value

A function that, when called in meta mode (i.e. inside expandChain()), will return the code in
quoted form. If this function is ever called outside of meta mode, it throws an error, as it is definitely
being called incorrectly.

metaExpr 11

Examples

setup <- metaAction({
library(stats)

"# Set the seed to ensure repeatable randomness”
set.seed(100)

-1
<-2

< X

b

The action has executed
print(x)
print(y)

And also you can emit the code
expandChain(

setup()
)

metaExpr Mark an expression as a meta-expression

Description

Mark an expression as a meta-expression

Usage

metaExpr(
expr,
env = parent.frame(),
quoted = FALSE,

localize = "auto”,
bindToReturn = FALSE
)
Arguments
expr An expression (quoted or unquoted).
env An environment.
quoted Is the expression quoted? This is useful when you want to use an expression that
is stored in a variable; to do so, it must be quoted with quote().
localize Whether or not to wrap the returned expression in local (). The default, "auto”,

only wraps expressions with a top-level return() statement (i.e., return state-
ments in anonymized functions are ignored).

bindToReturn For non-localized expressions, should an assignment of a meta expression be
applied to the last child of the top-level \{ call?

12 metaObserve

Value

If inside meta mode, a quoted form of expr for use inside of metaReactive2(), metaObserve2(),
or metaRender2(). Otherwise, in normal execution, the result of evaluating expr.

See Also

metaReactive2(), metaObserve2(), metaRender2(), ..

metaObserve Create a meta-reactive observer

Description

Create a shiny: :observe()r that, when invoked with meta-mode activated (i.e. called within
withMetaMode() or expandChain()), returns a partially evaluated code expression. Outside of
meta-mode, metaObserve () is equivalent to observe() (it fully evaluates the given expression).

Usage

metaObserve(
expr,
env = parent.frame(),
quoted = FALSE,

label = NULL,
domain = getDefaultReactiveDomain(),
localize = "auto”,
bindToReturn = FALSE
)
metaObserve2(
expr,

env = parent.frame(),
quoted = FALSE,

label = NULL,
domain = getDefaultReactiveDomain()
)
Arguments
expr An expression (quoted or unquoted).
env The parent environment for the reactive expression. By default, this is the calling
environment, the same as when defining an ordinary non-reactive expression. If
x is a quosure and quoted is TRUE, then env is ignored.
quoted If it is TRUE, then the quote()ed value of x will be used when x is evaluated. If

x is a quosure and you would like to use its expression as a value for x, then you
must set quoted to TRUE.

metaObserve 13

label A label for the observer, useful for debugging.
domain See domains.
localize Whether or not to wrap the returned expression in local (). The default, "auto”,

only wraps expressions with a top-level return() statement (i.e., return state-
ments in anonymized functions are ignored).

bindToReturn For non-localized expressions, should an assignment of a meta expression be
applied to the last child of the top-level \{ call?

Details

If you wish to capture specific code inside of expr (e.g. ignore code that has no meaning outside
shiny, like shiny::req()), use metaObserve2() in combination with metaExpr (). When using
metaObserve2(), expr must return a metakExpr().

Value

A function that, when called in meta mode (i.e. inside expandChain()), will return the code in
quoted form. If this function is ever called outside of meta mode, it throws an error, as it is definitely
being called incorrectly.

See Also

metaExpr(), ..

Examples

observers execute 'immediately'
x <=1
mo <- metaObserve({
X <<= x + 1
)
getFromNamespace("flushReact”, "shiny")()
print(x)

It only makes sense to invoke an meta-observer
if we're in meta-mode (i.e., generating code)
expandChain(mo())

Intentionally produces an error
Not run: mo()

14 metaReactive

metaReactive Create a meta-reactive expression

Description

Create a shiny: :reactive() that, when invoked with meta-mode activated (i.e. called within
withMetaMode () or expandChain()), returns a code expression (instead of evaluating that expres-
sion and returning the value).

Usage

metaReactive(
expr,
env = parent.frame(),
quoted = FALSE,
varname = NULL,
domain = shiny::getDefaultReactiveDomain(),
inline = FALSE,

localize = "auto",
bindToReturn = FALSE
)
metaReactive2(
expr,

env = parent.frame(),

quoted = FALSE,

varname = NULL,

domain = shiny::getDefaultReactiveDomain(),
inline = FALSE

)
Arguments

expr An expression (quoted or unquoted).

env The parent environment for the reactive expression. By default, this is the calling
environment, the same as when defining an ordinary non-reactive expression. If
x is a quosure and quoted is TRUE, then env is ignored.

quoted If it is TRUE, then the quote ()ed value of x will be used when x is evaluated. If
x is a quosure and you would like to use its expression as a value for x, then you
must set quoted to TRUE.

varname An R variable name that this object prefers to be named when its code is ex-
tracted into an R script. (See also: expandChain())

domain See domains.

inline If TRUE, during code expansion, do not declare a variable for this object; instead,

inline the code into every call site. Use this to avoid introducing variables for
very simple expressions. (See also: expandChain())

metaReactive 15

localize Whether or not to wrap the returned expression in local (). The default, "auto”,
only wraps expressions with a top-level return() statement (i.e., return state-
ments in anonymized functions are ignored).

bindToReturn For non-localized expressions, should an assignment of a meta expression be
applied to the last child of the top-level \{ call?

Details

If you wish to capture specific code inside of expr (e.g. ignore code that has no meaning outside
shiny, like shiny: :req()), use metaReactive2() in combination with metaExpr (). When using
metaReactive2(), expr must return a metakxpr().

If varname is unspecified, srcrefs are used in attempt to infer the name bound to the meta-reactive
object. In order for this inference to work, the keep. source option must be TRUE and expr must
begin with \{.

Value

A function that, when called in meta mode (i.e. inside expandChain()), will return the code in
quoted form. When called outside meta mode, it acts the same as a regular shiny: :reactive()
expression call.

See Also

metaExpr(), ..

Examples

library(shiny)
options(shiny.suppressMissingContextError = TRUE)

input <- list(x = 1)

y <- metaReactive({
req(input$x)
a <- ..(input$x) + 1
b<-a+1
c + 1

b

withMetaMode(y())
expandChain(y())

y <- metaReactive2({
req(input$x)

metaExpr ({
a <- ..(input$x) + 1
b <-a+1
c+1
}, bindToReturn = TRUE)
»

16

expandChain(y())

metaRender

metaRender

Create a meta-reactive output

Description

Create a meta-reactive output that, when invoked with meta-mode activated (i.e. called within
expandChain() or withMetaMode()), returns a code expression (instead of evaluating that expres-
sion and returning the value).

Usage

metaRender(

renderFunc,

expr,

L

env = parent.frame(),
quoted = FALSE,

localize = "auto",
bindToReturn = FALSE
)
metaRender2(renderFunc, expr, ..., env = parent.frame(), quoted = FALSE)
Arguments
renderFunc A reactive output function (e.g., shiny::renderPlot, shiny::renderText, shiny::renderUI,
etc).
expr An expression that generates given output expected by renderFunc.
Other arguments passed along to renderFunc.
env The parent environment for the reactive expression. By default, this is the calling
environment, the same as when defining an ordinary non-reactive expression. If
x is a quosure and quoted is TRUE, then env is ignored.
quoted If it is TRUE, then the quote ()ed value of x will be used when x is evaluated. If
x is a quosure and you would like to use its expression as a value for x, then you
must set quoted to TRUE.
localize Whether or not to wrap the returned expression in local (). The default, "auto”,
only wraps expressions with a top-level return() statement (i.e., return state-
ments in anonymized functions are ignored).
bindToReturn For non-localized expressions, should an assignment of a meta expression be

applied to the last child of the top-level \{ call?

metaRender 17

Details

If you wish to capture specific code inside of expr (e.g. ignore code that has no meaning outside
shiny, like shiny::req()), use metaRender2() in combination with metaExpr(). When using
metaRender2(), expr must return a metaExpr().

Since package authors are allowed to create their own output rendering functions, creating a meta-
counterpart of an output renderer (e.g. renderPlot()) needs to be more general than prefixing
meta to the function name (as with metaReactive() and metaObserve()). metaRender () makes
some assumptions about the arguments taken by the render function, assumptions that we believe
are true for all existing render functions. If you encounter a render function that doesn’t seem to
work properly, please let us know by filing an issue on GitHub.

Value

An annotated render function, ready to be assigned to an output slot. The function may also be
called in meta mode (i.e., inside expandChain()) to return the code in quoted form.

See Also

metakExpr(), ..

Examples

if (interactive()) {
library(shiny)
library(shinymeta)

ui <- fluidPage(
selectInput(”var”, label = "Choose a variable”, choices = names(cars)),
verbatimTextOutput (”Summary"”),
verbatimTextOutput(”code")

)

server <- function(input, output) {
var <- metaReactive({
cars[[..(input$var)]]
»
output$Summary <- metaRender(renderPrint, {
summary(..(var()))
»
output$code <- renderPrint({
expandChain(output$Summary())
»
}

shinyApp(ui, server)

}

https://github.com/rstudio/shinymeta/issues

18 outputCodeButton

outputCodeButton Overlay an icon on a shiny output

Description

Intended for overlaying a button over a shiny output, that when clicked, displays code for reproduc-
ing that output. The button is similar to an shiny::actionButton(), but instead of providing an
inputId, the id is determined by the id of the outputObj. The name of that input is a function of
outputObj’s outputId: input$OUTPUTID output_code.

Usage

outputCodeButton(
outputObj,
label = "Show code”,
icon = shiny::icon("code"”),

width = NULL,
)
Arguments
outputObj A shiny output container (e.g., shiny::plotOutput, shiny::textOutput, etc)
label The contents of the button or link—usually a text label, but you could also use
any other HTML, like an image.
icon An optional icon() to appear on the button.
width The width of the input, e.g. '400px "', or '100%'; see validateCssUnit().
Named attributes to be applied to the button or link.
Value

the outputObj wrapped in a card-like HTML container.

See Also
displayCodeModal

Examples

if (interactive()) {

library(shiny)

ui <- fluidPage(
sliderInput(”"n", label = "Number of samples”, min = 10, max = 100, value = 30),
outputCodeButton(plotOutput(”p"))

)

server <- function(input, output) {
output$p <- metaRender(renderPlot, {

withMetaMode 19

plot(sample(..(input$n)))
»
observeEvent (input$p_output_code, {
code <- expandChain(output$p())
displayCodeModal (code)
»
}
shinyApp(ui, server)

}

withMetaMode Evaluate an expression with meta mode activated

Description

Evaluate an expression with meta mode activated

Usage

withMetaMode(expr, mode = TRUE)

Arguments

expr an expression.

mode whether or not to evaluate expression in meta mode.
Value

The result of evaluating expr.

See Also

expandChain()

Index

.., 12,13,15,17

bslib::bs_theme(), 4

buildRmdBundle (buildScriptBundle), 2

buildRmdBundle(), 6
buildScriptBundle, 2
buildScriptBundle(), 6

deparse(), 9

deparseCode (formatCode), 9
deparseCode(), 9
displayCodeModal, 3, I8
displayCodeModal(), 6
domains, 13, 14

expandChain, 5
expandChain(), 10, 12-17, 19

fluidPage(), 4
formatCode, 9

icon(), I8
invisible(), 5

knitr::knit_expand(), 3

library(), 10
local(), 11,13,15, 16

metaAction, 10

metaExpr, 11
metaExpr(), 13, 15,17
metaObserve, 12
metaObserve(), 5

metaObserve2 (metaObserve), 12
metaObserve2(), 12
metaReactive, 14
metaReactive(), 5

metaReactive2 (metaReactive), 14

metaReactive2(), 12
metaRender, 16

metaRender(), 5
metaRender2 (metaRender), 16
metaRender2(), 12

newExpansionContext (expandChain), 5

option, 15
outputCodeButton, 4, 18

quote(), 10-12, 14, 16

removeModal(), 4
return(), 11, 13,15, 16
rmarkdown: :render (), 3

shiny::actionButton(), I8
shiny::fileInput(), 7
shiny::icon(), 3

shiny: :observe(), 12
shiny: :plotOutput, /8
shiny: :reactive(), 14, 15
shiny: :renderPlot, 16
shiny: :renderText, 16
shiny::renderUI, 16
shiny::reqQ), 13, 15,17
shiny: :textOutput, I8
source, 10

srcref, 15
styler::style_text(), 9
styleText (formatCode), 9

validateCssUnit(), I8

withMetaMode, 19
withMetaMode(), 12, 14, 16

	buildScriptBundle
	displayCodeModal
	expandChain
	formatCode
	metaAction
	metaExpr
	metaObserve
	metaReactive
	metaRender
	outputCodeButton
	withMetaMode
	Index

