
Package ‘sim.BA’
April 22, 2024

Title Simulation-Based Bias Analysis for Observational Studies

Version 0.1.0

Description Allows user to conduct a simulation based quantitative
bias analysis using covariate structures generated with individual-level
data to characterize the bias arising from unmeasured confounding. Users
can specify their desired data generating mechanisms to simulate data
and quantitatively summarize findings in an end-to-end application
using this package.

License GPL (>= 2)

Depends R (>= 3.5.0)

Encoding UTF-8

RoxygenNote 7.3.1

Imports chk (>= 0.9.1), cobalt (>= 4.5.3), ggplot2 (>= 3.4.4), scales
(>= 1.3.0), pbapply (>= 1.7-2), rlang (>= 1.1.3), stats,
survival, utils

Suggests MatchIt (>= 4.5.5), WeightIt (>= 0.14.2), parallel, openxlsx
(>= 4.2.5.2), knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Rishi Desai [aut, cre] (<https://orcid.org/0000-0003-0299-7273>),
Noah Greifer [aut] (<https://orcid.org/0000-0003-3067-7154>)

Maintainer Rishi Desai <rdesai@bwh.harvard.edu>

Repository CRAN

Date/Publication 2024-04-22 14:42:35 UTC

R topics documented:
create_parameters . 2
plot.simBA . 3
simBA . 4

Index 9

1

https://orcid.org/0000-0003-0299-7273
https://orcid.org/0000-0003-3067-7154

2 create_parameters

create_parameters Create parameters for data-generating models

Description

create_parameters() facilitates creation of the parameters input to simBA(). This input con-
tains information required to generate simulated dataset that will be analyzed within the simulation.

Usage

create_parameters(
nbinary = 0,
ncontinuous = 0,
ncount = 0,
unmeasured_conf = "u1",
unmeasured_type = "binary",
file = NULL

)

Arguments

nbinary, ncontinuous, ncount

the number of binary, continuous, and count confounders to include, respec-
tively. Default is 0.

unmeasured_conf

the name of the unmeasured confounder. Default is "u1".
unmeasured_type

the type of variable for the unmeasured confounder. Allowable options include
"binary", "continuous", and "count". Default is "binary"; abbreviations
allowed.

file optional; a string containing a path to a .csv or .xslx file where the output will
be written to. If NULL (the default), no file will be written.

Value

A data.frame containing a skeleton of the parameter values, which must be filled in manually by the
user. See The parameters input object section in the simBA() documentation for which columns
will be present in the output. An additional column, Description, will also be produced, but it is not
necessary to fill it in.

Examples

parameters <- create_parameters(nbinary = 6,
ncontinuous = 2,
ncount = 1,
unmeasured_conf = "u1",
unmeasured_type = "continuous")

plot.simBA 3

parameters

plot.simBA Plot the results of a simulation

Description

plot() plots the output of a call to simBA(). The plot can contain either the estimated hazard ratios
or standardized mean differences across simulations, each in a set of box plots.

Usage

S3 method for class 'simBA'
plot(x, type = "balance", ...)

Arguments

x a simBA object; the output of a call to simBA().

type the type of plot to produce; allowable options include "balance" (default),
"hr", and "bias". Abbreviations allowed. See Details.

... further arguments passed to ggplot2::geom_boxplot().

Details

The balance plot plots absolute standardized mean differences. Vertical lines are placed at 0 (solid)
and .1 (dashed). The hazard ratio (HR) plot plots hazard ratios on a log scale for the x-axis. Vertical
lines are placed at 1 (solid) and the true marginal HR (dashed). The bias plot plots the relative error
in the HR with a vertical line at 0% (indicating no error).

Value

A ggplot object, which can be modified using ggplot2 syntax.

See Also

simBA() for performing the simulation.

Examples

See help("simBA") for examples.

4 simBA

simBA Run a simulation to assess due to unmeasured confounding

Description

simBA() runs a simulation to compute the magnitude of the bias in a hazard ratio in the presence of
unmeasured confounding, possibly when proxies are available.

Usage

simBA(
parameters,
iterations = 500,
size = 1000,
treatment_prevalence,
treatment_coeff,
outcome_prevalence,
dist = "exponential",
unmeasured_conf,
n_proxies = 0,
proxy_type = "binary",
corr = NULL,
adj = "matching",
estimand = "ATT",
adj_args = list(),
keep_data = FALSE,
cl = NULL,
verbose = TRUE

)

Arguments

parameters either a data.frame containing information about the data generation used in the
simulation or a string containing the path to a .csv or .xlsx file containing such in-
formation. See Details for what this should contain and create_parameters()
to create a skeleton of this object.

iterations the number of simulation iterations. Default is 500.

size the size of each sample to be generated. Default is 1000.
treatment_prevalence

the desired prevalence of treatment. Should be a number between 0 and 1.
treatment_coeff

the coefficient on the treatment variable in the data-generating model for survival
times.

outcome_prevalence

the desired prevalence of the outcome. This is used to specify a censoring time
for the data-generating model.

simBA 5

dist the distribution to use to generate survival times. Allowable options include
"exponential" (default) and "weibull". Abbreviations allowed.

unmeasured_conf

the name of the variable in parameters corresponding to the unmeasured con-
founder.

n_proxies the number of proxies for the unmeasured confounder to include in the simula-
tion. Default is 0.

proxy_type when n_proxies is greater than 0, the type of variable the proxies should be. Al-
lowable options include "binary" (default) and "continuous". Abbreviations
allowed.

corr when n_proxies is greater than 0, the desired correlations between the proxy
variable and the unmeasured confounder in the simulation. Should be length
1 (in which case all proxies have the same correlation with the unmeasured
confounder) or length equal to n_proxies.

adj string; the method used to adjust for the confounders. Allowable options include
"matching" (the default), which uses MatchIt::matchit(), and "weighting",
which uses WeightIt::weightit(). Abbreviations allowed.

estimand string; the desired estimand to target. Allowable options include "ATT" (default),
"ATC", and "ATE". Note this is also passed to the estimand argument of the
function used for adjustment as specified by adj if omitted in adj_args.

adj_args a list of arguments passed to MatchIt::matchit() or WeightIt::weightit()
depending on the argument to adj. If not supplied, the parameter defaults will
be used. Take care to specify these arguments to ensure the adjustment method
is as desired.

keep_data logical; whether to keep the datasets generated in each simulation. Default is
FALSE. Setting to TRUE will make the output object large.

cl a cluster object created by parallel::makeCluster(), or an integer to indicate
number of child-processes (integer values are ignored on Windows) for paral-
lel evaluations. See pbapply::pbapply() for details. Default is NULL for no
parallel evaluation.

verbose whether to print information about the progress of the simulation, including a
progress bar. Default is TRUE.

Details

simBA() runs a simulation study to examine the impact of an unmeasured confounder on the bias
of the marginal hazard ratio when using matching or weighting to adjust for observed confounders
and, optionally, proxies of the unmeasured confounder. The user must specify the simulation data-
generating model using the parameters argument and other arguments that control generation of
the treatment, outcome, and proxies. Requirements for the parameters input are described below.
In addition, the user must specify the form of adjustment used (matching or weighting) using the
adj argument, the desired estimand using the estimand argument, and any other arguments passed
to adj_args to control the matching/weighting method. Note by default, the ATT is targeted, even
though the usual default estimand for weighting using WeightIt::weightit() is the ATE.

Broadly, the parameters input contains the name of the measured and unmeasured confounders,
their variable types (binary, continuous, or count), their distributions, and their coefficients in the

6 simBA

treatment and outcome models. These values are used to generate a synthetic dataset of size cor-
responding to the size argument, which additionally contains the true propensity score used to
simulate the treatment, the treatment itself, and the outcome (i.e., survival time and whether an
event occurred). When proxies are requested (i.e., n_proxies set to 1 or greater), proxies for the
unmeasured confounder are additionally generated and appended to the synthetic dataset.

In each iteration, a synthetic dataset is generated, and then that dataset is analyzed. First, a crude
marginal hazard ratio is estimated by fitting a Cox proportional hazards model for the survival
times and events as a function just of the treatment. Then, the dataset is adjusted using matching
or weighting with the measured covariates, and a second hazard ratio is estimated as above, this
time in the matched or weighted sample. If proxies are requested, the dataset is adjusted again
using matching or weighting with the measured covariates and proxies, and a third hazard ratio
is estimated as above. In addition, the balance (as measured by the standardized mean difference
[SMD]) is reported for the unmeasured confounder and proxies before adjustment and after each
round of matching or weighting.

The data-generating model:
The data-generating model for the outcome corresponds to a Cox proportional hazards model as
described by Bender et al. (2005). The coefficients on the measured and unmeasured confounders
in the outcome model are specified in the parameters input, and the coefficient on the treatment
variable is specified by the treatment_coeff argument. The treatment is generated as a Bernoulli
variable with probability equal to the true propensity score, which is generated according to a
logistic regression model with the coefficients on the confounders specified in the parameters
input.
The proxies, if requested, are generated such that their correlation with the unmeasured con-
founder is exactly equal to the values supplied to corr. The confounder are generated as uncor-
related variables according to the distribution supplied in the parameters input. Binary variables
are generated as Bernoulli variables with probability equal to the supplied prevalence. Continuous
variables are generated as Gaussian (Normal) variables with mean and standard deviation equal
to their supplied values. Count variables are generated as Poisson variables with mean equal to its
supplied value.
Some parameters are determined first by generating a dataset with one million observations. With
this dataset, the intercept of the true propensity score model is selected as that which yields a
treatment prevalence equal to that specified in the treatment_prevalence argument, and the
censoring time for the outcomes is selected as that which yields an outcome event prevalence
equal to that specified in the outcome_prevalence argument. In addition, the true marginal
hazard ratio is computed using this dataset by generating potential outcomes under each treatment
and fitting a Cox model of the potential outcome survival times and events as a function of the
treatment under which the potential outcome was generated as recommended by Austin (2013).

The parameters input object:
The parameters input must be of a specified form in order to be processed correctly. It must
be a data.frame with one row for each confounder to be generated with (at least) the following
columns (which are case-sensitive):

Variable the name of the variable
Type the variable type; either binary, continuous, or count (see above for how these correspond

to the distribution used to generate the variable)
prevalence the prevalence for binary variables (should be blank for all other variable types)
mean the mean for continuous and count variable (should be blank for binary variables)

simBA 7

sd the standard deviation for continuous variables (should be blank for all other variable types)
coeff_treatment_model the coefficient on that variable in the true propensity score model for

the treatment (can be blank for any variable that doesn’t affect treatment)
coeff_outcome_model the coefficient on that variable in the outcome model for the treatment

(can be blank for any variable that doesn’t affect the outcome)

The variable name supplied to unmeasured_conf must be present in the parameters input, and
it must have nonzero values in both the coeff_treatment_model and coeff_outcome_model
columns (or else it would not be a true confounder).
To automatically create a skeleton of the parameters input for you to fill in yourself, use create_parameters().

Value

A simBA object, which contains the simulation outputs and their summaries. This includes the
following components:

sim_out the complete simulation results, a list with an entry for each iteration including the table
of log hazard ratios, the table of standardized mean differences, and the generated dataset (if
keep_data = TRUE)

parameters the table of parameters supplied to parameters after some processing

SMD_table the table of average standardized mean differences for the unmeasured confounder and
proxies before and after matching across all iterations

HR_table the table of estimated and true hazard ratios averaged across all iterations (note that log
hazard ratios are averaged before exponentiating the average)

Basic print() and summary() methods are available. See [plot.simBA()] for plotting.

References

Austin PC. The performance of different propensity score methods for estimating marginal hazard
ratios. Statistics in Medicine. 2013;32(16):2837-2849. doi:10.1002/sim.5705

Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards
models. Statistics in Medicine. 2005;24(11):1713-1723. doi:10.1002/sim.2059

See Also

create_parameters() for creating the parameters input; plot.simBA() for plotting the re-
sults. MatchIt::matchit() and WeightIt::weightit() for the functions used for matching and
weighting, respectively, which detail the defaults used by these methods and allowable arguments
that can be passed to adj_args.

Examples

Get parameters example; can also create
with `create_parameters()`
parameters <- read.csv(system.file("extdata", "parameters.csv",

package = "sim.BA"))

Run simulation; adjustment via PS weighting for

https://doi.org/10.1002/sim.5705
https://doi.org/10.1002/sim.2059

8 simBA

the ATE
sim <- simBA(parameters,

iterations = 50,
size = 200,
treatment_prevalence = .2,
treatment_coef = -.25,
outcome_prevalence = .5,
unmeasured_conf = "u1",
n_proxies = 2,
proxy_type = "binary",
corr = c(.5, .8),
verbose = FALSE,
Adjustment arguments
adj = "weighting",
estimand = "ATE",
adj_args = list(method = "glm"))

sim

summary(sim)

plot(sim, "balance")

plot(sim, "hr")

Index

create_parameters, 2
create_parameters(), 4, 7

ggplot2::geom_boxplot(), 3

MatchIt::matchit(), 5, 7

parallel::makeCluster(), 5
pbapply::pbapply(), 5
plot.simBA, 3
plot.simBA(), 7

simBA, 4
simBA(), 2, 3

WeightIt::weightit(), 5, 7

9

	create_parameters
	plot.simBA
	simBA
	Index

