spareg: Sparse Projected Averaged Regression in R

Laura Vana-Giir Roman Parzer Peter Filzmoser
TU Wien TU Wien TU Wien
Abstract

The spareg package for R builds ensembles of predictive generalized linear models for
high-dimensional data. It employs an algorithm that combines variable screening and
random projection techniques to address the computational challenges of large predictor
sets. The package makes this modeling approach more accessible, as variants of the algo-
rithm have demonstrated competitive predictive performance compared to state-of-the-art
methods, while maintaining low computational costs. By implementing this modeling ap-
proach in an accessible framework, spareg enables users to apply methods that have shown
competitive predictive performance against state-of-the-art alternatives, while at the same
time keeping computational costs low.

Designed with extensibility in mind, spareg implements the screening and random
projection techniques, as well as the generalized linear models employed in the ensemble
as S3 classes with user-friendly constructor functions. This modular design allows users
to seamlessly integrate and develop new procedures, making the package a versatile tool
for high-dimensional applications.
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1. Introduction

The spareg package for R (R Core Team 2024) offers functionality for estimating general-
ized linear models (GLMs) in high-dimensional settings, where the number of predictors p
significantly exceeds the number of observations n i.e., p > n or even p > n. To address
the challenges of high dimensionality, the package implements a general algorithm which in-
tegrates variable screening methods with random projection techniques to effectively reduce
the predictor space.

More specifically, spareg builds an ensemble of GLMs where, in each model of the ensemble, i)
variables are first screened based on a measure of the utility of each predictor for the response,
ii) the selected variables are then projected to a lower dimensional space (smaller than n) using
a random projection matrix, iii) a GLM is estimated using the projected predictors. Finally,
additional sparsity in the coefficients of the original variables can be introduced through a
thresholding parameter, which together with the number of models in the ensemble can be
chosen using a validation set or via cross-validation. The final coefficients are then obtained
by averaging over the marginal models in the ensemble.

The motivation of such an algorithm, which performs what we call a sparse projected averaged
regression (SPAR) for both discrete and continuous data in the GLM framework, lies in its
computational efficiency. Random projection is a computationally-efficient method which
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linearly maps a set of points in high dimensions into a much lower-dimensional space and
random projection matrices have been traditionally generated from suitable distributions in
a data-agnostic fashion. By projecting the original predictors to a dimension lower than n,
estimation of the models on the reduced predictors can be done using standard methods.

However, random projection can suffer from noise accumulation for very large p, as too many
irrelevant predictors are being considered for prediction purposes (Mukhopadhyay and Dun-
son 2020). Therefore, the screening step is advisable in order to eliminate the influence of
irrelevant variables before performing the random projection, while also reducing computa-
tional costs.

The ensemble approach is motivated by the fact that, although combining variable screening
with random projection effectively reduces the predictor set and computational costs, the
variability introduced by random sampling can be mitigated by averaging the results from
multiple iterations (Thanei, Heinze, and Meinshausen 2017).

Different variants of the algorithm have been shown to perform well in terms of prediction
power on a variety of data sets. For example, Mukhopadhyay and Dunson (2020) employ
the algorithm with the data-agnostic, sparse random projection of Achlioptas (2003) com-
bined with probabilistic marginal correlation screening. Furthermore, Parzer, Filzmoser, and
Vana-Giir (2024a) show that, when paired with a carefully constructed data-driven random
projection, the algorithm performs superiorly in terms of predictions and variable ranking in
settings with different degrees of sparsity in the coefficients and with correlated predictors.

Given the variety of screening and random projection matrices to be possibly employed in the
algorithm — each with distinct advantages across different data settings — package spareg offers
a diverse selection of screening coefficients and multiple procedures for constructing random
projection matrices. Designed for flexibility, the package provides a versatile framework that
allows users to extend its screening and projection techniques, as well as the GLM models
employed in the ensemble with custom procedures. This is achieved through R’s S3 classes
and user-friendly constructor functions

The package provides methods such as plot, predict, coef, print, which allow users to
more easily interact with the model output and analyze the results. The GLM framework,
especially when combined with random projections which preserve information on the original
coefficients (such as the one in Parzer et al. 2024a), facilitates interpretability of the model
output, allowing users to understand variable effects.

While, to the best of our knowledge, spareg offers the first implementation of the described
algorithm and no other package offers the same functionality for GLMs, few other R packages
focus on building ensembles where the dimensionality of the predictors is reduced. Most
notably, package RPEnsemble (Cannings and Samworth 2021) implements the procedure in
Cannings and Samworth (2017), where “carefully-selected” random projections are used for
projecting the predictors before they are employed in a classifier such as k nearest neighbor,
linear or quadratic discriminant analysis. On the other hand, package RaSEn (Tian and Feng
2021) implements an algorithm for ensemble classification and regression problems, where
random subspaces are generated and the optimal one is chosen to train a weak learner on the
basis of some criterion.

The rest of the paper is organized as follows: Section 2 provides an overview of the methods
and the methodological details of the implemented algorithm. The package is described in
Section 3 and Section 4 exemplifies how a new screening coefficient, a new random projection
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and a new marginal model can be integrated in the package. Section 5 concludes.

2. Methods

Throughout the section we assume to observe high-dimensional data {(x;, )}, where
x; € RP is a predictor vector and y; € R is the response, with p > n. The predictor vectors
are collected in the rows of the predictor matrix X € R"*P,

2.1. Variable screening

In high-dimensional modeling, the goal of variable screening is to reduce the predictor set
by selecting a small subset of variables with a strong wtility to the response variable. This
initial selection enables more efficient downstream analyses by discarding less relevant pre-
dictors early in the modeling process, thus reducing computational costs and potential noise
accumulation stemming from irrelevant variables (see e.g., Mukhopadhyay and Dunson 2020).

The field of variable screening is an active area of research, with numerous methods developed
to address different data settings. While a comprehensive review is beyond the scope of this
paper, this section provides a concise and selective overview of key approaches for variable
screening in high-dimensional settings. A classic approach is sure independence screening
(SIS), proposed by Fan and Lv (2007), which uses the vector of marginal empirical correlations
&= (Q1,...,@p) " € RP,&; = Cor(Xj,y), where y is the (n x 1) vector of responses and X; is
the j-th column of the matrix of predictors, to screen predictors in a linear regression setting
by selecting the variable set A5 which contains all variables for which |&;] > 6, where § is a
suitable threshold. Under certain technical conditions, this screening coefficient has the sure
screening property, i.e., that the set of truly active variables is included in A5, with probability
converging to one as n — 0o. Extensions to SIS include modifications for GLMs (Fan and Song
2010), where screening is performed based on the log-likelihood #(.) or the slope coefficient of
the GLM containing only X; as a predictor: @, =: argming cgming,cr > =B, Bos yis Tij),
where x;; is the j-th entry of the vector x;.

However, both mentioned approaches face limitations related to the required technical con-
ditions which can rule out practically possible scenarios where an important variable is
marginally uncorrelated to the response due to their multicollinearity. To tackle these issues,
Fan, Samworth, and Wu (2009) propose to use an iterative procedure where SIS is applied
subsequently on the residuals of the model estimated in a previous step. Additionally, in
a linear regression setting, Cho and Fryzlewicz (2012) propose using the tilted correlation,
i.e., the correlation of a tilted version of X; with y where the effect of other variables is
reduced. Wang and Leng (2016) propose to take into account the correlation among the pre-
dictors by employing the high-dimensional ordinary least squares projection (HOLP), which
is a ridge estimator where the penalty term converges to zero. For discrete outcomes, joint
feature screening (Xu and Chen 2014) has been proposed.

In order to tackle potential model misspecification, a rich stream of literature focuses on
developing semi- or non-parametric alternatives to SIS. For linear regression, approaches
include using the ranked correlation (Zhu, Li, Li, and Zhu 2011), (conditional) distance
correlation (Li, Zhong, and Zhu 2012; Wang, Pan, Hu, Tian, and Zhang 2015) or quantile
correlation (Ma and Zhang 2016). For GLMs, Fan, Feng, and Song (2011) extend Fan and
Song (2010) by fitting a generalized additive model with B-splines. Further extensions for
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discrete (or categorical) outcomes include the fused Kolmogorov filter (Mai and Zou 2013),
the mean conditional variance, i.e., the expectation in X; of the variance in the response of
the conditional cumulative distribution function P(X; < z|y) (Cui, Li, and Zhong 2015). Ke
(2023) propose a model free method where the contribution of each individual predictor is
quantified marginally and conditionally in the presence of the control variables as well as the
other candidates by reproducing-kernel-based R? and partial R? statistics.

The R landscape for variable screening techniques is very rich. An overview of some notable
packages on the Comprehensive R Archive Network (CRAN) includes the following packages.
Package SIS (Saldana and Feng 2018), which implements the (iterative) sure independence
screening procedure and its extensions, as detailed in Fan and Lv (2007); Fan and Song
(2010); Fan, Feng, and Wu (2010). This package also provides functionality for estimating a
penalized generalized linear model or a cox regression model for the variables selected by the
screening procedure. Package VariableScreening (Li, Huang, and Dziak 2022) offers screening
methods for independent and identically distributed (iid) data, varying-coefficient models, and
longitudinal data and includes techniques such as sure independent ranking and screening
(SIRS), which ranks the predictors by their correlation with the rank-ordered response, or
distance correlation sure independence screening (DC-SIS), a non-parametric extension of the
correlation coefficient. Package MFSIS (Cheng, Wang, Zhu, Zhong, and Zhou 2024) provides
a collection of model-free screening techniques including SIRS, DC-SIS, the fused Kolmogorov
filter (Mai and Zou 2015) the projection correlation method using knock-off features (Wanjun
Liu Yuan Ke and Li 2022), among others. Additional packages implement specific procedures
but their review is beyond the scope of the current paper.

Package spareg allows the integration of such (advanced) screening techniques using a flexible
framework, which in turn enables users to apply various screening methods tailored to their
data characteristics in the algorithm generating the ensemble. This flexibility allows users
to evaluate different strategies, ensuring that the most effective approach is chosen for the
specific application at hand. Moreover, it incorporates probabilistic screening strategies,
which can be particularly useful in ensembles, as they enhance the diversity of predictors
across ensemble models. Instead of relying on a fixed threshold §, predictors are sampled
with probabilities proportional to their screening coefficient (see Mukhopadhyay and Dunson
2020; Parzer et al. 2024a). Note that this is different than the random subspace sampling
employed in, e.g., random forests.

2.2. Random projection tools

Package spareg has been designed to allow the incorporation of various random projection
techniques, enabling users to tailor the procedure to their specific data needs. Below, we
provide background information on different random projection techniques and an overview
of existing software implementing random projections.

The random projection method relies on the Johnson-Lindenstrauss (JL) lemma (Johnson and
Lindenstrauss 1984), which asserts that for each set of points in p dimensional Euclidean space
collected in the rows of X € R™*P there exists a linear map ® € R™*P such that all pairwise
distances are approximately preserved within a factor of (14 ¢) for m > mg = O(e2?log(n)).
Computationally, an attractive feature of the method for high-dimensional settings is that
the bound does not depend on p.

The goal is to choose a random map ® that satisfies the JL lemma with high probability
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given that it fulfills certain technical conditions. The literature focuses on constructing such
matrices either by sampling them from some “appropriate” distribution, by inducing sparsity
in the matrix and/or by employing specific fast constructs which lead to efficient matrix-
vector multiplications. It turns out that the conditions are generally satisfied by nearly
all sub-Gaussian distributions (Matousek 2008). A common choice is the standard normal
distribution ®;; N (0,1) (Frankl and Maehara 1988) or a sparser version where ®;; d
N(0,1/+/%) with probability ¢ and 0 otherwise (Matousek 2008). Another computationally
simpler option is the Rademacher distribution where ®;; = +£1/1/4 with probability /2 and
zero otherwise for 0 < ¢» < 1, where Achlioptas (2003) shows results for ¢) = 1 and ¢ = 1/3
while Li, Hastie, and Church (2006) recommend using ¢» = 1/,/p to obtain very sparse
matrices. Further approaches include using the Haar measure to generate random orthogonal
matrices (Cannings and Samworth 2017) or a non-sub-Gaussian distribution like the standard
Cauchy, proposed by Li et al. (2006) for preserving approximate ¢; distances in settings where
the data is high-dimensional, non-sparse, and heavy-tailed. Structured matrices, which allow
for more efficient multiplication, have also been proposed (see e.g., Ailon and Chazelle 2009;
Clarkson and Woodruff 2013).

The conventional random projections mentioned above are data-agnostic. However, recent
work has proposed incorporating information from the data either to select the “best” data-
agnostic random projection or to directly inform the random projection procedure. Cannings
and Samworth (2017) rely on the former approach and build an ensemble classifier where the
random projection matrix is chosen by selecting the one that minimizes the test error of the
classification problem among a set of data-agnostic random projections. On the other hand,
Parzer et al. (2024a) propose to use a random projection matrix for GLMs which directly
incorporates information about the relationship between the predictors and the response in
the projection matrix, rather than a projection matrix which satisfies the JL lemma. Parzer,
Filzmoser, and Vana-Giir (2024b) also provide in the linear regression a theoretical bound
on the expected gain in prediction error in using a projection which incorporates information
about the true regression coefficients compared to a conventional random projection. Moti-
vated by this result, they propose to construct a projection matrix using the sparse embedding
matrix of Clarkson and Woodruff (2013), where the random diagonal elements are replaced
in practice by a ridge coefficient with a minimal A penalty. This method has the advantage of
approximately capturing the true regression coefficients in the span of the random projection,
i.e., it ensures that the true regression coefficients can be recovered approximately after the
projection. Another data-driven approach to random projection for regression has been pro-
posed by Ryder, Karnin, and Liberty (2019), who propose a data-informed random projection
using an asymmetric transformation of the predictor matrix without using information of the
response.

Several packages in R provide functionality for random projections. For instance, package
RandPro (Aghila and Siddharth 2020; Siddharth and Aghila 2020) allows a Gaussian random
matrix (i.e, where entries are simulated from a standard normal), a sparse matrix (Achlioptas
2003; Li et al. 2006) or a matrix generated using the equal probability distribution with the
elements {—1,1}, to be applied to the predictor matrix before employing one of k nearest
neighbors, support vector machine or naive Bayes classifier on the projected features. Pack-
age SPCAvVRP (Gataric, Wang, and Samworth 2019) implements sparse principal component
analysis, based on the aggregation of eigenvector information from “carefully-selected” axis-
aligned random projections of the sample covariance matrix. Additionally, package RPEnsem-
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bleR (Cannings and Samworth 2021) implements a similar idea when building the ensemble
of classifiers: for each classifier in the ensemble, a collection of (Gaussian, axis-aligned pro-
jections, or Haar) random projection matrices is generated, and the one that minimizes a
risk measure for classification on a test set is selected. For Python (Van Rossum et al. 2011)
the sklearn.random__projection module (Pedregosa, Varoquaux, Gramfort, Michel, Thirion,
Grisel, Blondel, Prettenhofer, Weiss, Dubourg et al. 2011) implements two types of unstruc-
tured random matrices, namely Gaussian random matrix and sparse random matrix.

2.3. Generalized linear models

After we perform in each marginal model an initial screening step followed by a projection
step, we assume that the reduced and projected set of predictors z; = ¢x; € R™ together
with the response arise from a GLM with the response having conditional density from a
(reproductive) exponential dispersion family of the form

f(yilbi, &) = exp{W

where 6; is the natural parameter, a(.) > 0 and ¢(.) are specific real-valued functions deter-
mining different families, ¢ is a dispersion parameter, and b(.) is the log-partition function
normalizing the density to integrate to one. If ¢ is known, we obtain densities in the natural
exponential family for our responses. The responses are related to the m dimensional reduced
and projected predictors through the conditional mean, i.e., the conditional mean of y; given
z; depends on a linear combination of the predictors through a (invertible) link function g(.),
where 79 € R is the intercept and v € R™ is a vector of regression coefficients for the m
projected predictors. We can see that the original coefficients of the predictors x; can be
obtained as: B = ®'~.

+o(yin @)}, 9(Elyilzil) =70 + (@) Ty =i,

Estimates for 79 € R and v € R™ can be obtained by maximum likelihood, as generally one
chooses m < n. However, even if m < n it might still be desirable to add a (e.g., small
Ls) penalty to the likelihood of the marginal models — for the binomial family this can
alleviate problems related to separation. Moreover, if outlier influence should be reduced,
M- or trimmed estimators could be employed for obtaining robust estimates of the regression
coefficients (see e.g., Cantoni and Ronchetti 2001).

2.4. SPAR algorithm

We present the general algorithm for sparse projected averaged regression (SPAR) imple-
mented in package spareg.

1. Choose family with corresponding log-likelihood £(.) and link.

2. Standardize the (n xp) matrix of predictors X for all families and the vector of responses
y for the Gaussian family by subtracting the sample mean and dividing by the sample
standard deviation of each variable.

3. Calculate screening coefficients w.

4. For k=1,..., M models:
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(a) If p > pg, where pg is the number of variables to be screened, screen pgy predictors
based on the screening coefficient w, which yields for model k£ the screening index
set I, = {j%,..., j{;o} C {1,...,p}; if probabilistic screening should be employed,
draw the predictors sequentially without replacement using an initial vector of
probabilities p; o< |@;]. Otherwise, select the pg variables with the highest |@;|. If
p < po, perform no screening and I, = {1,...,p}.

(b) Project the screened variables to a random dimension my ~ Unif{m,...,m,}
using projection matrix ®;, to obtain 7y = X.IkCDE € R™™k where X.;, contains
the columns in X having a column index in Ij.

(c) Fit a GLM-type model of y on Zj to obtain estimated coefficients 7% € R™: and
~k —~ ~k
5. For a given threshold v > 0, set all B]k with \Bﬂ < v to0 for all 7, k.

6. Choose M and v via a validation set or cross-validation by repeating steps 1 to 4 and
employing a loss function K (M,v) on the test set

(Mbest7 Vbest) = argminM,uK<M7 V)'

7. Combine models of the ensembles either via the coefficients by using a simple average of
- Ak
the regression coefficients 8 = Z,]f\/[:l B /M (this results in averaging of the models on the
Ak
link level) or via the fitted values by taking a simple average of § = Z]szl g =/ B")/M.

8. Output the averaged estimated coefficients and predictions for the chosen M and v.

In order to choose default values for pg, m;, m, as well as the maximal number of considered
models M, we rely on the analysis in Parzer et al. (2024b). They find that, when using
their proposed data-driven random projection and HOLP screening coefficient, the gain in
predictive performance when using more than M = 20 models is marginal. We use therefore
M = 20 as a default value in the algorithm. Regarding the number of screened variables,
they propose choosing pg = ¢ - n as a multiple of n (thus independent of p) and find that
the best results are achieved for 2 < ¢ < 4. We thus set in the algorithm pg = 2n as a
default value. Finally, Mukhopadhyay and Dunson (2020) propose using m; = 2log(p) and
m, = 3n/4 while Parzer et al. (2024b) use slightly smaller goal dimensions (m; = log(p),
my = n/2), to reduce the dimension of the marginal models to be estimated. On the other
hand, for random projection matrices satisfying the JL lemma, m; can be derived from the
theoretical bounds for preserving the distances between all pairs of points approximately. We
employ as default values the ones proposed in Parzer et al. (2024D).

A further modification of the algorithm above is to employ part of the data for estimating
the screening coefficients (Step 3) and the remaining data to estimate the ensemble models
(Step 4). Such a strategy could avoid issues related to overfitting. Even though Parzer et al.
(2024b) find that in the linear regression case such a splitting approach does not improve
performance, the implementation in spareg allows for data splitting.

3. Software
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Package spareg (Vana-Giir, Parzer, and Filzmoser 2025) is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=spareg.

R> install.packages("spareg")
and loaded by
R> library("spareg")

In this section we rely for illustration purposes on a simulated example data set which contains
n = 200 observations of a continuous response y and p = 2000 predictors x which can be used
as a training data set and n = 100 observations to be used as a test set.

R> set.seed(1234)
R> example_data <- simulate_spareg_data(n = 200, p = 2000, ntest = 100)
R> str(example_data)

List of 7
$ x : num [1:200, 1:2000] 1.8302 -0.4251 -1.3893 -0.0947 0.4304 ...
$y : num [1:200] -5.64 -23.63 -17.09 13.18 20.91

$ xtest : num [1:100, 1:2000] -0.166 -0.3729 0.0379 0.6774 0.2174 ...
$ ytest : num [1:100] 10.61 -34.1 29.3 35.53 8.67 ...

$ mu : num 1

$ beta : num [1:2000] 1 -2 321-3231-2...

$ sigma2: num 83

The function simulate_spareg_data() simulates data from a linear regression model. Us-
ing the default values, data is generated using o? = 83, an intercept ;4 = 1 and 8 coef-
ficients with 100 non-zero entries, where the non-zero entries are uniformly sampled from

{-3,-2,-1,1,2,3}.

3.1. Main functions and their arguments

The two main functions for fitting the SPAR algorithm are:

spar(x, y, family = gaussian("identity"), model = NULL, rp = NULL,
screencoef = NULL, xval = NULL, yval = NULL, nnu = 20, nus = NULL,
nummods = c(20), measure = c("deviance", "mse", "mae", "class", "1-auc"),
parallel = FALSE, inds = NULL, RPMs = NULL, ...)

which implements the algorithm in Section 2.4 without cross-validation and returns an object
of class ‘spar’, and

spar.cv(x, y, family = gaussian("identity"), model = NULL,
rp = NULL, screencoef = NULL, nfolds = 10, nnu = 20, nus = NULL,
nummods = c(20), measure = c("deviance", "mse", "mae", "class", "l-auc"),
parallel = FALSE, ...)
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which implements the cross-validated procedure and returns an object of class ‘spar.cv’.

The common arguments of these functions are:

x an n X p numeric matrix of predictor variables where n < p,
y numeric response vector of length n,
family object from stats::family(); defaults to gaussian();

model an object of class ‘sparmodel’ which specifies the model employed for each ele-
ment of the ensemble. Defaults to spar_glm() for Gaussian family with identity link
and to spar_glmnet () for all other family-link combinations. The latter uses the glm-
net package to penalize the marginal models with a small ridge penalty in order to
increase stability in the coefficients.

rp an object of class ‘randomprojection’ Defaults to NULL, in which case rp_cw(data
= TRUE) is used.

screencoef an object of class ‘screencoef’. Defaults to NULL, in which case no screening
is employed.

nnu is the number of threshold values v which should be considered for thresholding;
defaults to 20;

nus is an optional vector of v values to be considered for thresholding. If it is not
provided, is defaults to a grid of nnu values. This grid is generated by including zero and
nnu—1 quantiles of the absolute values of the estimated coefficients from the marginal
models, chosen to be equally spaced on the probability scale.

nummods is the number of models to be considered in the ensemble; defaults to 20. If a
vector is provided, all combinations of nus and nummods are considered when choosing
the optimal vpest and Mypegt-

measure specifies the measure K (v, M) based on which the thresholding value vqp
and the number of models M should be chosen on the validation set (for spar()) or
in each of the folds (in spar.cv()). The default value for measure is "deviance",
which is available for all families. Other options are mean squared error "mse" or
mean absolute error "mae" (between responses and predicted conditional means, for
all families), "class" (misclassification error) and "1-auc" (one minus area under the
ROC curve) both just for binomial family.

parallel assuming a parallel backend is loaded and available, a logical indicating
whether the function should use it for parallelizing the estimation of the marginal mod-
els. Defaults to FALSE.

Furthermore, spar() has the specific arguments:

xval and yval which are used as validation sets for choosing vphest and Mpest. If not
provided, x and y will be employed.
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e inds is an optional list of length max(nummods) containing column index-vectors I
corresponding to variables that should be kept after screening for each marginal model;
dimensions need to fit those of the dimensions of the provided matrices in RPM.

e RPM is an optional list of length max (nummods) which contains projection matrices to be
used in each marginal model.

Function spar.cv() has the specific argument nfolds which is the number of folds to be
used for cross-validation. It relies on a lightweight version of spar() as a workhorse, which
is called for each fold. The random projections for each model are held fixed throughout the
cross-validation to reduce the computational burden. If data-driven random projections are
employed, only the data to be used in the random projection will be updated in each fold
iteration with the corresponding training data. More details will be provided in Section 4.

3.2. Screening coefficients

The objects for creating screening coefficients are implemented as S3 classes ‘screencoef’.
These objects are created by several implemented screen_x () functions,

screen_*(..., control = 1list())

which take as arguments ... (to be saved as attributes of the object) and control (a list of
controls to be used in the main function for computing the screening coefficients).

The following screening coefficients are implemented in spareg:

e screen_marglik() — computes the screening coefficients by the coefficient of X; for
j=1,...,pin a univariate GLM using the stats::glm() function.

n
wj =: argming cpming,cr Z —U(Bo, Bj; yis Tij)
i=1
It allows to pass a list of controls through the control argument to stats::glm()
(such as weights, family, offset — e.g., screen_marglik(control = list(family
= binomial (probit)))). Note that if family is not provided in control, the family
used in spar () will be used.

e screen_cor() — computes the screening coefficients by the correlation between y and
X using the function stats::cor(). It allows to pass a list of controls through the
control argument to stats::cor() — e.g., screen_cor(control = list(method =
"spearman")).

e screen_glmnet() — computes by default the ridge coefficient where the penalty A is
very small (see Parzer et al. 2024a, for clarification).

n p

. . . €

W =: argmingcgppming,cr E —L(B;yi, xi) + 3 E ﬁ?, e>0
i=1 j=1

The function relies on glmnet::glmnet(). It uses by default @ = 0 and a small
lambda.min.ratio. The optimal penalty is chosen using the recommendations in Parzer
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et al. (2024a), namely choosing the smallest penalty for which the deviance ratio (the
fraction of null deviance explained) is less than 0.99 for the Gaussian family and 0.8 for
other families. It, however, allows to pass a list of controls through the control argu-
ment to glmnet: :glmnet() — e.g., screen_glmnet (control = list(alpha = 0.5)).

As mentioned above, arguments related to the screening procedure can be passed to the
screen_x() function through ..., and will be saved as attributes of the ‘screencoef’ object.
More specifically, the following attributes are relevant for function spar ():

e nscreen integer giving the number of variables to be retained after screening; if not
specified, defaults to 2n.

e split_data_prop, double between 0 and 1 which indicates the proportion of the data
that should be used for computing the screening coefficient. The remaining data will
be used for estimating the marginal models in the SPAR algorithm; if not specified,
the whole data will be used for estimating the screening coefficient and the marginal
models.

o type character — either "prob" (indicating that probabilistic screening should be em-
ployed) or "fixed" (indicating that a fixed set of nscreen variables should be employed
across the ensemble); defaults to type = "prob".

e reuse_in_rp logical — indicates whether the screening coefficient should be reused at a
later stage in the construction of the random projection. Defaults to FALSE.

All implemented screen_* () functions return an object of class ‘screencoef’ which in turn
is a list with three elements:

e a character name,

e generate_fun() — an R function for generating the screening coefficient. This function
should have the following arguments: x —the matrix of standardized predictors — and y —
the vector of (standardized in the Gaussian case) responses, and the argument object,
which is a ‘screencoef’ object itself. It returns a vector of screening coefficients of
length p.

e control, which is the control list passed by the user in screen_x. These controls
are arguments which are needed in generate_fun() in order to generate the desired
screening coefficients.

For illustration purposes, consider the object created by calling screen_marglik():
R> obj <- screen_marglik()

A user-friendly print of the ‘screencoef’ object is provided:

R> obj
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Name: screen_marglik

Main attributes:

* proportion of data used for screening: 1

* number of screened variables: not provided, will default to 2n
* type: probabilistic screening

* screening coefficients: not (yet) computed from the data.

The structure of the object is the following:

R> unclass(obj)

$name
[1] "screen_marglik"

$generate_fun
function (y, x, object)

{
control <- object$control
if (is.null(control$family)) {
control$family <- eval(parse(text = attr(object, "family_string")))
}
coefs <- apply(x, 2, function(xj) {
glm_res <- do.call(function(...) glm(y ~ xj, ...), control)
glm_res$coefficients[2]
b
coefs
}
<environment: namespace:spareg>
$control
list (O

attr(,"type")

[1] "prob"
attr(,"reuse_in_rp")
[1] FALSE

Function generate_fun() defines the generation of the screening coefficient. Note that it
considers the controls in object$control when calling the stats::glm() function (unless
it is provided, the family argument in stats::glm() will be set to the “global” family
of the SPAR algorithm which is assigned inside the spar() function an attribute for the
‘screencoef’ object)

For convenience, a constructor function constructor_screencoef () is provided, which can
be used to create new screen_* functions. An example is presented in Section 4.1.

3.3. Random projections

Similar to the screening procedure, the objects for creating random projections are imple-
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mented as S3 classes ‘randomprojection’ and are created by functions which take ... and
a list of controls control as arguments:

rp_*(..., control = list())
The following random projections are implemented in spareg:

e rp_gaussian() — random projection object where the generated matrix will have iid
entries from a normal distribution (defaults to standard normal entries).

e rp_sparse() — random projection object where the generated matrix will be the one in
Achlioptas (2003). The value of 1) can be passed through the control argument and
defaults to psi = 1 e.g., rp_sparse(control = list(psi = 1/3)).

o rp_cw() —sparse embedding random projection in Clarkson and Woodruff (2013). This
matrix is constructed as ® = BD € R™*P where B is a (p X p) binary matrix, where
for each column j an index is uniformly sampled from {1, ..., m} and the corresponding
entry is set to one, and D is a (p x p) diagonal matrix, with entries d; ~ Unif({—1,1}).
If specified as rp_cw(data = TRUE), the random elements on the diagonal are replaced
by the ridge coefficients with a small penalty, as introduced in Parzer et al. (2024a).

Arguments related to the random projection can be passed through ..., which will then
be saved as attributes of the ‘randomprojection’ object. More specifically, the following
attributes are relevant in the SPAR algorithm and are present in all ‘randomprojection’
objects:

o mslow: integer giving the minimum dimension to which the predictors should be pro-
jected; defaults to log(p).

o msup: integer giving the maximum dimension to which the predictors should be pro-
jected; defaults to n/2.

Note that for random projection matrices which satisfy the JL lemma, mslow can be deter-
mined by employing existing results which give a lower bound on the goal dimension in order
to preserve the distances between all pairs of points within a factor (1 4 €). For example,
Achlioptas (2003) show mg = logn(4 + 27)/(¢?/2 — €3/3) for probability 1 —n~7.

The rp_*() functions return an object of class ‘randomprojection’ which is a list of five
elements. The most important three elements are:

e a character name,

e generate_fun() function for generating the random projection matrix. This function
should have arguments
— rp, which is itself a ‘randomprojection’ object;
— m, the target dimension;

— a vector of indices included_vector which indicates the column index of the
original variables in the x matrix to be projected using the random projection.
This is needed due to the fact that screening can be employed pre-projection.

13
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— x the vector of standardized predictors—can be NULL if the random projection to
be generated is data-agnostic;

— y the vector of (standardized) responses—can be NULL if the random projection to
be generated is data-agnostic.

It returns a matrix or a sparse matrix of class ‘dgCMatrix’ of the Matrix package (Bates,
Maechler, and Jagan 2024) with m rows and length(included_vector) columns.

e control, which is the control list in rp_*(). These controls are arguments needed in
generate_fun() in order to generate the desired random projection.

For the case where the random projection should incorporate some information related to the
data, two more elements can be potentially relevant.

e Function update_fun() updates the ‘randomprojection’ object with relevant informa-
tion from the arguments of the spar() function call. If it is not provided, it defaults
to updating the ‘randomprojection’ object with a further attribute family_string
which is character version of the family argument (e.g., in the default case it will be
"gaussian(identity)"). In certain constructions, such as the one in Parzer et al.
(2024a), certain data dependent quantities need to be computed only once, not every
time a random projection is generated. For example, in Parzer et al. (2024a), the ridge
coefficients are estimated once at the beginning of the algorithm and reused in each
projection. In such cases, function update_fun() can be employed to add data infor-
mation as attributes of the ‘randomprojection’ object to be subsequently used in the
generate_fun() function. If specified by the user, this function should take only ...
as an argument. Internally in the spar () function, all arguments of spar() are passed
to this function. It should return a ‘randomprojection’ object.

e In the case where a list of predefined RPMs is provided in spar(), for the data driven
random projections we allow the user to specify whether some parts of the given RPMs
should be updated with the provided data. This is possible through another optional
function update_rpm_w_data(). This is particularly relevant for the cross-validation
procedure, which employs the random projection matrices generated by calling the
spar () function on the whole data set before starting the cross-validation exercise. For
example, in our implementation of the data-driven rp_cw(data = TRUE), in each fold,
we only update the list of RPMs by adjusting the diagonal elements to the vector of
screening coefficients computed on the training data for the current fold, but do not
modify the random elements in each fold, to reduce the computational burden. Defaults
to NULL. If not provided, the values of the provided RPMs do not change.

For illustration purposes, consider the implemented function rp_gaussian(), which generates
a random projection with entries drawn from the normal distribution. The print method
returns key information about the random projection procedure.

R> obj <- rp_gaussian()
R> obj

Name: rp_gaussian
Main attributes:
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* Lower bound on goal dimension m: not provided, will default to log(p).
* Upper bound on goal dimension m: not provided, will default to n/2.

We turn to looking at the structure of the object:

R> unclass(obj)

$name
[1] "rp_gaussian"

$generate_fun
function (rp, m, included_vector, x = NULL, y = NULL)

{
p <- length(included_vector)
control_rnorm <- c(rp$control [names(rp$control) %in% names(formals(rnorm))],
attributes(rp) [names(attributes(rp)) %in% names(formals(rnorm))])
control_rnorm <- control_rnorm[!duplicated(names(control_rnorm))]
vals <- do.call(function(...) rnorm(m * p, ...), control_rnorm)
RM <- matrix(vals, nrow = m, ncol = p)
return (RM)
}

<environment: namespace:spareg>

$update_fun
function (...)

{
args <- list2(...)
if (is.null(attr(args$rp, "family"))) {
family_string <- pasteO(args$family$family, " (", args$family$link,
"M
attr(args$rp, "family_string") <- family_string
}
args$rp
}

<environment: namespace:spareg>

$update_rpm_w_data
NULL

$control
list()

The generate_fun() function returns a matrix with m rows and length(included_vector)
columns. Note that included_vector gives the indices of the variables which have been
selected by the screening procedure. In this case, the random projection does not use any
data information and we are only interested in the length of this vector.
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The function update_fun() only converts the ‘family’ object to a string and adds it as an
attribute. Function update_rpm_w_data() is NULL as this random projection is data-agnostic.

3.4. Marginal models

The package provides a class ‘sparmodel’ for the marginal model to be fitted for each element
of the ensemble. The framework assumes that model employs a linear predictor, i.e., a linear
combination of the projected variables.

Similar to the objects for random projection and screening coefficients, the functions which
create these objects have arguments ... (to be saved as attributes) and control (to be used
in the main function for building the model).

The two functions implemented are spar_glmnet (), which allows regularized GLMs as marginal
models using function glmnet: : glmnet () (where the default is to estimate a ridge regression
with the small penalty value), and spar_glm() which estimates unregularized GLMs using
stats::glm().

An object of class ‘sparmodel’ is a list with elements:

e a character name,

e model_fun() — a function which takes y (the vector of standardized responses), z
(the matrix of reduced predictors) and a further argument which is the object of class
‘sparmodel’ itself. It returns a list of two elements gammas which contains the vector
of coefficients and the value of the intercept.

o update_fun() —an optional function which can add further attributes to the ‘sparmodel’
object which is called at the beginning of the SPAR algorithm. This function returns
the ‘sparmodel’ object after modifying it. In the case of function spar_glmnet () this
function manipulates the ‘family’ object in a way which is convenient for function
glmnet: :glmnet ().}

The default is to use spar_glm() for Gaussian family with identity link and spar_glmnet ()
for the other families.

3.5. Methods

Methods print, plot, coef, predict are available for both ‘spar’ and ‘spar.cv’ classes.

print

The print method returns information on vhest Mpest, the number of active predictors
(i.e., predictors which have at least a nonzero coefficient across the marginal models) and
a summary of the non-zero coefficients. We estimate the SPAR algorithm with no screening
and rp_cw(data = TRUE) (default).

R> set.seed(12)
R> spar_res <- spar(example_data$x, example_data$y,

'In the case of families Gaussian, binomial and Poisson with canonical link, the family object is replaced by
a string containing the name of the family. This leads to glmnet using the faster specialized algorithms rather
than the general algorithm implemented for all ‘family’ objects.
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+ xval = example_data$xtest, yval = example_data$ytest,
+ nummods = c(5, 10, 15, 20, 25, 30))
R> spar_res

spar object:
Smallest Validation Measure of 3.00e+04 reached for nummod=5,
nu=4.05e-03 leading to 1017 / 2000 active predictors.
Summary of those non-zero coefficients:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.56404 -0.18048 0.10464 0.02842 0.20629 0.60673

For ‘spar.cv’ it also provides the same information for the (v, M) combination chosen by the
one-standard error rule.

R> spar_cv <- spar.cv(example_data$x, example_data$y,
+ nummods = c(5, 10, 15, 20, 25, 30))
R> spar_cv

spar.cv object:
Smallest CV-Meas 5042.9 reached for nummod=5, nu=0.00e+00 leading
to 2000 / 2000 active predictors.
Summary of those non-zero coefficients (non-standardized):
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.56802 -0.09134 0.02111 0.01693 0.12608 0.60687

Sparsest coefficient within one standard error of best CV-Meas reached for
nummod=5, nu=4.92e-03
leading to 858 / 2000 active predictors with CV-Meas 6556.6.
Summary of those non-zero coefficients (non-standardized):
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.56802 -0.18845 0.08795 0.02941 0.22233 0.60687

coef

Method coef takes as inputs a ‘spar’ or ‘spar.cv’ object, together with further arguments:

e nummod — number of models used to compute the averaged coefficients; value of nummod
with minimal measure is used if not provided.

e nu — threshold level used to compute the averaged coefficients; value with minimal
measure is used if not provided.

R> str(coef (spar_res))

List of 4
$ intercept: num 2.94
$ beta : num [1:2000] O 0 0.462 0 O ...
$ nummod : num 5

$ nu : num 0.00405
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It returns a list with the intercept, vector of beta coefficients and the nummod and nu employed
in the calculation. Additionally for ‘spar.cv’, the coef method also has argument opt_par
which is one of c("1se","best") and chooses whether to select the best pair of nus and
nummods according to cross-validation measure, or the solution yielding the sparsest vector
of coefficients within one standard deviation of that optimal cross-validation measure. This
argument is ignored when nummod and nu are given.

R> str(coef (spar_cv))

List of 4
$ intercept: num 2.47
$ beta : num [1:2000] 0.0639 -0.0615 0.4608 0.0435 0.024 ...
$ nummod : num 5
$ nu : num O
predict

Functionality for computing predictions is provided through the method predict which takes
a ‘spar’ or ‘spar.cv’ object, together with

e xnew — matrix of new predictor variables; must have same number of columns as x.

type — the type of required predictions; either on "response" level (default) or on
"link" level.

o avg_type — type of averaging used across the marginal models; either on "link" (de-
fault) or on "response" level.

e nummod — number of models used to compute the averaged coefficients; value of nummod
with minimal measure is used if not provided.

e nu — threshold level used to compute the averaged coefficients; value with minimal
measure is used if not provided.

e coef — optional vector of coefficients to be used directly in the prediction.

Additionally, for class ‘spar.cv’, argument opt_par is available and used in the computation
of the coefficients to be used for prediction (see above description of method coef).

plot

Plotting functionality is provided through the plot method, which takes a ‘spar’ or ‘spar.cv’
object, together with further arguments:

e plot_type — one of:

— "Val_Measure" plots the (cross-)validation measure for either a grid of nu values
for a fixed number of models nummod or viceversa.

— "Val_numAct" plots the number of active variables for either a grid of nu values
for a fixed number of models nummod or viceversa.
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— "res-vs-fitted" produces a residuals-vs-fitted plot. The residuals are computed
as y — 9, where ¥ is the prediction computed on response level.

— "coefs" produces a plot of the value of the standardized coefficients for each
predictor in each marginal model (before thresholding). For each predictor, the
values of the coefficients are sorted from largest to smallest across the marginal
models and then represented in the plot using a color scale.

plot_along — one of c("nu","nummod"); for plot_type = "Val_Measure" as well as
for plot_type = "Val_numAct" it indicates whether the values of the cross-validation
measure or number of active variables, respectively, should be shown for a grid of v
values while keeping the number of models nummod fixed or viceversa. This argument is

ignored when plot_type = "res-vs-fitted" or plot_type = "coefs".
nummod — fixed value for number of models when plot_along = "nu" for plot_type =
"Val_Measure" or "Val_numAct"; if plot_type = "res-vs-fitted", it is used in the

predict method, as described above.

nu — fixed value for ¥ when plot_along = "nummod" for plot_type = "Val_Measure"
or "Val_numAct"; if plot_type = "res-vs-fitted", it is used in the predict method,
as described above.

xfit — if plot_type = "res-vs-fitted", it is the matrix of predictors used in com-
puting the fitted values. This argument must be provided for the plot of residuals and
fitted values, as the ‘spar’ or ‘spar.cv’ objects do not store the original data.

yfit — if plot_type = "res-vs-fitted", vector of responses used in computing the
residuals. This argument must be provided for the plot of residuals and fitted values,
as the ‘spar’ or ‘spar.cv’ objects do not store the original data.

prange — optional vector of length 2 in case plot_type = "coefs" which gives the
limits of the predictors’ plot range; defaults to c(1, p).

coef_order — optional index vector of length p in case plot_type = "coefs" to give
the order of the predictors; defaults to seq_len(p).

The four plots for the ‘spar’ object are produced with the code below and shown in Figure 1.

R> plot(spar_res)

R> plot(spar_res, plot_type = "Val_numAct")

R> plot(spar_res, plot_type = "coefs")

R> plot(spar_res, plot_type = "res-vs-fitted", xfit = example_data$xtest,

+

yfit = example_data$ytest)

For class ‘spar.cv’ there is the extra argument opt_par = c("best", "1se") which is only
used for plot_type = "res-vs-fitted" and indicates whether the predictions should be
based on coefficients using the best (v, M) combination or using the combination which deliv-
ers the sparsest § having validation measure within one standard deviation from the minimum.

The plot methods return objects of class ‘ggplot’ (Wickham 2016).
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Figure 1: plot methods for ‘spar’ object. The red dots in the first two figures show the best
v chosen on the validation set for the optimal number of models M = 5.

3.6. Parallelization

The package supports parallelization in the estimation of the marginal models in the ensemble
via package foreach (Microsoft and Weston 2022). This is possible by setting the parameter
parallel = TRUE in spar() or spar.cv(), assuming that a parallel backend for foreach is
registered using the registerDoParallel() function of package doParallel (Microsoft Cor-
poration and Weston 2022). In general, the parallelization seems to pay off especially for data
sets with a larger number of observations n. A minimal example with a correlation-based
probabilistic screening and a Gaussian random projection matrix is provided below:

R> set.seed(1234)

R> example_data3 <- simulate_spareg_data(n = 1000, p = 2000, ntest = 1000)
R> library(doParallel)

R> cl <- makeCluster(2, type = "PSOCK")

R> registerDoParallel(cl)

R> spar_res_par <- spar(example_data3$x, example_data3$y,

+ screencoef = screen_cor(), rp = rp_gaussian(),

+ nummods = 50, parallel = TRUE)

R> stopCluster(cl)

4. Extensibility

4.1. Screening coefficients
We exemplify how screening coefficients implemented in package VariableScreening can easily
be incorporated in the framework of spareg.

We start by defining the function for generating the screening coefficients using function the
screenIID() in VariableScreening.

R> generate_scr_sirs <- function(y, x, object) {
+ res_screen <- do.call(function(...)
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+ VariableScreening: :screenIID(x, y, ...),
+ object$control)

+ coefs <- res_screen$measurement

+ coefs

+ F

Note that screenIID() also takes method as an argument. To allow for flexibility, we do
not fix the screening method in generate_scr_sirs() but rather allow the user to pass a
method through the control argument in the screen_*() function. This function is created
using the helper constructor_screencoef ():

R> screen_sirs <- constructor_screencoef (
+ "screen_sirs",
+ generate_fun = generate_scr_sirs)

We now call the spar() function with the newly created screening procedure. We consider
the method SIRS of Zhu et al. (2011), which ranks the predictors by their correlation with the
rank-ordered response and we do not perform probabilistic variable screening but employ the
top 2n variables in each marginal model. The employed random projection is rp_sparse ()
where we set ¢ = 1/,/p, as proposed by Li et al. (2006).

R> set.seed(123)
R> spar_example <- spar(example_data$x, example_data$y,

+ screencoef = screen_sirs(type = "fixed",
+ control = list(method = "SIRS")),
+ rp = rp_sparse(psi = 1/sqrt(ncol(example_data$x))), measure = "mse")

R> spar_example

spar object:
Smallest Validation Measure of 1.48e+02 reached for nummod=20,
nu=0.00e+00 leading to 400 / 2000 active predictors.
Summary of those non-zero coefficients:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.68568 -0.08569 0.07681 0.08965 0.24606 0.96782

4.2. Random projections

We exemplify how new random projections can be implemented in the framework of spareg.

We implement the random projection of Cannings and Samworth (2017), who propose using
the Haar measure for generating the random projections. They simulate matrices from the
Haar measure by independently drawing each entry of a matrix @) from a standard normal
distribution, and then take the projection matrix to be the transpose of the matrix of left
singular vectors in the singular value decomposition of (). The helper function below simulates
matrices of size m x p from the Haar measure:

R> simulate_haar <- function(m, p) {
+ RO <- matrix(1/sqrt(p) * rnorm(p * m), nrow = p, ncol = m)

21
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+ RM <- gr.Q(qr(R0O), complete = FALSE)
+ t (RM)
+ F

Moreover, Cannings and Samworth (2017) suggest using “good” random projections, in the
sense that they deliver the best out-of-sample prediction. The proposed approach employs
B models in an ensemble of classifiers. For each model k, By Haar random projections are
generated and the one with the lowest error on a test set is the one chosen to project the
variables in model k. (Note that, while the By random projections are data-agnostic, the
whole data is needed in finding the best random projection.) We will generate the random
projections in the following way. For each model k, we use a proportion £ of the data as a
test set and for b = {1,..., By} we generate a Haar random projection. We then estimate a
ridge regression on the training data and compute the misclassification error for the binomial
family and MSE for all other families on the test set. Finally, the best out of By projections
in terms of minimizing the loss on the test set is chosen.

We can start implementing such a random projection in spareg by the following steps. First,
there are no data quantities which are to be used in all possible random projections so we do
not need to specify a function update_fun(). However, we can use update_fun() to update
the ‘randomprojection’ object with further information related to the family. Given that
we will rely again on glmnet: :glmnet () in each iteration b, the family object is modified to
a string containing the name of the family for families Gaussian, binomial and Poisson with
canonical link (this will lead to using faster specialized algorithms). This modified family
is added to the list of controls as fit_family. We also set by default By = 50, £ = 0.25
and o = 0 (in the glmnet model to be estimated inside the function generating the random
projection).

R> update_rp_cannings <- function(...) {

args <- rlang::list2(...)
if (is.null(args$rp$control$family)) {
family_string <- pasteO(args$family$family,
"(", args$family$link, ")")
args$rp$control$family_string <- family_ string
family <- args$family
fit_family <- switch(family$family,
"gaussian" = if (family$link == "identity") "gaussian" else family,
"binomial" = if (family$link == "logit") "binomial" else family,
"poisson" = if (family$link == "log") "poisson" else family,
family)

args$rp$control$fit_family <- fit_family
}
if (is.null(args$rp$control$alpha)) args$rp$control$alpha <- 1
if (is.null(args$rp$control$B2)) args$rp$control$B2 <- 50
if (is.null(args$rp$control$xi)) {

args$rp$control$xi <- 0.25
} else {

stopifnot ("xi must be between O and 1."=

args$rp$control$xi >= 0 & args$rp$control$xi<= 1)

+ + + + 4+ + ++++F+H+ O+ O+
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}
args$rp

As we can see, values for xi and B2 can be passed by the user through the control argument,
and if they are not specified, they are set to the default values.

Next we specify the function for generating the random projection.

R> generate_cannings <- function(rp, m, included_vector, x, y) {

+ + + + + + + ++FF A+ FFFFEFEFEFFEEF A+

xs <- x[, included_vector]
n <- nrow(x); p <- ncol(xs)
B2 <- rp$control$B2; xi <- rp$control$xi
id_test <- sample(n, size = n * xi)
xtrain <- xs[-id_test, ]; xtest <- xs[id_test,]
ytrain <- y[-id_test]; ytest <- y[id_test]
control_glmnet <-
rp$control [names (rp$control) 7inj, names(formals(glmnet: :glmnet))]
best_val <- 1eb
family <- eval(parse(text = rp$control$family_string))
for (b in seq_len(B2)) {
RM <- simulate_haar(m, p)
Xrp <- tcrossprod(xtrain, RM)
mod <- do.call(function(...)
glmnet: :glmnet(x = xrp, y = ytrain,
family = rp$control$fit_family, ...),
control_glmnet)
coefs <- coef(mod, s = min(mod$lambda))
eta_test <- (cbind(1, tcrossprod(xtest, RM)) }*}, coefs)
pred <- family$linkinv(as.vector(eta_test))
out_perf <- ifelse(family$family == "binomial",
mean(((pred > 0.5) + 0) != ytest),
mean ((pred - ytest)~2))
if (out_perf < best_val) {
best_val <- out_perf; best_RM <- RM
}
rm (RM)
}
return(best_RM)

In the cross-validation procedure, we do not generate new matrices for each step to keep
computational costs low, so we do not specify a function update_rpm_w_data().

Putting it all together, we get:

R> rp_cannings <- constructor_randomprojection(

+
+

"rp_cannings",
generate_fun = generate_cannings,
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+ update_fun = update_rp_cannings

+ )

We can now estimate SPAR for a binomial model, where we transform the response to a
binary variable. We simulate again data from a linear model and then transform the response
to a binary scale:

R> set.seed(1234)

R> example_data2 <- simulate_spareg _data(n = 100, p = 1000, ntest = 100)
R> ystar <- (example_data2$y > 0) + 0

R> ystarval <- (example_data2$ytest > 0) + O

We use 50 models (which is in line to recommendations in Cannings and Samworth 2017),
and no screening procedure. Moreover, we do not perform any thresholding;:

R> set.seed(12345)

R> spar_example_1 <- spar(x = example_data2$x, y = ystar,

+ family = binomial(),

rp = rp_cannings(control = list(lambda.min.ratio = 0.01)),
nus = 0, nummods = 50,

xval = example_data2$xtest, yval = ystarval,

measure = "class")

+ + + +

Using the data-driven rp_cw():

R> set.seed(12345)

R> spar_example_2 <- spar(x = example_data2$x, y = ystar,

+ family = binomial(), rp = rp_cw(data = TRUE),

+ nus = 0, nummods = 50, xval = example_dataZ2$xtest, yval = ystarval,
+ measure = "class")

We can now compare the two approaches by looking at the minimum measure Meas achieved
on the validation set:

R> spar_example_1$val_res[which.min(spar_example_1$val_res$Meas), ]

nnu nu nummod numAct Meas
1 1 0 50 1000 0.2

R> spar_example_2$val_res[which.min(spar_example_2$val_res$Meas), ]

nnu nu nummod numAct Meas
1 1 0 50 1000 0.19

4.3. Marginal models

Finally, we illustrate how to implement a new marginal model in spareg. We consider es-
timating a robust GLM as a marginal model using the package robustbase (Todorov and
Filzmoser 2009).
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We start by defining the model_fun() function, where y is the vector of responses, z is
the matrix of reduced predictors and object is a ‘sparmodel’ object. In the case of a lin-
ear model, we rely on the function robustbase::1lmrob(), for other family-links we use
robustbase: :glmrob().

R> model_glmrob <- function(y, z, object) {

+ requireNamespace ("robustbase")

+ fam <- object$control$family

+ if (fam$family == "gaussian" & fam$link == "identity") {
+ glmrob_res <- do.call(function(...)

+ robustbase: :1lmrob(y ~ as.matrix(z), ...),
+ object$control)

+ } else {

+ glmrob_res <- do.call(function(...)

+ robustbase: :glmrob(y ~ as.matrix(z), ...),
+ object$control)

+ }

+ intercept <- coef(glmrob_res)[1]

+ gammas <- coef (glmrob_res) [-1]

+ list(gammas = gammas, intercept = intercept)

+ }

We then construct a spar_glmrob() function, which builds the ‘sparmodel’ object. We can
do this easily by the available constructor function:

R> spar_glmrob <- constructor_sparmodel (name = "glmrob",
+ model_fun = model_glmrob)

For illustration purposes we contaminate 25% of example_data2 above with outliers in the
predictors and consider a binary version of the response variable y.

R> perc_cont <- 0.25

R> x <- example_data2$x;

R> set.seed(123)

R> np <- ncol(x) * nrow(x)

R> id_outliers_x <- sample(seq_len(unp), perc_cont * np)
R> x[id_outliers_x] <- x[id_outliers_x] + 50

We can now estimate the SPAR algorithm with robust GLMs as marginal models and compare
it to a version with marginal GLMs. We use no screening and rp_gaussian(). We set
measure = "mae" i.e., we find the threshold v by choosing the value which delivers the lowest
mean absolute error. To improve stability in the estimates from robustbase: :glmrob, we

set the upper bound on goal dimension of the random projection to 25 (default would be
n/2 = 100).

R> set.seed(1234)
R> spar_rob_res <- spar(x, ystar, family = binomial(),
+ model = spar_glmrob(), rp = rp_gaussian(msup = 25),
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+ measure = "mae")

R> set.seed(1234)

R> spar_res <- spar(x, ystar, family = binomial(),

+ model = spar_glm(), rp = rp_gaussian(msup = 25),
+ measure = '"mae')

R> spar_rob_res

spar object:
Smallest Validation Measure of 4.13e-01 reached for nummod=20,
nu=1.94e-03 leading to 1000 / 1000 active predictors.
Summary of those non-zero coefficients:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.171e-03 -2.430e-04 3.327e-05 3.458e-05 3.039e-04 1.266e-03

R> spar_res

spar object:
Smallest Validation Measure of 4.17e-01 reached for nummod=20,
nu=1.81e-03 leading to 1000 / 1000 active predictors.
Summary of those non-zero coefficients:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.085e-03 -2.311e-04 3.125e-05 3.531e-05 2.880e-04 1.133e-03

We observe that the attained mae is indeed lower for the robust version.

5. Conclusion

Package spareg can be employed for modeling high-dimensional data in a GLM framework,
especially in settings where the number of predictors is much higher than the number of
observations. The package provides an implementation of a computationally-efficient algo-
rithm for sparse projected and average regression (SPAR), which combines variable screening
and random projection in an ensemble of GLMs to reduce dimensionality of the predictors.
Package spareg provides flexible classes for i) specifying the coefficient based on which screen-
ing should be performed (both in a classical fashion, where the predictors with the highest
screening coeflicient are selected for subsequent analysis or in a probabilistic fashion, where
variables are sampled for inclusion with probabilities proportional to their screening coef-
ficient), ii) generating the random projection to be employed in each marginal model, iii)
specifying the marginal models to be used in the ensemble. Screening coefficients based on
marginal correlation between the predictors and the response, marginal coefficients from a
GLM or ridge coefficients are provided in the package. Moreover, several random projections
are implemented: the Gaussian and sparse matrices which are data-agnostic and satisfy the
JL lemma and the data-driven projection proposed in Parzer et al. (2024b) for linear re-
gression and extended to GLMs in Parzer et al. (2024a). This data-driven approach, where
information about the relationship among the responses and the predictors is incorporated
in the random projection through a ridge coefficients, has the advantage of ensuring that
the true regression coefficients can be recovered approximately after the projection. Method-
ologically, the SPAR algorithm with ridge screening coefficients and the data-driven random
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projection (as proposed in Parzer et al. (2024a)) has been demonstrated to perform effec-
tively in terms of predictive power and variable ranking in settings with correlated predictors
and across different degrees of sparsity of the coefficient vector, making it a suitable method
for high-dimensional settings with correlated predictors where the sparsity of the problem is
unknown.

Moreover, the flexibility and adaptability of the spareg package in dealing with different
types of screening, random projection and types of GLMs, make it an attractive choice for
practitioners and researchers in a wide variety of data settings. It encourages exploration of
new methods for variable screening and random projections or the combination of existing
approaches to tailor solutions to specific data requirements.

Computational details

The results in this paper were obtained using R 4.5.0. R itself and all packages used are
available from CRAN at https://CRAN.R-project.org/.

R> sessionInfo()

R version 4.5.0 (2025-04-11)
Platform: aarch64-apple-darwin20
Running under: macOS Sonoma 14.2.1

Matrix products: default
BLAS:  /Library/Frameworks/R.framework/Versions/4.5-armé4/Resources/1ib/1libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRlapack.dylib;

locale:
[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Vienna
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:
[1] spareg_1.0.0 ggplot2_3.5.2

loaded via a namespace (and not attached):

[1] generics_0.1.3 tidyr_1.3.1
[3] robustbase_0.99-4-1 rstatix_0.7.2
[6] shape_1.4.6.1 lattice _0.22-6
[7] magrittr_2.0.3 grid_4.5.0
[9] iterators_1.0.14 foreach 1.5.2

[11] glmnet_4.1-8 Matrix_1.7-3
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[13] backports_1.5.0 Formula_1.2-5
[15] survival_3.8-3 energy_1.7-12
[17] purrr_1.0.4 scales_1.3.0
[19] codetools_0.2-20 abind_1.4-8
[21] Rdpack_2.6.4 cli_3.6.4
[23] expm_1.0-0 rlang 1.1.6
[25] rbibutils_2.3 gsl_2.1-8
[27] cowplot_1.1.3 munsell 0.5.1
[29] splines_4.5.0 withr_3.0.2
[31] VariableScreening 0.2.1 tools_4.5.0
[33] ggsignif_0.6.4 dplyr_1.1.4
[35] colorspace_2.1-1 ggpubr_0.6.0
[37] boot_1.3-31 ROCR_1.0-11
[39] broom_1.0.8 vctrs_0.6.5
[41] R6_2.6.1 lifecycle_1.0.4
[43] car_3.1-3 MASS_7.3-65
[45] pkgconfig 2.0.3 gee_4.13-29
[47] pillar_1.10.2 gtable_0.3.6
[49] glue_1.8.0 Rcpp_1.0.14
[51] DEoptimR_1.1-3-1 tibble 3.2.1
[63] tidyselect_1.2.1 rstudioapi_0.17.1
[65] farver 2.1.2 carData_3.0-5
[57] labeling 0.4.3 compiler_4.5.0
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