Package ‘spdesign’

October 18, 2024
Type Package
Title Designing Stated Preference Experiments
Version 0.0.5
Maintainer Erlend Dancke Sandorf <erlend.dancke.sandorf@nmbu.no>

Description Contemporary software commonly used to design stated preference experiments are ex-
pensive and the code is closed source. This is a free software package with an easy to use inter-
face to make flexible stated preference experimental designs using state-of-the-art meth-
ods. For an overview of stated choice experimental design the-
ory, see e.g., Rose, J. M. & Bliemer, M. C.J. (2014) in Hess S. & Daly. A. <doi:10.4337/9781781003152>. The pack-
age website can be accessed at <https://spdesign.edsandorf.me>. We acknowledge fund-
ing from the European Union’s Horizon 2020 research and innovation program un-
der the Marie Sklodowska-Curie grant INSPiRE (Grant agreement ID: 793163).

License CC BY-SA 4.0
Encoding UTF-8

URL https://spdesign.edsandorf.me,
https://github.com/edsandorf/spdesign

Depends R (>=4.0.0), stringr

Imports cli, future, randtoolbox, matrixStats, dplyr, tibble

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

RoxygenNote 7.3.1

NeedsCompilation no

Author Erlend Dancke Sandorf [aut, cre],
Danny Campbell [aut]

Repository CRAN
Date/Publication 2024-10-18 13:40:02 UTC

https://doi.org/10.4337/9781781003152
https://spdesign.edsandorf.me
https://spdesign.edsandorf.me
https://github.com/edsandorf/spdesign

2 Contents

Contents
OonAttach L L e e 4
all_priors_and_levels_specified Lo 4
any_duplicates L e 5
attribute_levels L e 5
attribute_level_balance e 6
attribute_names L e e e e e 6
block e e 7
calculate_a_error e e e 8
calculate _C_error e e 8
calculate_d_error e 9
calculate_efficiency 9
calculate_efficiency_criteria 10
calculate_S_€rror e e 11
clean_utility e 12
coef.spdesign L. e e 12
containS_ dUmMIMIES v v v e e e e e e e e e 13
070) 13
Cycle . . . e 14
define_base_X_j 15
define_X_j o o e e e e 15
derive_VCOV e e e e e e e e e e 16
derive_vcov_mnl oL e 17
derive_vcov_rpl e 17
digitize e 17
dummy_Nnames e e e e e 18
evaluate_design_candidate Lo 18
exclude e e e e 19
expand_attribute_levelso 20
extract_all_names e 20
extract_attribute_names e e e e e e e e e 21
extract_distribution L e 22
extract_level_occurrence e e 22
extract_named_values e e e 23
extract_param_distribution L. Lo 23
eXIract_param_NAmMES v v v v v v e e e e e e e e e e e e e e e e e 24
extract_prior_distribution o000 24
extract_specified L. 25
extract_unparsed_values Lo 25
extract_values e 26
federov L e e e e 26
fits_IVI_OCCUITENCES o ot e e e e e e e 28
full_factorial e e 28
generate_design L. e e e e 29
generate_rsc_candidate L. Lo 31
has_bayesian_prior 31

has_random_parameter 32

Contents

3
is_balanced e 32
level_balance e e 33
Ivl_occurrences e e e e e 33
make _draws e e e 34
make_mlhs L e e e e e e 35
make_pseudo_random L Lo e 35
make_scrambled_halton 36
make_scrambled_sobol e 36
make_standard_halton 37
make_standard_sobol e 37
min_Ivl_OCCUITENCE o o o o e e e e e 38
nIVIS . . . e e e e e 38
normal e e e 39
OCCUITENCES . &« & v v e v e 40
PIrePAre_PIIOTS . . . v v v v o e e e i e e e e e e e e e e e e e e e e e 41
print.spdesign L. L e e 41
print_efficiency_criteria 42
print_initial_header 42
print_iteration_information oL o 43
PIIOIS . . . o o it e 44
probabilities 44
probabilities_mnl e 45
radical_inverse e 45
randOm oL e e e 46
random_design_candidate L. L 47
relabel 48
remove_all brackets e 48
TEMOVE_PIIOT . . o v v v vt e v e e e e e e e e e e e 49
remove_round_brackets 49
remove_square_brackets 50
remove_whitespaceo 50
TEP_COIS .« o o o e e e 51
TEP_TOWS « © o v v v v et e e e e e e e e e e e e e e e e 51
ISC o v v e e e e e e e e e 52
set_default_level _occurrence e 53
set_default_options 53
shuffle 54
summary.spdesign e 54
SWAD « o v v e 55
too_small e 55
transform_distribution L e 56
transform_lognormal oL 56
transform_normal L. e e e 57
transform_triangular L. 57
transform_uniform L L e e 58
update_utility L e e e 58
utility_formula oL 59

VEOV.SPAeSIgN L e e 59

4 all_priors_and_levels_specified

Index 60

.onAttach Print package startup message

Description

The function is called when the package is loaded through library or require.

Usage

.onAttach(libname, pkgname)

Arguments
libname Library name
pkgname Package name
Value
Nothing

all_priors_and_levels_specified
Check whether all priors and attributes have specified levels

Description

Check whether all priors and attributes have specified levels

Usage

all_priors_and_levels_specified(x)

Arguments

X A list of utility expressions

Value

A boolean equal to ‘TRUE" if all are specified and ‘FALSE® if not

any_duplicates

any_duplicates Check whether any priors or attributes are specified with a value more
than once

Description

Check whether any priors or attributes are specified with a value more than once

Usage

any_duplicates(x)

Arguments

X A list of utility expressions

Value

A boolean equal to “TRUE" if specified more than once.

attribute_levels Generic for getting the attributes and levels from the utility function

Description

Generic for getting the attributes and levels from the utility function

Usage

attribute_levels(x)

Arguments

X An object of class utility

Value

A named list of attribute levels

6 attribute_names

attribute_level_balance
Check whether we can achieve attribute level balance

Description

Check whether we can achieve attribute level balance

Usage

attribute_level_balance(x, rows)

Arguments

X A list of utility expressions

rows The number of rows in the design
Value

A boolean equal to “TRUE" if attribute level balance can be achieved and ‘FALSE‘ otherwise

attribute_names Generic for getting the attribute names

Description

Generic for getting the attribute names

Usage

attribute_names(x)

Arguments

X An object of class utility

Value

A character vector of attribute names

block 7

block Block the design

Description

The function will take an object of class ’spdesign’ and add a blocking column to the design matrix.
The function will use random permutations of the blocking column to find the column that mini-
mizes correlation between the blocking column and the design columns. Specifically the target for
the minimization procedure is the mean squared correlation.

Usage

block(x, blocks, target = 5e-04, max_iter = 1e+06)

Arguments
X An object of class ’spdesign’
blocks An integer giving the number of blocks. The number of blocks must be a multi-
ple of the number of rows to ensure equal number of choices within a block.
target A target value for the mean squared correlation. The default value is 0.0005.
Setting the target to O forces the function to search all ‘max_iter‘ blocking can-
didates
max_iter The maximum number of candidates to consider before returning the best block-
ing candidate. The default value is 1000000.
Details

The function uses a random permutation so every time you run the function you will get a slightly
different blocking column. You can set a seed prior to calling the function to always return the same
blocking vector.

If you pass in a design that already contains a blocking column, then this blocking column will be
replaced without warning.

Value

A modified ’spdesign’ object where the design is replaced with the same design and a blocking
column. In addition a correlation vector, number of iterations and the target value are returned as
part of the modified "spdesign’ object.

8 calculate _c_error

calculate_a_error A-error

Description
Computes the A-error of the design, which is equal to the trace of the variance-covariance matrix
over the number of parameters to be estimated

Usage

calculate_a_error(design_vcov)

Arguments
design_vcov A variance-covariance matrix returned by derive_vcov or returned by an esti-
mation routine. The matrix should be symmetrical and K-by-K
Value

A single error measure

calculate_c_error C-error

Description

Seeks to minimize the variance of the ratio of two parameters, for example, willingness-to-pay.

Usage

calculate_c_error(design_vcov, p, dudx, return_all)

Arguments
design_vcov A variance-covariance matrix returned by derive_vcov or returned by an esti-
mation routine. The matrix should be symmetrical and K-by-K
p Prior values
dudx A character string giving the name of the prior in the denominator. Must be
specified when optimizing for ’c-error’
return_all If ‘TRUE® return a K or K-1 vector with parameter specific error measures.
Default is ‘FALSE".
Value

A vector giving the variance of the ratio for each K-1 parameter or a single number with the sum of
the variances used for optimization

calculate_d_error 9

calculate_d_error D-error

Description

Computes the D-error of the design, which is equal to the K-root of the determinant of the variance-
covariance matrix.

Usage

calculate_d_error(design_vcov)

Arguments
design_vcov A variance-covariance matrix returned by derive_vcov or returned by an esti-
mation routine. The matrix should be symmetrical and K-by-K
Value

A single number

calculate_efficiency Calculate efficiency

Description

The function is called inside evaluate_design_candidate

Usage

calculate_efficiency(
prior_values,
design_env,
model,
dudx,
return_all = FALSE,
significance = 1.96

10

Arguments

prior_values

design_env

model

dudx

return_all

significance

Value

calculate_efficiency_criteria

a list or vector of assumed priors

A design environment in which to evaluate the the function to derive the variance-
covariance matrix.

A character string indicating the model to optimize the design for. Currently the
only model programmed is the 'mnl’ model and this is also set as the default.

A character string giving the name of the prior in the denominator. Must be
specified when optimizing for ’c-error’

If ‘TRUE® return a K or K-1 vector with parameter specific error measures.
Default is ‘FALSE".

A t-value corresponding to the desired level of significance. The default is sig-
nificance at the 5 t-value of 1.96.

A list with a named vector of efficiency criteria and the variance-covariance matrix

calculate_efficiency_criteria

Calculate efficiency criteria

Description

The function is a wrapper around calculate_a_error, calculate_c_error, calculate_d_error
and calculate_s_error to provide a unified interface for calling and calculating efficiency criteria.

Usage

calculate_efficiency_criteria(

design_vcov,

P,

dudx,
return_all =
significance
type

Arguments

design_vcov

dudx

FALSE,
=1.96,

A variance-covariance matrix returned by derive_vcov or returned by an esti-
mation routine. The matrix should be symmetrical and K-by-K

Prior values

A character string giving the name of the prior in the denominator. Must be
specified when optimizing for ’c-error’

calculate_s_error 11

return_all If ‘TRUE® return a K or K-1 vector with parameter specific error measures.
Default is ‘FALSE".

significance A t-value corresponding to the desired level of significance. The default is sig-
nificance at the 5 t-value of 1.96.

type A string indicating the type of efficiency criteria to calculate can be either: "a-

non

error”, "c-error", "d-error" or "s-error"

Details

The function is mainly used internally to evaluate and report on designs, but is exported to allow
the user to use the function to calculate the efficiency criteria of the model once it has been run on
their data.

Value

See individual efficiency criteria

References

Bliemer and Rose, 2009, Efficiency and sample size requirements for state choice experiments,
Transportation Research Board Annual Meeting, Washington DC Scarpa and Rose, 2008, Designs
efficiency for non-market valuation with choice modelling: How to measure it, what to report and
why, Australian Journal of Agricultural and Resource Economics, 52(3):253-282 Bliemer and Rose,
2005a, Efficiency and sample size requirements for stated choice experiments, Report ITLS-WP-
05-08, Institute for Transport and Logistics Studies, University of Sydney Kessels, R., Goos, P. and
Vandebroek, M., 2006, A comparison of criteria to design efficient choice experiments, Journal of
Marketing Research, 43(3):409-419

calculate_s_error S-error

Description

Calculates a "lower bound" sample size to obtain theoretically significant parameter estimates under
the assumption that the priors are correct.

Usage

calculate_s_error(design_vcov, p, return_all, significance)

Arguments
design_vcov A variance-covariance matrix returned by derive_vcov or returned by an esti-
mation routine. The matrix should be symmetrical and K-by-K
p Prior values
return_all If ‘TRUE® return a K or K-1 vector with parameter specific error measures.

Default is ‘FALSE".

significance A t-value corresponding to the desired level of significance. The default is sig-
nificance at the 5 t-value of 1.96.

12 coef.spdesign

Value

A vector giving the "minimum" sample size for each parameter or a single number with the smallest
sample size needed for all parameters to be theoretically significant.

clean_utility Cleans the utility expression

Description

The function cleans the utility expression by removing extra white spaces, removes brackets and
other information to return a clean, easy-to-read expression.

Usage

clean_utility(x)

Arguments

X An object of class utility

Details

We can also use the side-effect of the function on a list of utility expressions that do not contain
brackets to return a an updated utility expression with alternative specific attribute names.

Warning: The function does not check if the utility expression *is* clean, which means that running
the function multiple times will result in duplicate alternative names for the attributes. You need to
pay particular attention to this fact when using the formula update_utility because this function
calls clean_utility.

Value

A cleaned utility function as a list

coef.spdesign Generic for extracting the vector of priors

Description

Generic for extracting the vector of priors

Usage

S3 method for class 'spdesign'
coef(object, ...)

contains_dummies 13

Arguments
object A model object of class *spdesign’
Additional arguments passed to the function
Value

A vector of named priors used in the optimization

contains_dummies Check whether the utility function contains dummy coded variables

Description
We are splitting on all separators first before detecting whether we have dummy coded attributes to
allow for people reusing the _dummy name for the attribute.

Usage

contains_dummies(string)

Arguments

string A string or list of strings

Value

A boolean equal to ‘TRUE® if the utility function contains dummy coded attributes and ‘FALSE‘
otherwise

cor Correlation

Description
Calculate the correlation of the design. The function gets the design from the design object before
passing it to cor from stats. This is a wrapper around cor.

Usage

cor(x, ...)

Arguments

X A model object of class *spdesign’

Additional parameters passed to the function

14 cycle

Details

Note that when your design includes constants, the function will print a warning because the stan-
dard deviation of a constant is 0.

Value

A matrix with correlations

cycle Cycling of attribute levels

Description

Cycles the attribute levels to create a new design candidate. "Cycling replaces all attribute levels in
each choice situation at the time by replacing the first level with the second level, second level with
the third etc. Since this change affects all columns, cycling can only be performed if all attributes
have exactly the same sets of feasible levels, (e.g., where all variables are dummy coded)." (p. 253).

Usage

cycle(x)

Arguments

X A vector of attribute levels

Details

This part of the RSC algorithm is rarely invoked.

Value

A cycled design candidate

References

Hensher, D. A., Rose, J. M. & Greene, W., 2005, Applied Choice Analysis, 2nd ed., Cambridge
University Press

define_base_x_j 15

define_base_x_j Define base x_j

Description

Defines the base of the x_j list using the parsed utility expression, design_candidate and the base
model matrix

Usage

define_base_x_j(utility, design_candidate)

Arguments

utility A named list of utility functions. See the examples and the vignette for examples
of how to define these correctly for different types of experimental designs.

design_candidate
The current design candidate under consideration

Value

A base list x_j with model matrices the lenght of J

define_x_j Define x_j

Description

Define x_j to use for the analytic derivatives of the variance-covariance matrix. x_j is derived based
on the provided utility functions and design candidate using base model.matrix to automatically
handle alternative specific attributes and interaction terms

Usage

define_x_j(utility, design_candidate)

Arguments

utility A named list of utility functions. See the examples and the vignette for examples
of how to define these correctly for different types of experimental designs.
design_candidate
The current design candidate under consideration

16 derive_vcov

Details

We can extract the attribute names for each utility function to allow us to place the correct restric-
tions on the design candidate. Specifically, we restrict all levels of unavailable attributes to zero for
alternatives where they do not feature. This is to ensure that we do not give weight when deriving
the variance-covariance matrix using derive_vcov. Furthermore, the Xs are "sorted" using the or-
der of the candidate set, which ensures that when we calculate the sum of the probabilities times X,
the correct columns are added together. See derive_vcov.

Value

The list x_j

derive_vcov Derive the variance covariance matrix of the design

Description

The function is a wrapper around derive_vcov_mnl and derive_vcov_rpl and calculates the
variance-covariance matrix of the specified model and design given the priors.

Usage

derive_vcov(design_env, model)

Arguments
design_env An environment containing all the elements necessary to derive the variance-
covariance matrix
model A string indicating the model for which you wish to derive the variance covari-
ance matrix. Can be either "mnl" or "rpl"
Value

The variance covariance matrix. If the Fisher information matrix is singular, then return NULL

derive_vcov_mnl

derive_vcov_mnl Derive the variance covariance matrix for the MNL model

Description

The function takes no arguments and is evaluated in context!

Usage

derive_vcov_mnl()

Value

The variance co-variance matrix

derive_vcov_rpl Derive the variance covariance matrix for the RPL model

Description

The function takes no arguments and is evaluated in context!

Usage

derive_vcov_rpl()

Value

The variance co-variance matrix

digitize Expand the sequence of integers

Description

Equation 1 in Bhat (2003)

Usage

digitize(n_dim, primes, count, digit)

18 evaluate_design_candidate

Arguments
n_dim Number of dimensions
primes A vector of prime numbers
count A matrix
digit A vector

References

Bhat, C. n_draws., 2003, Simulation Estimation of Mixed Discrete Choice Models Using Random-
ized and Scrambled Halton Sequences, Transportation Research Part B, 9, pp. 837-855

dummy_names Find the position of the dummy coded attributes

Description

The function will find the position of the dummy coded attributes in the candidate set (in the case
of the Modified Federov or Random algorithms) or the design candidate (in the case of the RSC
algorithm). This will let us know which columns to coerce to factors prior to defining x_j.

Usage

dummy_names (x)

Arguments

X An object of class utility

Value

A boolean vector matching the expanded utility expression

evaluate_design_candidate
Evaluate the design candidate

Description

The evaluation of the design candidate is independent of the optimization algorithm used.

exclude 19

Usage

evaluate_design_candidate(
utility,
design_candidate,
prior_values,
design_env,
model,
dudx,
return_all,
significance

Arguments

utility A utility function
design_candidate
The current design candidate

prior_values a list or vector of assumed priors

design_env A design environment in which to evaluate the the function to derive the variance-
covariance matrix.

model A character string indicating the model to optimize the design for. Currently the
only model programmed is the 'mnl’ model and this is also set as the default.

dudx A character string giving the name of the prior in the denominator. Must be
specified when optimizing for ’c-error’

return_all If “‘TRUE® return a K or K-1 vector with parameter specific error measures.
Default is ‘FALSE".

significance A t-value corresponding to the desired level of significance. The default is sig-
nificance at the 5 t-value of 1.96.
Value

A named vector with efficiency criteria of the current design candidate. If Bayesian prior_values
are used, then it returns the average error.

exclude Exclude rows from the candidate set

Description

The function takes the list of exclusions and transforms them into an expression that is then parsed
and evaluated to apply the exclusions to the supplied candidate set using standard subsetting rou-
tines.

Usage

exclude(candidate_set, exclusions)

20 extract_all names

Arguments

candidate_set A matrix or data frame in the "wide" format containing all permitted combina-
tions of attributes. The default is NULL. If no candidate set is provided, then the
full factorial subject to specified exclusions will be used. This is passed in as an
object and not a character string. The candidate set will be expanded to include
zero columns to consider alternative specific attributes.

exclusions A list of exclusions Often this list will be pulled directly from the list of options
or it is a modified list of exclusions

Value

A restricted candidate set

expand_attribute_levels
Expand the list of attributes and levels to the "wide" format

Description
Expands the attributes and levels to the wide format. The nested list is padded with zeros where
alternative specific attributes are present to ensure that we can work with square matrices.

Usage

expand_attribute_levels(x)

Arguments

X An object of class utility

Value

A named vector

extract_all_names Extract all names

Description

Extracts all parameter and attribute names from the utility function. This is a wrapper around
str_extract_all with a specified boundary. The function also calls remove_all_brackets to
ensure that if a word is used inside a square bracket, e.g. seq, it is not extracted.

Usage

extract_all_names(string, simplify = FALSE)

extract_attribute_names 21

Arguments

string A character string

simplify If TRUE return as a vector. Default is FALSE.
Details

Note that we are not matching spaces nor the interaction operator 1(). This is to avoid I being
identified as its own (unspecified) attribute.

Value

A list or vector with all names

extract_attribute_names
Extract attribute names

Description

Extracts attribute names. It is a wrapper around extract_all_names and extract_param_names.

Usage

extract_attribute_names(string, simplify = FALSE)

Arguments

string A character string

simplify If TRUE return as a vector. Default is FALSE.
Value

A Vector or string wtih attribute names

22 extract_level occurrence

extract_distribution Extract distributions

Description

This function will locate and extract the the distributions for Bayesian priors and random parameters
as specified in the design. The output is used to create the matrix of correct draws for priors and
parameters.

Usage

extract_distribution(string, type)

Arguments
string A single character string or list of character strings with a single or multiple
utility functions
type A string indicating the type: prior or param
Details

IMPORTANT: The function will silently drop duplicates.

Value

A named vector of priors or parameters where the type of distribution is given by a character letter:
"normal", "lognormal”, "uniform" or "triangular”

extract_level_occurrence
Extract the frequency of levels

Description

The function extracts how many times each level of an attribute should occur within the design
when attribute level balance is not enforced. Note that it extracts the parentheses AFTER the end of
the square brackets. Specifying round brackets without the square brackets are syntactically invalid
and therefore we want the code to fail in this case.

Usage

extract_level_occurrence(string, simplify = FALSE)

Arguments

string A character string
simplify If TRUE return as a vector. Default is FALSE.

extract_named_values 23

extract_named_values Extracts the named values of the utility function

Description

The function extracts the named values of the supplied utility function.

Usage

extract_named_values(string)

Arguments

string A character string

Value

A named list of parameter and attribute values. Each list element is named and can contain a single
prior, a list with a mean and sd, or a vector with attribute levels

extract_param_distribution
Extract the parameter distribution

Description

Extract the parameter distribution

Usage

extract_param_distribution(string)

Arguments

string A single character string or list of character strings with a single or multiple
utility functions

24 extract_prior_distribution

extract_param_names Extract parameter names

Description

Extracts all words starting with "b_". Leverages the fact that all parameters has to start with "b_".

Usage

extract_param_names(string, simplify = FALSE)

Arguments

string A character string

simplify If TRUE return as a vector. Default is FALSE.
Value

A list or vector with the parameter names.

extract_prior_distribution
Extract the prior distribution

Description

Extract the prior distribution

Usage

extract_prior_distribution(string)

Arguments

string A single character string or list of character strings with a single or multiple
utility functions

extract_specified 25

extract_specified Extract specified

Description

Only extract parameters and attributes with specified priors and levels. This is very useful to test
whether parameters or attributes are specified multiple times

Usage

extract_specified(string, simplify = FALSE)

Arguments
string A character string
simplify If TRUE return as a vector. Default is FALSE.

extract_unparsed_values
Extract unparsed named values of the utilitiy function

Description

If the utility function contains parameters that are dummy coded, the dummy coding is handled
here. By expanding the dummy coding prior to parsing we can directly consider Bayesian priors
for each level.

Usage

extract_unparsed_values(string)

Arguments

string A character string

Value

A named list of parameter and attribute values. Each list element is named and contains a numeric
value or expression to be parsed

26 federov

extract_values Extract the value argument(s)

Description
Extracts the value argument(s) of the supplied string. The value argument is defined as the charac-
ters between [] string.

Usage

extract_values(string, simplify = FALSE)

Arguments

string A character string

simplify If TRUE return as a vector. Default is FALSE.
Value

A vector or list with the extracted value arguments

federov Find a design using a modified Federov algorithm

Description

The modified Federov algorithm implemented here starts with a random design candidate and sys-
tematically swaps out rows of the design candidate to iteratively find better designs. The algorithm
has the following steps and restrictions.

Usage

federov(
design_object,
model,
efficiency_criteria,
utility,
prior_values,
dudx,
candidate_set,
rows,
control

federov 27

Arguments

design_object A list of class spdesign’ created within the generate_design function

model A character string indicating the model to optimize the design for. Currently the
only model programmed is the 'mnl’ model and this is also set as the default.

efficiency_criteria
A character string giving the efficiency criteria to optimize for. One of ’a-error’,
*c-error’, "d-error’ or ’s-error’. No default is set and argument must be specified.
Optimizing for multiple criteria is not yet implemented and will result in an
error.

utility A named list of utility functions. See the examples and the vignette for examples
of how to define these correctly for different types of experimental designs.

prior_values A list of priors

dudx A character string giving the name of the prior in the denominator. Must be
specified when optimizing for ’c-error’

candidate_set A matrix or data frame in the "wide" format containing all permitted combina-
tions of attributes. The default is NULL. If no candidate set is provided, then the
full factorial subject to specified exclusions will be used. This is passed in as an
object and not a character string. The candidate set will be expanded to include
zero columns to consider alternative specific attributes.

rows An integer giving the number of rows in the final design
control A list of control options
Details

1) Create a random initial design and evaluate it. 2) Swap the first row of the design candidate
with the first row of the candidate set. 3) If no better candidate is found, try the second row of the
candidate set. Keep trying new rows of the candidate set until an improvement is found. NOTE: The
candidate row will be checked against all rows of the design candidate to ensure that the same row
is not included multiple times. 4) If a better candidate is found, then we try to swap out the next row
in the design candidate with the first row of the candidate set. Keep repeating the previous step. 5)
When all rows of the design candidate has been swapped once, reset the counter and work through
the design candidate and candidate set again. 6) The algorithm terminates after a pre-determined
number of iterations or when a pre-determined efficiency threshold has been found.

NOTE: I have not yet implemented a duplicate check! That is, I do not check whether the "same"
choice rows are included but with the order of alternatives swapped. This can be achieved by further
restricting the candidate set prior to searching for designs. That said, "identical" choice rows will
not provide much additional information and should be excluded by default in the search process.

Value

A list of class ’spdesign’

28 tull_factorial

fits_lvl_occurrences Test whether a design candidate fits the constraints imposed by the
level occurrences

Description

Test whether a design candidate fits the constraints imposed by the level occurrences

Usage

fits_lvl_occurrences(utility, x, rows)

Arguments
utility A named list of utility functions. See the examples and the vignette for examples
of how to define these correctly for different types of experimental designs.
X An object of class ’utility’ or ’spdesign’
rows Number of rows in the design
Value

A boolean equal to TRUE if attribute level balanced

full_factorial Generate the full factorial

Description

The function is a wrapper around expand.grid and generates the full factorial given the supplied
attributes. The attributes can either be specified directly by the user or extracted from the list of
utility functions using.

Usage

full_factorial(attrs)

Arguments

attrs A named list of attributes and their levels

Details

The full factorial is often used as the starting point to generate a candidate set. Note that the full
factorial will include unrealistic and completely dominated alternatives. It is therefore advised to
use a subset of the full factorial as a candidate set. The user can call full_factorial and create
a subset that is passed to generate_design using the ‘candidate_set® parameter, or supply a set of
restrictions through the ‘restrictions‘ argument.

generate_design 29

Value

A matrix containing the full factorial

Examples

opts <- list(
level_balance = FALSE,
tasks = 10

)

attrs <- list(
al = 1:5,
a2 = c(o, 1)

)

full_factorial(attrs)

V <- list(
altl = "b_al[0.1] * al[1:5] + b_a2[-2] * a2[c(0, 1)1",
alt2 = "b_al * al + b_a2 * a2"

)

attrs <- expand_attribute_levels(V)
full_factorial(attrs)

generate_design Generate an efficient experimental design

Description

The function generates efficient experimental designs. The function takes a set of indirect utility
functions and generates efficient experimental designs assuming that people are maximizing utility.

Usage

generate_design(
utility,
rows,
model = "mnl",
efficiency_criteria = c("a-error"”", "c-error"”, "d-error"”, "s-error”),
algorithm = c("federov”, "rsc”, "random"),
draws = c("pseudo-random”, "mlhs"”, "standard-halton”, "scrambled-halton”,

"standard-sobol”, "scrambled-sobol”),

R = 100,
dudx = NULL,

candidate_set = NULL,
exclusions = NULL,
control = list(cores = 1, max_iter = 10000, max_relabel = 10000, max_no_improve =

30 generate_design

1e+05, efficiency_threshold = 0.1, sample_with_replacement = FALSE)

)
Arguments
utility A named list of utility functions. See the examples and the vignette for examples
of how to define these correctly for different types of experimental designs.
rows An integer giving the number of rows in the final design
model A character string indicating the model to optimize the design for. Currently the

only model programmed is the 'mnl’ model and this is also set as the default.

efficiency_criteria
A character string giving the efficiency criteria to optimize for. One of *a-error’,
"c-error’, "d-error’ or ’s-error’. No default is set and argument must be specified.
Optimizing for multiple criteria is not yet implemented and will result in an
error.

algorithm A character string giving the optimization algorithm to use. No default is set
and the argument must be specified to be one of 'rsc’, "federov’ or 'random’.

draws The type of draws to use with Bayesian priors. No default is set and must be
specified even if you are not creating a Bayesian design. Can be one of "pseudo-

"non "non "non "non

random", "mlhs", "standard-halton", "scrambled-halton", "standard-sobol","scrambled-

sobol".
R An integer giving the number of draws to use. The default is 100.
dudx A character string giving the name of the prior in the denominator. Must be

specified when optimizing for ’c-error’

candidate_set A matrix or data frame in the "wide" format containing all permitted combina-
tions of attributes. The default is NULL. If no candidate set is provided, then the
full factorial subject to specified exclusions will be used. This is passed in as an
object and not a character string. The candidate set will be expanded to include
zero columns to consider alternative specific attributes.

exclusions A list of exclusions Often this list will be pulled directly from the list of options
or it is a modified list of exclusions

control A list of control options

Details
No assumptions are made with respect to default values and it is up to the user to specify optimiza-
tion criteria, optmization routines, draws to use for Bayesian priors and more.

Value

An object of class ’spdesign’

generate_rsc_candidate 31

generate_rsc_candidate
Generates a candidate for the RSC algorithm

Description

Creates a design candidate by assuming attribute level balance. Will work out the minimum level

of times an attribute must occur for level balance. If level balance cannot be achieved the function

will systematically add level occurrences to get as close as possible to attribute level balance.
Usage

generate_rsc_candidate(utility, rows)

Arguments
utility A named list of utility functions. See the examples and the vignette for examples
of how to define these correctly for different types of experimental designs.
rows An integer giving the number of rows in the final design
Value

A data.frame with rows equal to the number of choice tasks and columns equal to the number of
attributes in the *wide’ format

has_bayesian_prior Tests whether the utility expression contains Bayesian priors

Description

This is particularly useful for flow-control

Usage

has_bayesian_prior(string)

Arguments

string A string or list of strings

Value

A boolean equal to ‘TRUE" if we have Bayesian priors

32 is_balanced

has_random_parameter Tests whether the utility expression contains random parameters

Description

This is particularly useful for flow-control

Usage

has_random_parameter(string)

Arguments

string A string or list of strings

Value

A boolean equal to ‘TRUE" if we have random parameters

is_balanced Tests whether a utility function is balanced

Description

Tests whether there is an equal number of opening and closing brackets in the utility functions.

Usage

is_balanced(string, open, close)

Arguments
string A character string
open An opening bracket ([or <
close A closing bracket)] or >
Value

A boolean equal to ‘TRUE® if the utility expression is balanced

level balance 33

level_balance Print level balance of your design

Description
Prints a table of level balance for your design. If the design is blocked you will get both level
balance per block and overall level balance

Usage
level_balance(design, block = FALSE)

Arguments
design An spdesign object
block A boolean equal to TRUE if you want frequency tables per block. The default
value is FALSE
1vl_occurrences Attribute level occurrence lookup tables
Description

Creates a list of lookup tables for attribute level occurrence.

Usage

lvl_occurrences(utility, rows, level_balance)

Arguments
utility A named list of utility functions. See the examples and the vignette for examples
of how to define these correctly for different types of experimental designs.
rows An integer giving the number of rows in the final design

level_balance Boolean equal to TRUE if level balance. This is not used

Value

A list the length of the expanced attribute levels. Each list element is a lookup table where the
names of the table is the attribute level and the element the number of times the minimum number
of times the level occurs.

34 make_draws

make_draws Make random draws

Description

A common interface to creating a variety of random draws used to simulate the log likelihood
function

Usage

make_draws(n_ind, n_draws, n_dim, seed, type)

Arguments
n_ind Number of individuals in your sample
n_draws Number of draws per respondent
n_dim Number of dimensions
seed A seed to change the scrambling of the sobol sequence.
type A character string
Value

A matrix of dimensions n_ind*n_draws x n_dim of standard uniform draws

Examples

n_ind <- 10
n_draws <- 5
n_dim <- 3

draws <- make_draws(n_ind, n_draws, n_dim, seed = 10, "scrambled-sobol")
head(draws)

draws <- make_draws(n_ind, n_draws, n_dim, seed = 10, "scrambled-halton")
head(draws)

make_mlhs 35

make_mlhs Make Modified Latin Hypercube Draws

Description

Make Modified Latin Hypercube Draws

Usage

make_mlhs(n_ind, n_draws, n_dim)

Arguments
n_ind Number of individuals in your sample
n_draws Number of draws per respondent
n_dim Number of dimensions

References

Hess, S., Train, K. E. & Polak, J. W., 2006, On the use of a Modified Latin Hypercube Sampling
(MLHS) method in the estimation of a Mixed Logit Model for vehicle choice, Transportation Re-
search Part B, 40, pp. 147-163

make_pseudo_random Make pseudo random draws

Description

Wrapper for runif to create a common interface

Usage

make_pseudo_random(n_ind, n_draws, n_dim)

Arguments
n_ind Number of individuals in your sample
n_draws Number of draws per respondent

n_dim Number of dimensions

36 make_scrambled _sobol

make_scrambled_halton Make scrambled Halton draws

Description

A function for creating scrambled Halton draws. The code is a translation of the [GAUSS](http://www.caee.utexas.edu/prof/bl
codes written by Professor Chandra Bhat. Note that the maximum number of dimensions for the

scrambled Halton draws is limited to 16. This is because only permutations up to prime 16 are

included in the permutation matrix. Extending to more than 16 dimensions can be achieved by

including a different permutation matrix.

Usage

make_scrambled_halton(n_ind, n_draws, n_dim)

Arguments
n_ind Number of individuals in your sample
n_draws Number of draws per respondent
n_dim Number of dimensions

Details

The permutations are based on the Braaten-Weller algorithm.

References

Bhat, C. n_draws., 2003, Simulation Estimation of Mixed Descrete Choice Models Using Random-
ized and Scrambled Halton Sequences, Transportation Research Part B, 9, pp. 837-855

make_scrambled_sobol Make scrambled sobol draws

Description
Wrapper function for sobol() from randtoolbox to create a common interface. Owen + Fazure_Tezuka
Scrambling

Usage

make_scrambled_sobol(n_ind, n_draws, n_dim, seed = seed)

make_standard_halton

Arguments
n_ind Number of individuals in your sample
n_draws Number of draws per respondent
n_dim Number of dimensions
seed A seed to change the scrambling of the sobol sequence.

37

make_standard_halton Wrapper for halton()

Description

Wrapper function for halton() from randtoolbox to create a common interface

Usage

make_standard_halton(n_ind, n_draws, n_dim)

Arguments
n_ind Number of individuals in your sample
n_draws Number of draws per respondent
n_dim Number of dimensions

make_standard_sobol Make sobol draws

Description

Wrapper function for sobol() from randtoolbox to create a common interface

Usage

make_standard_sobol(n_ind, n_draws, n_dim, seed = seed)

Arguments
n_ind Number of individuals in your sample
n_draws Number of draws per respondent
n_dim Number of dimensions

seed A seed to change the scrambling of the sobol sequence.

38 nlvls

min_lvl_occurrence Find minimum level occurrences

Description

Find minimium level occurrences. This is useful to ensure/approximate attribute level balance in
designs using the Modified Federov Algorithm or the Random design algorithms.

Usage

min_lvl_occurrence(x, rows)

Arguments
X An object of class ’utility’ or ’spdesign’
rows Number of rows in the design

Value

A list of minimum level occurrences for the attribute levels

nlvls Find the number of levels

Description

Find the number of levels for each attribute

Usage
nlvls(x)

Arguments

)

X An object of class ’utility’ or ’spdesign

Value

A list with the number of levels for each attribute

normal 39

normal Evaluating a distribution

Description

The function returns its arguments as a named list. The function is used inside the utility functions.
It is transformed to an expression using parse and evaluated using eval. This ensures that in
the case of an RPL with Bayesian priors, recursion is handled automatically. This significantly
simplifies translating the utility function to lists of parameters to use when optimizing the designs.
It is also less error prone.

Usage
normal(mu, sigma)
normal_p(mu, sigma)
lognormal(mu, sigma)
lognormal_p(mu, sigma)
triangular(mu, sigma)
triangular_p(mu, sigma)
uniform(mu, sigma)

uniform_p(mu, sigma)

Arguments
mu A parameter indicating the mean or location of the distribution depending on
whether it is a normal, log-normal, triangular or uniform, or it can be another
call to normal, lognormal, uniformor triangular if the model is an RPL with
a Bayesian prior.
sigma A parameter indicating the SD or spread of the distribution or it can be another
call to normal, lognormal, uniformor triangular.
Value

A list of parameters

Functions

e normal (): The normal distribution

* normal_p(): The normal distribution when applied to a prior

40 occurrences

e lognormal(): The log normal distribution

* lognormal_p(): The log-normal distribution when applied to a prior
e triangular(): The triangular distribution

e triangular_p(): The triangular distribution when applied to a prior
e uniform(): The uniform distribution

e uniform_p(): The uniform distribution when applied to a prior

occurrences Extract or set attribute level occurrences

Description

This function will set the range of attribute level occurrences equal to to the size of the design. This
is equivalent to fully letting go of attribute level balance. Letting go of attribute level balance is the
default behavior for the Modified Federov algorithm and the Random algorithm.

Usage

occurrences(x, rows)

Arguments
X An object of class ’utility’ or ’spdesign’
rows Number of rows in the design

Details

If restrictions are placed on attribute level occurrence in the utility function, then this function will
extract these and add them to the output.

Notice that specifying restrictions in the utility function only matters for the Modified Federov and
Random algorithms and will in general result in a less efficient design.

Value

A named list of lists where the outer list is for the attributes and the inner list, the levels of each
attribute and the number or range of times they can occur

prepare_priors 41

prepare_priors Prepare the list of priors

Description

Prepare the list of priors

Usage

prepare_priors(utility, draws, R)

Arguments
utility A named list of utility functions. See the examples and the vignette for examples
of how to define these correctly for different types of experimental designs.
draws The type of draws to use with Bayesian priors. No default is set and must be
specified even if you are not creating a Bayesian design. Can be one of "pseudo-
random", "mlhs", "standard-halton", "scrambled-halton", "standard-sobol","scrambled-
sobol".
R An integer giving the number of draws to use. The default is 100.
Value
A list of priors
print.spdesign A generic function for printing an ’spdesign’ object

Description

A generic function for printing an ’spdesign’ object

Usage
S3 method for class 'spdesign'
print(x, ...)
Arguments
X A model object of class ’spdesign’
Additional parameters passed to the function
Value

No return value. Prints the *spdesign’ object.

42 print_initial _header

print_efficiency_criteria
Creates a printable version of the efficiency criteria

Description

The function prints a string of efficiency criteria to the console and highlights the color of the
considered efficiency criteria. Effectively it is a wrapper around multiple calls to cat.

Usage
print_efficiency_criteria(
iter,
values,
criteria,
digits = 4,
padding = 10,
efficiency_criteria
)
Arguments
iter An integer giving the iteration of the loop
values The value of the efficiency criteria obtained by calculate_efficiency_criteria
criteria A character string with the name of the efficiency criteria. See manual for valid
values
digits The nubmer of digits to round the printed value to. The default is 4.
padding An integer specifying the padding of each column element. Default value is 10.

efficiency_criteria
The criteria that we optimize over

Value

A character string.

print_initial_header Prints the initial header for the table of results

Description

The function prints the initial header for the console output and colors in the criteria used for opti-
mization. Effectively, the function makes multiple calls to cat.

print_iteration_information 43

Usage

print_initial_header(efficiency_criteria, padding = 10, width = 80)

Arguments

efficiency_criteria
The criteria that we optimize over

padding An integer specifying the padding of each column element. Default value is 10.
width An integer giving the width of the horizontal rules. Default value is 80

Value
Noting

print_iteration_information
Prints iteration information

Description

Prints iteration information every time a better design is found. The function wraps around print_initial_header
and print_efficiency_criteria. This reduces the number of if-statements and function calls
within generate_design in an attempt simplify code maintenance.

Usage
print_iteration_information(
iter,
values,
criteria,
digits = 4,
padding = 10,
width = 80,
efficiency_criteria
)
Arguments
iter An integer giving the iteration of the loop
values The value of the efficiency criteria obtained by calculate_efficiency_criteria
criteria A character string with the name of the efficiency criteria. See manual for valid
values
digits The nubmer of digits to round the printed value to. The default is 4.
padding An integer specifying the padding of each column element. Default value is 10.
width An integer giving the width of the horizontal rules. Default value is 80

efficiency_criteria
The criteria that we optimize over

44 probabilities

Value

Nothing

priors Generic for extracting the vector of priors

Description

Generic for extracting the vector of priors

Usage

priors(x)

Arguments

X An object of class ’utility’ or ’spdesign’

Value

A list of named priors used in the optimization

probabilities Calculate the probabilities of the design

Description

Will take the design object and calculate the probabilities of each alternative and choice tasks.

Usage

probabilities(x)
Arguments

X An ’spdesign’ object.
Details

Using Bayesian priors the average across the prior distribution will be used.

Using the specific type of model, either the MNL or RPL probs will be returned.

Value

A matrix of probabilities for each alternative and choice task.

probabilities_mnl 45

probabilities_mnl Calculate the MNL probabilities

Description

Calculate the MNL probabilities

Usage

probabilities_mnl(x)

Arguments

X An ’spdesign’ object.

Value

A matrix of probabilities for each alternative and choice task. With Bayesian priors the return is the
average probabilites over the prior distribution

radical_inverse Compute the radical inverse

Description

Equation 2 in Bhat (2003)

Usage

radical_inverse(n_dim, primes, count, digit, perms)

Arguments

n_dim Number of dimensions

primes A vector of prime numbers

count A matrix

digit A vector

perms A matrix of the permutations. Defaults to a set of Braaten-Weller permutations.
References

Bhat, C. n_draws., 2003, Simulation Estimation of Mixed Descrete Choice Models Using Random-
ized and Scrambled Halton Sequences, Transportation Research Part B, 9, pp. 837-855

46

random

random

Make a random design

Description

Generates a random design by sampling from the candidate set each update of the algorithm.

Usage

random(

design_object,

model,

efficiency_criteria,

utility,
prior_values,
dudx,

candidate_set,

rows,
control

Arguments

design_object

model

A list of class ’spdesign’ created within the generate_design function

A character string indicating the model to optimize the design for. Currently the
only model programmed is the 'mnl’ model and this is also set as the default.

efficiency_criteria

utility

prior_values

dudx

candidate_set

rows

control

A character string giving the efficiency criteria to optimize for. One of ’a-error’,
"c-error’, "d-error’ or ’s-error’. No default is set and argument must be specified.
Optimizing for multiple criteria is not yet implemented and will result in an
error.

A named list of utility functions. See the examples and the vignette for examples
of how to define these correctly for different types of experimental designs.

A list of priors

A character string giving the name of the prior in the denominator. Must be
specified when optimizing for ’c-error’

A matrix or data frame in the "wide" format containing all permitted combina-
tions of attributes. The default is NULL. If no candidate set is provided, then the
full factorial subject to specified exclusions will be used. This is passed in as an
object and not a character string. The candidate set will be expanded to include
zero columns to consider alternative specific attributes.

An integer giving the number of rows in the final design

A list of control options

random_design_candidate 47

Details
With no restrictions placed, this type of design will only consider efficiency. There is no guarantee

that you will achieve attribute level balance, nor that all attribute levels will be present. More
efficient designs tend to have more extreme trade-offs.

Value

A list of class ’spdesign’

random_design_candidate
Create a random design_object candidate

Description

Sample from the candidate set to create a random design_object.

Usage

random_design_candidate(utility, candidate_set, rows, sample_with_replacement)

Arguments

utility A named list of utility functions. See the examples and the vignette for examples
of how to define these correctly for different types of experimental designs.

candidate_set A matrix or data frame in the "wide" format containing all permitted combina-
tions of attributes. The default is NULL. If no candidate set is provided, then the
full factorial subject to specified exclusions will be used. This is passed in as an
object and not a character string. The candidate set will be expanded to include
zero columns to consider alternative specific attributes.

rows An integer giving the number of rows in the final design

sample_with_replacement

A boolean equal to TRUE if we sample from the candidate set with replacement.
The default is FALSE

48 remove_all brackets

relabel Relabeling of attribute levels

Description

Relabels the attribute levels to create a new design candidate. For example, if the column contains
the levels (1, 2, 1, 3, 2, 3) and 1 and 3 are relabeled, then the column becomes (3, 2, 3, 1, 2, 1), i.e.
1 becomes 3 and 3 becomes 1.

Usage
relabel (x)

Arguments

X A vector of attribute levels

Details

Will randomly sample 2 attribute levels that will be relabeled and the relabeling is done indepen-
dently for each column, which implies that the same attribute will be relabeled differently depending
on which alternative it belongs to.

References

Hensher, D. A., Rose, J. M. & Greene, W., 2005, Applied Choice Analysis, 2nd ed., Cambridge
University Press

remove_all_brackets Removes all brackets

Description

Takes a string as input and removes everything between square and round brackets. The function
wraps around remove_square_brackets and remove_round_brackets. To avoid problems, we
first remove square brackets.

Usage

remove_all_brackets(string)

Arguments

string A character string

Value

A string without brackets

remove_prior

49

remove_prior Removes the parameter from the utility string

Description

Removes the parameter from the utility string

Usage

remove_prior(prior, string)

Arguments
prior A string with the parameter name
string A string to remove param from

remove_round_brackets Remove round bracket

Description

Removes everything between (and including) round brackets. We negating matches with I(), since

this is R’s interaction operator.

Usage

remove_round_brackets(string)

Arguments

string A character string

Details

(?7<'T) - A negative lookbehind for I

50

remove_whitespace

remove_square_brackets
Remove square bracket

Description

Removes everything between (and including) square brackets

Usage

remove_square_brackets(string)

Arguments
string A character string
remove_whitespace Remove all white spaces
Description

Takes a string as an input and removes all whitespaces in the string

Usage

remove_whitespace(string)

Arguments

string A character string

Value

A character vector with no white spaces

rep_cols 51

rep_cols Repeat columns

Description

Repeats each column of the matrix or data frame X’ a number of times equal to ’times’.

Usage

rep_cols(x, times)

Arguments

X A matrix or data frame

times An integer indicating the number of times to repeat the row/column
Value

A matrix or data.frame depending on the type of the input

Examples

test_matrix <- matrix(runif(12), 4)
rep_cols(test_matrix, 2)

rep_rows Repeat rows

Description

Repeats each row in the matrix or data frame *x’ a number of times equal to ’times’.

Usage

rep_rows(x, times)

Arguments

X A matrix or data frame

times An integer indicating the number of times to repeat the row/column
Value

A matrix or data.frame depending on type of the input

52 rsc

Examples

test_matrix <- matrix(runif(12), 4)
rep_rows(test_matrix, 2)

rsc Make a design candidate based on the rsc algorithm

Description

Depending on the setting the function calls a combination of relabel, swap and cycle to create
new design candidates. The code is intentionally written modular to allow for all special cases of
the algorithm.

Usage

rsc(
design_object,
model,
efficiency_criteria,
utility,
prior_values,
dudx,
candidate_set,
rows,
control

Arguments

design_object A list of class ’spdesign’ created within the generate_design function

model A character string indicating the model to optimize the design for. Currently the
only model programmed is the 'mnl’ model and this is also set as the default.
efficiency_criteria
A character string giving the efficiency criteria to optimize for. One of "a-error’,
*c-error’, "d-error’ or ’s-error’. No default is set and argument must be specified.
Optimizing for multiple criteria is not yet implemented and will result in an
error.

utility A named list of utility functions. See the examples and the vignette for examples
of how to define these correctly for different types of experimental designs.

prior_values A list of priors

dudx A character string giving the name of the prior in the denominator. Must be
specified when optimizing for ’c-error’

set_default_level occurrence 53

candidate_set A matrix or data frame in the "wide" format containing all permitted combina-
tions of attributes. The default is NULL. If no candidate set is provided, then the
full factorial subject to specified exclusions will be used. This is passed in as an
object and not a character string. The candidate set will be expanded to include
zero columns to consider alternative specific attributes.

rows An integer giving the number of rows in the final design

control A list of control options

set_default_level_occurrence
Sets the default level occurrence in an attribute level balanced design

Description

The function sets the default level occurrence of an attribute when a design is restricted to be at-
tribute level balanced. If the design cannot be attribute level balanced, then the restriction will be
relaxed for each attribute failing to meet this criteria. Specifically, the code will impose a minimum
range of how often an attribute level can occur. This will secure that the design is near attribute
level balanced. In this case a warning is issued.

Usage

set_default_level_occurrence(n_lvls, rows)

Arguments
n_lvls An integer giving the number of levels for the considered attribute
rows Number of rows in the design

Value

A named list of lists where the top level gives the attribute and the lower level gives the times or
range each attribute level should occur in the design

set_default_options Validate design opt

Description

The function takes the list of design options and adds default values where none are specified. This
function is exported, but is not intended to be called by the user of the package. The function is
called from within generate_design to populate the list with sensible defaults

Usage

set_default_options(opts_input)

54

Arguments

opts_input A list of user supplied design options

Value

A list of design options populated by sensible default values

summary.spdesign

shuffle Shuffle the order of points in the unit interval.

Description

Shuffle the order of points in the unit interval.

Usage
shuffle(x)

Arguments

X A vector

summary.spdesign Create a summary of the experimental design

Description

Create a summary of the experimental design

Usage
S3 method for class 'spdesign'
summary(object, ...)

Arguments
object A model object of class ’spdesign’

Additional arguments passed to the function

Value

No return value. Prints a summary of the ’spdesign’ object to the console

swap 55

swap Swapping of attribute

Description

Swaps the order of the attributes to create a new design candidate. For example, if the attributes in
the first and fourth choice situation (row) are swapped, then (1, 2, 1, 3, 2, 3) becomes(3, 2, 1, 1, 2,
3).

Usage

swap(x)

Arguments

X A vector of attribute levels

Details
The algorithm randomly samples 2 row positions that are swapped and the swaps are independent
across attributes and alternatives

References

Hensher, D. A., Rose, J. M. & Greene, W., 2005, Applied Choice Analysis, 2nd ed., Cambridge
University Press

too_small Check if the design is too small

Description
Uses the formula of T * (J - 1) to check if the design is large enough to identify the parameters of
the utility function.

Usage

too_small(x, rows)

Arguments

X A list of utility expressions

rows The number of rows in the design
Value

A boolean equal to ‘TRUE" if the design is too small

56

transform_lognormal

transform_distribution
Transform distribution

Description

Transform distribution

Usage

transform_distribution(mu, sigma, eta, type)

Arguments
mu A value for the mean of the distribution
sigma A value for the standard deviation of the distribution
eta A numeric standard uniform vector
type The type of distribution
Value

A vector with the transformed distribution given the parameters

transform_lognormal Transform to the lognormal distribution

Description

Transform to the lognormal distribution

Usage

transform_lognormal (mu, sigma, eta)

Arguments
mu A value for the mean of the distribution
sigma A value for the standard deviation of the distribution

eta A numeric standard uniform vector

transform_normal

57

transform_normal Transform to the normal distribution

Description

Transform to the normal distribution

Usage

transform_normal(mu, sigma, eta)

Arguments
mu A value for the mean of the distribution
sigma A value for the standard deviation of the distribution
eta A numeric standard uniform vector

transform_triangular Transform to the triangular distribution

Description

Transform to the triangular distribution

Usage

transform_triangular(mu, sigma, eta)

Arguments
mu A value for the mean of the distribution
sigma A value for the standard deviation of the distribution

eta A numeric standard uniform vector

58

update_utility

transform_uniform Transform to the uniform distribution

Description

Transform to the uniform distribution

Usage

transform_uniform(mu, sigma, eta)

Arguments
mu A value for the mean of the distribution
sigma A value for the standard deviation of the distribution
eta A numeric standard uniform vector
update_utility Update the utility function
Description

Updates the utility function to consider dummy coded attributes. It will expand the dummy-coding

to K-1 dropping the lowest level. This is consistent with standard practice.

Usage

update_utility(x)

Arguments

X An object of class utility

Details

The function is called prior to evaluating designs if dummy-coded attributes are present in the utility
function. This is because the utility function is evaluated in the context of the design environment

and must be added there

Important to note about the naming of the expanded priors and attributes: The names for the at-
tributes will be attached with the level of the factor, whereas the prior will be named corresponding
to the level, e.g., 2, 3, 4. This is simply the result of the difference between how it’s extracted from

the utility functions and how model.matrix creates names.

Value

An updated cleaned utility expression

utility_formula 59

utility_formula Create formulas from the utility functions

Description

Create formulas from the utility functions such that we can create correct model matrices.

Usage

utility_formula(x)

Arguments

X An object of class utility

Details

Note that this function should be used on a cleaned utility expression and **not** an updated utility
expression. This is because we are converting dummy coded attributes to factors prior to calling
model.matrix. This ensures that dummy coded attributes are correctly returned with the model
matrix.

Value

A list of formula expressions for the utility functions

vcov. spdesign Extract the variance co-variance matrix

Description

A generic method for extracting the variance covariance matrix from a design object

Usage
S3 method for class 'spdesign'
vcov(object, ...)

Arguments
object A model object of class ’spdesign’

Additional arguments passed to the function

Value

A matrix with row- and column names equal to the parameter names

Index

.onAttach, 4 extract_named_values, 23
extract_param_distribution, 23
all_priors_and_levels_specified, 4 extract_param_names, 21, 24
any_duplicates, 5 extract_prior_distribution, 24
attribute_level_balance, 6 extract_specified, 25
attribute_levels, 5 extract_unparsed_values, 25
attribute_names, 6 extract_values, 26
block, 7 federov, 26

fits_lvl_occurrences, 28

calculate_a_error, 8, 10 full_factorial, 28

calculate_c_error, 8, 10

calculate_d_error, 9, 10 generate_design, 27, 28, 29, 43, 46, 52, 53

calculate_eff}c%ency,9 . . generate_rsc_candidate, 31
calculate_efficiency_criteria, 10, 42,

43 has_bayesian_prior, 31
calculate_s_error, 10, 11 has_random_parameter, 32
cat, 42
clean_utility, 12 is_balanced, 32
coef.spdesign, 12
contains_dummies, 13 level_balance, 33
cor, 13,13 lognormal, 39
cycle, 14, 52 lognormal (normal), 39

lognormal_p (normal), 39
define_base_x_j, 15 1vl_occurrences, 33
define_x_j, 15
derive_vcov, 811, 16, 16 make_draws, 34
derive_vcov_mnl, 16, 17 make_mlhs, 35
derive_vcov_rpl, 16,17 make_pseudo_random, 35
digitize, 17 make_scrambled_halton, 36
dummy_names, 18 make_scrambled_sobol, 36

make_standard_halton, 37
eval, 39 make_standard_sobol, 37
evaluate_design_candidate, 9, 18 min_lvl_occurrence, 38
exclude, 19 model.matrix, 59
expand.grid, 28
expand_attribute_levels, 20 nlvls, 38
extract_all_names, 20, 2/ normal, 39, 39
extract_attribute_names, 21 normal_p (normal), 39
extract_distribution, 22
extract_level_occurrence, 22 occurrences, 40

60

INDEX

parse, 39

prepare_priors, 41
print.spdesign, 41
print_efficiency_criteria, 42,43
print_initial_header, 42, 43
print_iteration_information, 43
priors, 44

probabilities, 44
probabilities_mnl, 45

radical_inverse, 45
random, 46
random_design_candidate, 47
relabel, 48, 52
remove_all_brackets, 20, 48
remove_prior, 49
remove_round_brackets, 48, 49
remove_square_brackets, 48, 50
remove_whitespace, 50
rep_cols, 51

rep_rows, 51

rsc, 52

set_default_level_occurrence, 53
set_default_options, 53
shuffle, 54

str_extract_all, 20
summary . spdesign, 54

swap, 52, 55

too_small, 55
transform_distribution, 56
transform_lognormal, 56
transform_normal, 57
transform_triangular, 57
transform_uniform, 58
triangular, 39

triangular (normal), 39
triangular_p (normal), 39

uniform, 39

uniform (normal), 39
uniform_p (normal), 39
update_utility, 12, 58
utility_formula, 59

vcov.spdesign, 59

61

	.onAttach
	all_priors_and_levels_specified
	any_duplicates
	attribute_levels
	attribute_level_balance
	attribute_names
	block
	calculate_a_error
	calculate_c_error
	calculate_d_error
	calculate_efficiency
	calculate_efficiency_criteria
	calculate_s_error
	clean_utility
	coef.spdesign
	contains_dummies
	cor
	cycle
	define_base_x_j
	define_x_j
	derive_vcov
	derive_vcov_mnl
	derive_vcov_rpl
	digitize
	dummy_names
	evaluate_design_candidate
	exclude
	expand_attribute_levels
	extract_all_names
	extract_attribute_names
	extract_distribution
	extract_level_occurrence
	extract_named_values
	extract_param_distribution
	extract_param_names
	extract_prior_distribution
	extract_specified
	extract_unparsed_values
	extract_values
	federov
	fits_lvl_occurrences
	full_factorial
	generate_design
	generate_rsc_candidate
	has_bayesian_prior
	has_random_parameter
	is_balanced
	level_balance
	lvl_occurrences
	make_draws
	make_mlhs
	make_pseudo_random
	make_scrambled_halton
	make_scrambled_sobol
	make_standard_halton
	make_standard_sobol
	min_lvl_occurrence
	nlvls
	normal
	occurrences
	prepare_priors
	print.spdesign
	print_efficiency_criteria
	print_initial_header
	print_iteration_information
	priors
	probabilities
	probabilities_mnl
	radical_inverse
	random
	random_design_candidate
	relabel
	remove_all_brackets
	remove_prior
	remove_round_brackets
	remove_square_brackets
	remove_whitespace
	rep_cols
	rep_rows
	rsc
	set_default_level_occurrence
	set_default_options
	shuffle
	summary.spdesign
	swap
	too_small
	transform_distribution
	transform_lognormal
	transform_normal
	transform_triangular
	transform_uniform
	update_utility
	utility_formula
	vcov.spdesign
	Index

