Package 'statsr'

October 14, 2022

Type Package Title Companion Software for the Coursera Statistics with R Specialization

Version 0.3.0

Date 2021-01-21

Maintainer Merlise Clyde <clyde@duke.edu>

Description Data and functions to support Bayesian and frequentist inference and decision making for the Coursera Specialization ``Statistics with R". See <https://github.com/StatsWithR/statsr> for more information.

LazyData true

License MIT + file LICENSE

RoxygenNote 7.1.1

Encoding UTF-8

Depends R (>= 3.3.0), BayesFactor

Imports dplyr, rmarkdown, knitr, ggplot2, broom, gridExtra, shiny, cubature, tidyr, tibble, utils

Suggests spelling, HistData, testthat (>= 3.0.0)

URL https://github.com/StatsWithR/statsr

BugReports https://github.com/StatsWithR/statsr/issues

Language en-US

Config/testthat/edition 3

NeedsCompilation no

Author Colin Rundel [aut], Mine Cetinkaya-Rundel [aut], Merlise Clyde [aut, cre], David Banks [aut]

Repository CRAN

Date/Publication 2021-01-22 20:40:03 UTC

26

R topics documented:

ames	2
ames_sampling_dist	5
arbuthnot	6
atheism	6
bandit_posterior	7
bandit_sim	8
bayes_inference	9
BF_app	12
brfss	12
calc_streak	13
credible_interval_app	13
evals	14
inference	15
kobe_basket	17
mlb11	17
nc	18
nycflights	19
plot_bandit_posterior	20
plot_ss	21
present	21
rep_sample_n	22
statsr	23
tapwater	23
wage	24
zinc	25

Index

ames

Housing prices in Ames, Iowa

Description

Data set contains information from the Ames Assessor's Office used in computing assessed values for individual residential properties sold in Ames, IA from 2006 to 2010. See http://www.amstat.org/publications/jse/v19n3/d for detailed variable descriptions.

Usage

ames

ames

Format

A tbl_df with with 2930 rows and 82 variables:

Order Observation number.

PID Parcel identification number - can be used with city web site for parcel review.

area Above grade (ground) living area square feet.

price Sale price in USD.

MS.SubClass Identifies the type of dwelling involved in the sale.

MS.Zoning Identifies the general zoning classification of the sale.

Lot.Frontage Linear feet of street connected to property.

Lot.Area Lot size in square feet.

Street Type of road access to property.

Alley Type of alley access to property.

Lot.Shape General shape of property.

Land.Contour Flatness of the property.

Utilities Type of utilities available.

Lot.Config Lot configuration.

Land.Slope Slope of property.

Neighborhood Physical locations within Ames city limits (map available).

Condition.1 Proximity to various conditions.

Condition.2 Proximity to various conditions (if more than one is present).

Bldg.Type Type of dwelling.

House.Style Style of dwelling.

Overall.Qual Rates the overall material and finish of the house.

Overall.Cond Rates the overall condition of the house.

Year.Built Original construction date.

Year.Remod.Add Remodel date (same as construction date if no remodeling or additions).

Roof.Style Type of roof.

Roof.Matl Roof material.

Exterior.1st Exterior covering on house.

Exterior.2nd Exterior covering on house (if more than one material).

Mas.Vnr.Type Masonry veneer type.

Mas.Vnr.Area Masonry veneer area in square feet.

Exter.Qual Evaluates the quality of the material on the exterior.

Exter.Cond Evaluates the present condition of the material on the exterior.

Foundation Type of foundation.

Bsmt.Qual Evaluates the height of the basement.

Bsmt.Cond Evaluates the general condition of the basement.

Bsmt.Exposure Refers to walkout or garden level walls.

BsmtFin.Type.1 Rating of basement finished area.

BsmtFin.SF.1 Type 1 finished square feet.

BsmtFin.Type.2 Rating of basement finished area (if multiple types).

BsmtFin.SF.2 Type 2 finished square feet.

Bsmt.Unf.SF Unfinished square feet of basement area.

Total.Bsmt.SF Total square feet of basement area.

Heating Type of heating.

Heating.QC Heating quality and condition.

Central.Air Central air conditioning.

Electrical Electrical system.

X1st.Flr.SF First Floor square feet.

X2nd.Flr.SF Second floor square feet.

Low.Qual.Fin.SF Low quality finished square feet (all floors).

Bsmt.Full.Bath Basement full bathrooms.

Bsmt.Half.Bath Basement half bathrooms.

Full.Bath Full bathrooms above grade.

Half.Bath Half baths above grade.

Bedroom.AbvGr Bedrooms above grade (does NOT include basement bedrooms).

Kitchen.AbvGr Kitchens above grade.

Kitchen.Qual Kitchen quality.

TotRms.AbvGrd Total rooms above grade (does not include bathrooms).

Functional Home functionality (Assume typical unless deductions are warranted).

Fireplaces Number of fireplaces.

Fireplace.Qu Fireplace quality.

Garage.Type Garage location.

Garage.Yr.Blt Year garage was built.

Garage.Finish Interior finish of the garage.

Garage.Cars Size of garage in car capacity.

Garage.Area Size of garage in square feet.

Garage.Qual Garage quality.

Garage.Cond Garage condition.

Paved.Drive Paved driveway.

Wood.Deck.SF Wood deck area in square feet.

Open.Porch.SF Open porch area in square feet.

Enclosed.Porch Enclosed porch area in square feet.

X3Ssn.Porch Three season porch area in square feet.

Screen.Porch Screen porch area in square feet.

Pool.Area Pool area in square feet.

Pool.QC Pool quality.

Fence Fence quality.

Misc.Feature Miscellaneous feature not covered in other categories.

Misc.Val Dollar value of miscellaneous feature.

Mo.Sold Month Sold (MM).

Yr.Sold Year Sold (YYYY).

Sale.Type Type of sale.

Sale.Condition Condition of sale.

Source

De Cock, Dean. "Ames, Iowa: Alternative to the Boston housing data as an end of semester regression project." Journal of Statistics Education 19.3 (2011).

ames_sampling_dist Simulate Sampling Distribution

Description

Run the interactive ames sampling distribution shiny app to illustrate sampling distributions using variables from the 'ames' dataset.

Usage

ames_sampling_dist()

```
if (interactive()) {
   ames_sampling_dist()
}
```

arbuthnot

Description

Arbuthnot's data describes male and female christenings (births) for London from 1629-1710.

Usage

arbuthnot

Format

A tbl_df with with 82 rows and 3 variables:

year year, ranging from 1629 to 1710

boys number of male christenings (births)

girls number of female christenings (births)

Details

John Arbuthnot (1710) used these time series data to carry out the first known significance test. During every one of the 82 years, there were more male christenings than female christenings. As Arbuthnot wondered, we might also wonder if this could be due to chance, or whether it meant the birth ratio was not actually 1:1.

Source

These data are excerpted from the Arbuthnot data set in the HistData package.

atheism

Atheism in the world data

Description

Survey results on atheism across several countries and years. Each row represents a single respondent.

Usage

atheism

Format

A tbl_df with 88032 rows and 3 variables:

nationality Country of the individual surveyed.

response A categorical variable with two levels: atheist and non-atheist.

year Year in which the person was surveyed.

Source

WIN-Gallup International Press Release

bandit_posterior bandit posterior

Description

Utility function for calculating the posterior probability of each machine being "good" in two armed bandit problem. Calculated result is based on observed win loss data, prior belief about which machine is good and the probability of the good and bad machine paying out.

Usage

```
bandit_posterior(
    data,
    prior = c(m1_good = 0.5, m2_good = 0.5),
    win_probs = c(good = 1/2, bad = 1/3)
)
```

Arguments

data	data frame containing win loss data
prior	prior vector containing the probabilities of Machine 1 and Machine 2 being good, defaults to 0.5 and 0.5 respectively.
win_probs	vector containing the probabilities of winning on the good and bad machine respectively.

Value

A vector containing the posterior probability of Machine 1 and Machine 2 being the good machine.

See Also

bandit_sim to generate data and plot_bandit_posterior to visualize.

Examples

bandit_sim

Run the Bandit Simulation shiny app

Description

Simulate data from a two armed-bandit (two slot machines) by clicking on the images for Machine 1 or Machine 2 and guess/learn which machine has the higher probability of winning as the number of outcomes of wins and losses accumulate.

Usage

bandit_sim()

See Also

bandit_posterior and plot_bandit_posterior

Examples

```
if (interactive()) {
# run interactive shiny app to generate wins and losses
bandit_sim()
}
# paste data from the shiny app into varible
data = data.frame(
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
  1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
  2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L),
outcome = c("W", "W", "W", "L", "W", "W", "W", "L", "W", "L", "W", "L",
 "W", "L", "L", "W", "L"
 "W", "W",
                                    "L", "L", "L"
 "L", "L", "L", "W", "L", "W", "L", "W", "L",
                              "L", "L", "L", "L", "L", "L"
 "L", "L",
          "W", "W", "W", "W", "L", "W", "W", "L", "W", "L",
 "L".
                                              "L"
 "W", "L", "W", "L", "L", "W"))
```

8

```
bandit_posterior(data)
plot_bandit_posterior(data)
```

bayes_inference Bayesian hypothesis tests and credible intervals

Description

Bayesian hypothesis tests and credible intervals

Usage

```
bayes_inference(
 у,
  x = NULL,
  data,
  type = c("ci", "ht"),
  statistic = c("mean", "proportion"),
 method = c("theoretical", "simulation"),
  success = NULL,
  null = NULL,
  cred_level = 0.95,
  alternative = c("twosided", "less", "greater"),
  hypothesis_prior = c(H1 = 0.5, H2 = 0.5),
 prior_family = "JZS",
  n_0 = 1,
 mu_0 = null,
  s_0 = 0,
  v_0 = -1,
  rscale = 1,
  beta_prior = NULL,
  beta_prior1 = NULL,
  beta_prior2 = NULL,
  nsim = 10000,
  verbose = TRUE,
  show_summ = verbose,
  show_res = verbose,
  show_plot = verbose
```

```
)
```

Arguments

У	Response variable, can be numerical or categorical
х	Explanatory variable, categorical (optional)
data	Name of data frame that y and x are in

of inference; "ci" (credible interval) or "ht" (hypothesis test)		
population parameter to estimate: mean or proportion		
of inference; "theoretical" (quantile based) or "simulation"		
which level of the categorical variable to call "success", i.e. do inference on		
null value for the hypothesis test		
confidence level, value between 0 and 1		
direction of the alternative hypothesis; "less", "greater", or "twosided"		
or the second		
discrete prior for H1 and H2, default is the uniform prior: c(H1=0.5,H2=0.5)		
character string representing default priors for inference or testing ("JSZ", "JUI", "ref"). See notes for details.		
n_0 is the prior sample size in the Normal prior for the mean		
the prior mean in one sample mean problems or the prior difference in two sam- ple problems. For hypothesis testing, this is all the null value if null is not supplied.		
the prior standard deviation of the data for the conjugate Gamma prior on 1/sigma^2		
prior degrees of freedom for conjugate Gamma prior on 1/sigma^2		
is the scaling parameter in the Cauchy prior: $1/n_0 \sim \text{Gamma}(1/2, \text{rscale}^2/2)$ leads to mu_0 having a Cauchy(0, rscale^2*sigma^2) prior distribution for prior_family="JZS".		
beta_prior, beta_prior1, beta_prior2		
beta priors for p (or p_1 and p_2) for one or two proportion inference		
number of Monte Carlo draws; default is 10,000		
whether output should be verbose or not, default is TRUE		
print summary stats, set to verbose by default		
print results, set to verbose by default		
print inference plot, set to verbose by default		

Value

Results of inference task performed.

Note

For inference and testing for normal means several default options are available. "JZS" corresponds to using the Jeffreys reference prior on sigma^2, $p(sigma^2) = 1/sigma^2$, and the Zellner-Siow Cauchy prior on the standardized effect size mu/sigma or (mu_1 - mu_2)/sigma with a location of mu_0 and scale rscale. The "JUI" option also uses the Jeffreys reference prior on sigma^2, but the Unit Information prior on the standardized effect, N(mu_0, 1). The option "ref" uses the improper uniform prior on the standardized effect and the Jeffreys reference prior on sigma^2. The latter cannot be used for hypothesis testing due to the ill-determination of Bayes factors. Finally "NG" corresponds to the conjugate Normal-Gamma prior.

References

https://statswithr.github.io/book/

bayes_inference

```
# inference for the mean from a single normal population using
# Jeffreys Reference prior, p(mu, sigma^2) = 1/sigma^2
library(BayesFactor)
data(tapwater)
# Calculate 95% CI using quantiles from Student t derived from ref prior
bayes_inference(tthm, data=tapwater,
                statistic="mean",
                type="ci", prior_family="ref",
                method="theoretical")
# Calculate 95% CI using simulation from Student t using an informative mean and ref
# prior for sigma^2
bayes_inference(tthm, data=tapwater,
                statistic="mean", mu_0=9.8,
                type="ci", prior_family="JUI",
                method="theo")
# Calculate 95% CI using simulation with the
# Cauchy prior on mu and reference prior on sigma<sup>2</sup>
bayes_inference(tthm, data=tapwater,
                statistic="mean", mu_0 = 9.8, rscale=sqrt(2)/2,
                type="ci", prior_family="JZS",
                method="simulation")
# Bayesian t-test mu = 0 with ZJS prior
bayes_inference(tthm, data=tapwater,
                statistic="mean",
                type="ht", alternative="twosided", null=80,
                prior_family="JZS",
                method="sim")
# Bayesian t-test for two means
data(chickwts)
chickwts = chickwts[chickwts$feed %in% c("horsebean","linseed"),]
# Drop unused factor levels
chickwts$feed = factor(chickwts$feed)
bayes_inference(y=weight, x=feed, data=chickwts,
                statistic="mean", mu_0 = 0, alt="twosided",
                type="ht", prior_family="JZS",
                method="simulation")
```

BF_app

Description

This app illustrates how changing the Z score and prior precision affects the Bayes Factor for testing H1 that the mean is zero versus H2 that the mean is not zero for data arising from a normal population. Lindley's paradox occurs for large sample sizes when the Bayes factor favors H1 even though the Z score is large or the p-value is small enough to reach statistical significance and the values of the sample mean do not reflex practical significance based on the prior distribution. Bartlett's paradox may occur when the prior precision goes to zero, leading to Bayes factors that favor H1 regardless of the data. A prior precision of one corresponds to the unit information prior.

Usage

BF_app()

Examples

```
if (interactive()) {
BF.app()
}
```

brfss

Behavioral Risk Factor Surveillance System 2013 (Subset)

Description

This data set is a small subset of BRFSS results from the 2013 survey, each row represents an individual respondent.

Usage

brfss

Format

A tbl_df with with 5000 rows and 6 variables:

weight Weight in pounds.

height Height in inches.

sex Sex

exercise Any exercise in the last 30 days

fruit_per_day Number of servings of fruit consumed per day.

vege_per_day Number of servings of dark green vegetables consumed per day.

calc_streak

Source

Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance System Survey Data. Atlanta, Georgia: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2013.

calc_streak Calculate hitting streaks

Description

Calculate hitting streaks

Usage

calc_streak(x)

Arguments

Х

A data frame or character vector of hits ("H") and misses ("M").

Value

A data frame with one column, length, containing the length of each hit streak.

Examples

data(kobe_basket)
calc_streak(kobe_basket\$shot)

credible_interval_app Credible Interval shiny app

Description

Run the 'shiny' credible interval app to generate credible intervals under the prior or posterior distribution for Beta, Gamma and Gaussian families. Sliders are used to adjust the hyperparameters in the distribution so that one may see how the resulting credible intervals and plotted distributions change.

Usage

credible_interval_app()

```
if (interactive()) {
    credible_interval_app()
}
```

evals

Description

The data were gathered from end of semester student evaluations for a large sample of professors from the University of Texas at Austin (variables beginning with cls). In addition, six students rated the professors' physical appearance (variables beginning with bty). (This is a slightly modified version of the original data set that was released as part of the replication data for Data Analysis Using Regression and Multilevel/Hierarchical Models (Gelman and Hill, 2007).

Usage

evals

Format

A data frame with 463 rows and 21 variables:

score Average professor evaluation score: (1) very unsatisfactory - (5) excellent

rank Rank of professor: teaching, tenure track, tenure

ethnicity Ethnicity of professor: not minority, minority

gender Gender of professor: female, male

language Language of school where professor received education: english or non-english

age Age of professor

cls_perc_eval Percent of students in class who completed evaluation

cls_did_eval Number of students in class who completed evaluation

cls_students Total number of students in class

cls_level Class level: lower, upper

cls_profs Number of professors teaching sections in course in sample: single, multiple

cls_credits Number of credits of class: one credit (lab, PE, etc.), multi credit

bty_f1lower Beauty rating of professor from lower level female: (1) lowest - (10) highest

bty_flupper Beauty rating of professor from upper level female: (1) lowest - (10) highest

bty_f2upper Beauty rating of professor from second upper level female: (1) lowest - (10) highest

bty_m1lower Beauty rating of professor from lower level male: (1) lowest - (10) highest

bty_m1upper Beauty rating of professor from upper level male: (1) lowest - (10) highest

bty_m2upper Beauty rating of professor from second upper level male: (1) lowest - (10) highest

bty_avg Average beauty rating of professor

pic_outfit Outfit of professor in picture: not formal, formal

pic_color Color of professor's picture: color, black & white

inference

Source

These data appear in Hamermesh DS, and Parker A. 2005. Beauty in the classroom: instructors pulchritude and putative pedagogical productivity. Economics of Education Review 24(4):369-376.

inference

Hypothesis tests and confidence intervals

Description

Hypothesis tests and confidence intervals

Usage

```
inference(
 у,
 x = NULL,
 data,
  type = c("ci", "ht"),
  statistic = c("mean", "median", "proportion"),
  success = NULL,
 order = NULL,
 method = c("theoretical", "simulation"),
 null = NULL,
 alternative = c("less", "greater", "twosided"),
  sig_level = 0.05,
  conf_level = 0.95,
 boot_method = c("perc", "se"),
  nsim = 15000,
  seed = NULL,
  verbose = TRUE,
  show_var_types = verbose,
  show_summ_stats = verbose,
  show_eda_plot = verbose,
  show_inf_plot = verbose,
  show_res = verbose
```

Arguments

)

У	Response variable, can be numerical or categorical
x	Explanatory variable, categorical (optional)
data	Name of data frame that y and x are in
type	of inference; "ci" (confidence interval) or "ht" (hypothesis test)
statistic	parameter to estimate: mean, median, or proportion
success	which level of the categorical variable to call "success", i.e. do inference on

order	when x is given, order of levels of x in which to subtract parameters
method	of inference; "theoretical" (CLT based) or "simulation" (randomization/bootstrap)
null	null value for a hypothesis test
alternative	direction of the alternative hypothesis; "less", "greater", or "twosided"
sig_level	significance level, value between 0 and 1 (used only for ANOVA to determine if posttests are necessary)
conf_level	confidence level, value between 0 and 1
<pre>boot_method</pre>	bootstrap method; "perc" (percentile) or "se" (standard error)
nsim	number of simulations
seed	seed to be set, default is NULL
verbose	whether output should be verbose or not, default is TRUE
show_var_types	print variable types, set to verbose by default
show_summ_stats	
	print summary stats, set to verbose by default
show_eda_plot	print EDA plot, set to verbose by default
<pre>show_inf_plot</pre>	print inference plot, set to verbose by default
show_res	print results, set to verbose by default

Value

Results of inference task performed

```
data(tapwater)
# Calculate 95% CI using quantiles using a Student t distribution
inference(tthm, data=tapwater,
                statistic="mean",
                type="ci",
               method="theoretical")
inference(tthm, data=tapwater,
                statistic="mean",
                type="ci",
                boot_method = "perc",
                method="simulation")
# Inference for a proportion
# Calculate 95% confidence intervals for the proportion of atheists
data("atheism")
library("dplyr")
us12 <- atheism %>%
       filter(nationality == "United States" , atheism$year == "2012")
inference(y = response, data = us12, statistic = "proportion",
         type = "ci",
```

kobe_basket

```
method = "theoretical",
success = "atheist")
```

kobe_basket

Kobe Bryant basketball performance

Description

Data from the five games the Los Angeles Lakers played against the Orlando Magic in the 2009 NBA finals.

Usage

kobe_basket

Format

A data frame with 133 rows and 6 variables:

vs A categorical vector, ORL if the Los Angeles Lakers played against Orlando

game A numerical vector, game in the 2009 NBA finals

quarter A categorical vector, quarter in the game, OT stands for overtime

time A character vector, time at which Kobe took a shot

description A character vector, description of the shot

shot A categorical vector, H if the shot was a hit, M if the shot was a miss

Details

Each row represents a shot Kobe Bryant took during the five games of the 2009 NBA finals. Kobe Bryant's performance earned him the title of Most Valuable Player and many spectators commented on how he appeared to show a hot hand.

mlb11

Major League Baseball team data

Description

Data from all 30 Major League Baseball teams from the 2011 season.

Usage

mlb11

Format

A data frame with 30 rows and 12 variables:

team Team name.

runs Number of runs.

at_bats Number of at bats.

hits Number of hits.

homeruns Number of home runs.

bat_avg Batting average.

strikeouts Number of strikeouts.

stolen_bases Number of stolen bases.

- wins Number of wins.
- **new_onbase** Newer variable: on-base percentage, a measure of how often a batter reaches base for any reason other than a fielding error, fielder's choice, dropped/uncaught third strike, fielder's obstruction, or catcher's interference.
- **new_slug** Newer variable: slugging percentage, popular measure of the power of a hitter calculated as the total bases divided by at bats.
- **new_obs** Newer variable: on-base plus slugging, calculated as the sum of the on-base and slugging percentages.

Source

mlb.com

nc

North Carolina births

Description

In 2004, the state of North Carolina released a large data set containing information on births recorded in this state. This data set is useful to researchers studying the relation between habits and practices of expectant mothers and the birth of their children. We will work with a random sample of observations from this data set.

Usage

nc

nycflights

Format

A tbl_df with 1000 rows and 13 variables:

fage father's age in years
mage mother's age in years
mature maturity status of mother
weeks length of pregnancy in weeks
premie whether the birth was classified as premature (premie) or full-term
visits number of hospital visits during pregnancy
marital whether mother is 'married' or 'not married' at birth
gained weight gained by mother during pregnancy in pounds
weight weight of the baby at birth in pounds
lowbirthweight whether baby was classified as low birthweight ('low') or not ('not low')
gender gender of the baby, 'female' or 'male'
habit status of the mother as a 'nonsmoker' or a 'smoker'
whitemom whether mom is 'white' or 'not white'

Source

State of North Carolina.

nycflights	Flights data	

Description

On-time data for a random sample of flights that departed NYC (i.e. JFK, LGA or EWR) in 2013.

Usage

nycflights

Format

A tbl_df with 32,735 rows and 16 variables:

year,month,day Date of departure

dep_time,arr_time Departure and arrival times, local tz.

- dep_delay,arr_delay Departure and arrival delays, in minutes. Negative times represent early departures/arrivals.
- hour, minute Time of departure broken in to hour and minutes
- **carrier** Two letter carrier abbreviation. See airlines in the nycflights13 package for more information

tailnum Plane tail number

flight Flight number

origin,dest Origin and destination. See airports in the nycflights13 package for more information, or google airport the code.

air_time Amount of time spent in the air

distance Distance flown

Source

Hadley Wickham (2014). nycflights13: Data about flights departing NYC in 2013. R package version 0.1. https://CRAN.R-project.org/package=nycflights13

plot_bandit_posterior plot_bandit_posterior

Description

Generates a plot that shows the bandit posterior values as they are sequentially updated by the provided win / loss data.

Usage

```
plot_bandit_posterior(
   data,
   prior = c(m1_good = 0.5, m2_good = 0.5),
   win_probs = c(good = 1/2, bad = 1/3)
)
```

Arguments

data	data frame containing win loss data
prior	prior vector containing the probabilities of Machine 1 and Machine 2 being good, defaults to 50-50.
win_probs	vector containing the probabilities of winning on the good and bad machine respectively.

See Also

bandit_sim to generate data to use below

plot_ss

Description

An interactive shiny app that will generate a scatterplot of two variables, then allow the user to click the plot in two locations to draw a best fitting line. Residuals are drawn by default; boxes representing the squared residuals are optional.

Usage

```
plot_ss(x, y, data, showSquares = FALSE, leastSquares = FALSE)
```

Arguments

х	the name of numerical vector 1 on x-axis
У	the name of numerical vector 2 on y-axis
data	the dataframe in which x and y can be found
showSquares	logical option to show boxes representing the squared residuals
leastSquares	logical option to bypass point entry and automatically draw the least squares line

Examples

Not run: plot_ss

present

Male and female births in the US

Description

Counts of the total number of male and female births in the United States from 1940 to 2013.

Usage

present

Format

A tbl_df with 74 rows and 3 variables:

year year, ranging from 1940 to 2013

boys number of male births

girls number of female births

Source

Data up to 2002 appear in Mathews TJ, and Hamilton BE. 2005. Trend analysis of the sex ratio at birth in the United States. National Vital Statistics Reports 53(20):1-17. Data for 2003 - 2013 have been collected from annual National Vital Statistics Reports published by the US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics.

rep_sample_n Repeating Sampling from a Tibble

Description

Repeating Sampling from a Tibble

Usage

rep_sample_n(tbl, size, replace = FALSE, reps = 1)

Arguments

tbl	tbl of data.
size	The number of rows to select.
replace	Sample with or without replacement?
reps	The number of samples to collect.

Value

A tbl_df that aggregates all created samples, with the addition of a replicate column that the tbl_df is also grouped by

```
data(nc)
rep_sample_n(nc, size=10, replace=FALSE, reps=1)
```

statsr

statsr: A companion package for Statistics with R

Description

R package to support the online open access book "An Introduction to Bayesian Thinking" available at https://statswithr.github.io/book/ and videos for the Coursera "Statistics with R" Specialization. The package includes data sets, functions and Shiny Applications for learning frequentist and Bayesian statistics with R. The two main functions for inference and decision making are 'inference' and 'bayes_inference' which support confidence/credible intervals and hypothesis testing with one sample or two samples from Gaussian and Bernoulli populations. Shiny apps are used to illustrate how prior hyperparameters or changes in the data may influence posterior distributions.

Details

See https://github.com/StatsWithR/statsr for the development version and additional information or for additional background and illustrations of functions the online book https:// statswithr.github.io/book/.

tapwater

Total Trihalomethanes in Tapwater

Description

Trihalomethanes are formed as a by-product predominantly when chlorine is used to disinfect water for drinking. They result from the reaction of chlorine or bromine with organic matter present in the water being treated. THMs have been associated through epidemiological studies with some adverse health effects and many are considered carcinogenic. In the United States, the EPA limits the total concentration of the four chief constituents (chloroform, bromoform, bromodichloromethane, and dibromochloromethane), referred to as total trihalomethanes (TTHM), to 80 parts per billion in treated water.

Usage

tapwater

Format

A dataframe with 28 rows and 6 variables:

date Date of collectiontthm average total trihalomethanes in ppbsamples number of samplesnondetects number of samples where tthm not detected (0)min min tthm in ppb in samplesmax max tthm in ppb in samples

Source

National Drinking Water Database for Durham, NC. https://www.ewg.org

wage

Wage data

Description

The data were gathered as part of a random sample of 935 respondents throughout the United States.

Usage

wage

Format

A tbl_df with with 935 rows and 17 variables:

wage weekly earnings (dollars)

hours average hours worked per week

iq IQ score

kww Knowledge of world work score

educ years of education

exper years of work experience

tenure years with current employer

age age in years

married =1 if married

black =1 if black

south =1 if live in south

urban =1 if live in a Standard Metropolitan Statistical Area

sibs number of siblings

brthord birth order

meduc mother's education (years)

feduc father's education (years)

lwage natural log of wage

Source

Jeffrey M. Wooldridge (2000). Introductory Econometrics: A Modern Approach. South-Western College Publishing.

Description

Trace metals in drinking water affect the flavor and an unusually high concentration can pose a health hazard. Ten pairs of data were taken measuring zinc concentration in bottom water and surface water.

Usage

zinc

Format

A data frame with 10 observations on the following 4 variables.

location sample number

bottom zinc concentration in bottom water

surface zinc concentration in surface water

difference difference between zinc concentration at the bottom and surface

Source

PennState Eberly College of Science Online Courses

Examples

```
data(zinc)
str(zinc)
plot(bottom ~ surface, data=zinc)
# use paired t-test to test if difference in means is zero
```

zinc

zinc

Index

* datasets ames, 2 arbuthnot, 6atheism, 6 brfss, 12 evals, 14 kobe_basket, 17 mlb11, 17 nc, 18 nycflights, 19 present, 21 tapwater, 23 wage, 24 zinc, 25 ames, 2ames_sampling_dist, 5 Arbuthnot, 6arbuthnot, 6atheism, 6 bandit_posterior, 7, 8 bandit_sim, 7, 8, 20 bayes_inference, 9 BF_app, 12 brfss, 12calc_streak, 13 credible_interval_app, 13 evals, 14 inference, 15 kobe_basket, 17 mlb11,17 nc, 18 nycflights, 19 plot_bandit_posterior, 7, 8, 20 $plot_ss, 21$ present, 21 rep_sample_n, 22 statsr, 23 tapwater, 23 wage, 24zinc, 25