
algo.glrnb: Count data regression charts using

the generalized likelihood ratio statistic

Valentin Wimmer(1,2)∗ and Michael Höhle(1,2)

(1) Department of Statistics, University of Munich, Germany
(2) MC-Health – Munich Center of Health Sciences

6 June 2008

Abstract

The aim of this document is to show the use of the function algo.glrnb

for a type of count data regression chart, the generalized likelihood
ratio (GLR) statistic. The function is part of the R package surveil-

lance (Höhle, 2007), which provides outbreak detection algorithms for
surveillance data. For an introduction to these monitoring features
of the package, see vignette("surveillance"). There one can find
information about the data structure of the disProg and survRes ob-
jects. Furthermore tools for outbreak detection, such as a Bayesian ap-
proach, procedures described by Stroup et al. (1989), Farrington et al.
(1996) and the methods used at the Robert Koch Institut, Germany,
are explained. The function algo.glrnb is the implementation of the
control charts for poisson and negative binomial distributions for mon-
itoring time series of counts described in Höhle and Paul (2008). This
document gives an overview of the different features of the function and
illustrations of its use are given for simulated and real surveillance data.

Keywords: change-point detection, generalized regression charts, pois-
son and negative binomial distribution, increase and decrease

1 Introduction

For the monitoring of infectious diseases it is necessary to monitor time
series of routinely collected surveillance data. Methods of the statistic pro-
cess control (SPC) can be used for this purpose. Here it is important, that
the methods can handle the special features of surveillance data, e.g. sea-
sonality of the disease or the count data nature of the collected data. It
is also important, that not only the number of counts of one time point
(week, month) are regarded but instead the cases of previous time points

∗Author of correspondence: Valentin.Wimmer@gmx.de

1

are considered, because beside abrupt changes also small constant changes
should be detected. CUSUM-methods (function algo.cusum), LR-charts or
GLR-methods as described by Lai (1995) and Höhle and Paul (2008) can
afford this. With the function algo.glrnb these methods can easily applied
to surveillance data.
A typical assumption for time series of counts is, that the observed counts
at each time point follow a Poisson distribution. If overdispersion is likely,
the negative binomial distribution provides a better alternative. Both dis-
tributions are provided by algo.glrnb.
In the GLR-scheme, an outbreak can be defined as a change in the intercept.
The function algo.glrnb allows the user to specify whether increases or
decreases in mean should be regarded. For each time point a GLR-statistic
is computed, if this statistic exceeds a threshold value, an alarm is given.
The function also provides the possibility to return the number of cases that
would have been necessary to produce an alarm.
This vignette is organized as follows: First, in Section 2 the data structure is
explained, in Section 3 a short introduction in the theory of the GLR-charts
is given and Section 4 shows the different control-settings.

2 Preliminaries

Consider the situation, where a time series of counts is collected for surveil-
lance purpose. In each interval, usually one week, the number of cases of the
interesting disease in an area (country, district) is counted. The resulting
time series is denoted by {yt ; t = 1, . . . , n}. Usually the data are collected on
line, so that the time point n is the actual time point. Our aim is to decide
with the aid of a statistic for each time point n if there is an outbreak at this
or any former time point. If an outbreak is detected, the algorithm gives
an alarm. Observed time series of counts are saved in a disProg object, a
list containing the time series of counts, the number of weeks and a state
chain. The state is 1, if e.g. the Robert Koch-Institut declares the week to
be part of an outbreak and 0 otherwise. By using the state chain the quality
of the surveillance algorithm can be tested. As an first example the number
of cases of salmonella hadar in the years 2001-2006 is examined.

Example 1:

> data(shadar)

> plot(shadar,main="Number of salmonella hadar cases in Germany 2001-2006")

2

Number of salmonella hadar cases in Germany 2001−2006

time

N
o.

 in
fe

ct
ed

2001

II

2001

IV

2002

II

2002

IV

2003

II

2003

IV

2004

II

2004

IV

2005

II

2005

IV

2006

II

0
5

10
15

20

The package provides the possibility to simulate surveillance data with the
functions sim.pointSource, sim.seasonalNoise and sim.HHH. See Höhle
(2007) and vignette("surveillance") for further information.

Example 2:

> # Simulate data

> simData <- sim.pointSource(length=300,K=0.5,r=0.6,p=0.95)

> plot(simData)

time

N
o.

 in
fe

ct
ed

2001

II

2001

IV

2002

II

2002

IV

2003

II

2003

IV

2004

II

2004

IV

2005

II

2005

IV

2006

II

2006

IV

0
5

10
15 Infected

Outbreak

3 LR and GLR-charts

Our aim is to detect a significant change in the number of cases. This is
done as follows. One assumes, that there is a number of cases that is usual,
the in control mean µ0. The in-control mean is defined in Höhle and Paul

3

(2008) to be

log(µ0,t) = β0 + β1t +
S

∑

s=1

(β2s cos(ωst) + β2s+1 sin(ωst)). (1)

If an outbreak occurs, the number of cases increases and the situation is
out-of control and the algorithm should produce an alarm. The change is
assumed to be an additive increase on log scale,

log(µ1) = log(µ0) + κ. (2)

If µ0 is unknown one could use a part of the data to estimate it with a
generalized linear model (GLM). If κ is known, LR-charts can be used, if
not, κ has to be estimated, which is the GLR-scheme setting. For each time
point, the likelihood ratio statistic is computed as follows

GLR(n) = max
1≤k≤n

sup
θ∈Θ

[

n
∑

t=k

log

{

fθ(yt)

fθ0
(yt)

}

]

. (3)

Now N = inf{n ≥ 1 : GLR(n) ≥ cγ} is the first time point where the GLR-
statistic is above a threshold cγ . For this time point N an alarm is given. If
the parameter κ and hence θ = κ is known, the maximisation over θ can be
omitted.
With the function algo.glrnb one can compute the the GLR-statistic for
every time point. If the actual value extends the chosen threshold cγ , an
alarm is given. After every alarm, the algorithm gets reset and the surveil-
lance starts again. The result of a call of algo.glrnb is an object of class
survRes. This is basically a list of several arguments. The most important
one is the upperbound statistic, which is a vector of length n containing
the likelihood-ratio-statistic for every time point under surveillance. The
alarm-vector contains a boolean for every time point whether there was an
alarm or not.

At this point in the vignette we move more into the applied direction and
refer the user to Höhle and Paul (2008) for further theoretical details about
the GLR procedure. The next example demonstrates the surveillance with
the algo.glrnb in a learning by doing type of way. The example should
demonstrate primarily the result of the surveillance. More details to the
control-options follow in the next section. All control values are set here on
default and the first two years are used to find a model for the in-control
mean and so surveillance is starting in week 105. A plot of the results can
be obtained as follows

> survObj <- algo.glrnb(shadar,control=list(range=105:295,alpha=0))

> plot(survObj, col=c(8,NA,4))

4

Analysis of shadar using glrpois: intercept

time

N
o.

 in
fe

ct
ed

2003

II

2003

III

2003

IV

2004

II

2004

III

2004

IV

2005

II

2005

III

2005

IV

2006

II

2006

III

0
5

10
15

20

Infected
Threshold
Alarm

The default value for cγ is 5. The upperbound statistic is above this value
several times in the third quarter of 2006 (time points marked by small
triangles in the plot). In the next section follow a description of the control-
setting for tuning the behavior of the algorithm, e.g. one can search not only
for increases in mean as shown in the example but also for decreases.

4 Control-settings

In this section, the purpose and use of the control settings of the algo.glrnb

function are shown and illustrated by the examples from Section 2.
The control-setting is a list of the following arguments.

> control=list(range=range,c.ARL=5,

+ mu0=NULL, alpha=0, Mtilde=1, M=-1, change="intercept",theta=NULL,

+ dir=c("inc","dec"),ret=c("cases","value"))

• range

The range is a vector of consecutive indices for the week numbers
in the disProg object for which surveillance should be done. If a
model for the in-control parameter µ0 is known (mu0 is not NULL), the
surveillance can start at time point one. Otherwise it is necessary to
estimate the values for mu0 with a GLM. Thus, the range should not
start at the first time point but instead use the first weeks/months as
control-range. (Note: It is important to use enough data for estimating
µ0, but one should be careful that these data are in control)

With the following call one uses the first 2 years (104 weeks) for esti-
mating µ0 and the the years 2003 to 2006 will be on line monitored.

> control=list(range=105:length(shadar$observed))

> algo.glrnb(disProgObj=shadar,control=control)

5

• alpha

This is the (known) dispersion parameter α of the negative binomial
distribution. If alpha=0, modeling corresponds to the Poisson dis-
tribution. In this case, the call of algo.glrnb is similar to a call
of algo.glrpois. If α is known, the value can be specified in the
control-settings.

> control=list(range=105:295,alpha=3)

> algo.glrnb(disProgObj=shadar,control=control)

If overdispersion is present in the data, but the dispersion parameter
α is unknown, an estimation α̂ is calculated as part of the in-control
model estimation. Use alpha=NULL to get this estimation.

The estimated value α̂ is saved in the survRes-Object in the control-
list. Use

> control=list(range=105:295,alpha=NULL)

> surv <- algo.glrnb(shadar,control=control)

> surv$control$alpha

[1] 0.2475705

to get the estimated dispersion parameter for the salmonella data.

• mu0

This vector contains the values for µ0 for each time point in the range.
If it has the value NULL the observed values with indices 1 to range-1
are used to fit a GLM. If there is no knowledge about the in-control
parameter, one can use the values before the range to find an seasonal
model as in equation 1. mu0 is at the moment a list of three argument:
S is the number of harmonics to include in the model, trend is Boolean
whether a linear trend β1t should be considered. The default is to use
the same model of µ0 for the whole surveillance. An alternative is, to
fit a new model after every detected outbreak. If refitting should be
done, choose refit=TRUE in the mu0 list. In this case, the observed
value from time point 1 to the time point of the last alarm are used
for estimating a GLM. Then we get a new model after every alarm.

In the following example a model with S=2 harmonics and no linear
trend is fitted for the Salmonella data. The observed cases from the
first two years are used for fitting the GLM.

> control=list(range=105:295,mu0=list(S=2,trend=FALSE))

> algo.glrnb(disProgObj=shadar,control=control)

The predicted values for the in-control mean in the range are shown
as a dashed line in the following plot.

6

> plot(shadar)

> with(surv$control,lines(mu0~range,lty=2,lwd=4,col=4))

time

N
o.

 in
fe

ct
ed

2001

II

2001

IV

2002

II

2002

IV

2003

II

2003

IV

2004

II

2004

IV

2005

II

2005

IV

2006

II

0
5

10
15

20

Information about the used model is saved in the survRes-object, too.

> surv$control$mu0Model

The µ0 model is fitted by a call of the function estimateGLRNbHook,
which is defined as follows:

> estimateGLRNbHook

function ()

{

control <- parent.frame()$control

p <- parent.frame()$disProgObj$freq

range <- parent.frame()$range

train <- 1:(range[1] - 1)

test <- range

data <- data.frame(y = parent.frame()$disProgObj$observed[train],

t = train)

formula <- "y ~ 1 "

if (control$mu0Model$trend) {

formula <- paste(formula, " + t", sep = "")

}

for (s in seq_len(control$mu0Model$S)) {

formula <- paste(formula, "+cos(2*", s, "*pi/p*t)+ sin(2*",

s, "*pi/p*t)", sep = "")

}

if (is.null(control[["alpha", exact = TRUE]])) {

m <- eval(substitute(glm.nb(form, data = data), list(form = as.formula(formula))))

}

else {

if (control$alpha == 0) {

message(paste0("glrnb: Fitting Poisson model because alpha == 0"))

m <- eval(substitute(glm(form, family = poisson(),

7

data = data), list(form = as.formula(formula))))

}

else {

message(paste0("glrnb: Fitting glm.nb model with alpha=",

control$alpha))

m <- eval(substitute(glm(form, family = negative.binomial(theta = 1/control$alpha),

data = data), list(form = as.formula(formula))))

}

}

pred <- as.numeric(predict(m, newdata = data.frame(t = range),

type = "response"))

return(list(mod = m, pred = pred))

}

<bytecode: 0x645d371db6f8>

<environment: namespace:surveillance>

The fitted model from the call of estimateGLRNbHook is saved. The
result of a call of glm.nb is in the standard setting an object of class
negbin inheriting from class glm. So methods as summary, plot of
predict can be used on this object. If refitting is done, the list of the
used models is saved. Use

> coef(surv$control$mu0Model$fitted[[1]])

(Intercept) cos(2 * 1 * pi/p * t) sin(2 * 1 * pi/p * t)

1.366509559 -0.330913468 -0.340248554

cos(2 * 2 * pi/p * t) sin(2 * 2 * pi/p * t)

-0.008114547 0.259416100

to get the estimated values of the first (and in case of refit=FALSE

only) model for the parameter vector β given in (1).

• c.ARL

This is just the threshold cγ for the GLR-test (see equation 3). The
smaller the value is chosen, the more likely it is to detect an outbreak
but on the other hand false alarms can be produced.

> control=list(range=105:295,alpha=0)

> surv <- algo.glrnb(disProgObj=shadar,control=control)

> table(surv$alarm)

0 1

185 6

For a choice of cγ we get 6 alarms. In the following table the results
for different choices of the threshold are shown.

c.ARL 1 2 3 4 5 6

no. of alarms 15 11 8 7 6 4

8

• change

There are two possibilitys to define an outbreak. The intercept-change
is described in Section 3 and equation 2. Use change="intercept"

to choose this possibility. The other alternative is the epidemic chart,
where an auto-regressive model is used. See Höhle and Paul (2008) for
details. The plot below reproduces Figure 9 from that paper, using
change="epi" in the control settings. Note that in the epidemic chart
not every feature of algo.glrnb is available.

> control=list(range=209:295,c.ARL=5.1,mu0=list(S=1,trend=TRUE),

+ alpha=NULL,M=52,change="epi")

> surv <- algo.glrnb(shadar, control)

> plot(surv,col=c(NA,8,4),lty=c(1,0,1),lwd=c(1,1,3),legend.opts=NULL)

> lines(surv$control$mu0,lty=2,lwd=2,col=2)

> abline(h=surv$control$c.ARL,lty=2,col=3)

> legend(1,20,expression(GLR(n),mu[0],c[gamma]),

+ col=c(4,2,3),lty=c(1,2,2),lwd=c(3,2,1))

Analysis of shadar using glrnb: epi

time

N
o.

 in
fe

ct
ed

2005

II

2005

III

2005

IV

2006

II

2006

III

0
5

10
15

20

GLR(n)
µ0

cγ

• theta

If the change in intercept in the intercept-charts is known in advance,
this value can be passed to the function (see Section 3). These LR-
charts are faster but can lead to inferior results if a wrong value of
theta is used compared to the actual out-of-control value (Höhle and
Paul (2008)). If an increase of 50 percent in cases is common when
there is an outbreak which corresponds to a κ of log(1.5) = 0.405 in
equation 2 use

> control=list(range=105:295,theta=0.4)

> algo.glrnb(disProgObj=shadar,control=control)

If there is no knowledge about this value (which is the usual situation),
it is not necessary to specify theta. In the GLR-charts, the value for
κ is calculated by a maximation of the likelihood. Use the call

9

> control=list(range=105:295,theta=NULL)

> algo.glrnb(disProgObj=shadar,control=control)

in this situation.

• ret

The upperbound-statistic of a survRes-object is usually filled with
the LR- or GLR-statistic of equation 3. A small value means, that the
in-control-situation is likely, a big value is a hint for an outbreak. If
you choose ret="value", the upperbound slot is filled with the GLR-
statistic. These values are plotted then, too. The alternative return
value is "cases". In this case, the number of cases at time point n

that would have been necessary to produce an alarm are computed.
The advantage of this option is the easy interpretation. If the actual
number of cases is more extreme than the computed one, an alarm is
given. With the following call, this is done for the salmonella data.

> control=list(range=105:295,ret="cases",alpha=0)

> surv2 <- algo.glrnb(disProgObj=shadar,control=control)

Analysis of shadar using glrpois: intercept

time

N
o.

 in
fe

ct
ed

2003

II

2003

III

2003

IV

2004

II

2004

III

2004

IV

2005

II

2005

III

2005

IV

2006

II

2006

III

0
5

10
15

20

Infected
Threshold
Alarm

Of course, the alarm time points are the same as with ret="cases".

• dir

In the surveillance of infectious diseases it is regular to detect an in-
crease in the number of infected persons. This is also the standard
setting for algo.glrnb. But in other applications it could be of inter-
est to detect a decrease of counts. For this purpose, the dir-option
is available. If dir is set to "inc", only increases in regard to the in-
control mean are taken into account in the likelihood-ratio-statistic.
With dir="dec", only decreases are considered.

10

As an example we take the salmonella data again, but know we look
at the number of cases that would have been necessary if a decrease
should be detected.

> control=list(range=105:295,ret="cases",dir="dec",alpha=0)

> surv3 <- algo.glrnb(disProgObj=shadar,control=control)

Analysis of shadar using glrpois: intercept

time

N
o.

 in
fe

ct
ed

2003

II

2003

III

2003

IV

2004

II

2004

III

2004

IV

2005

II

2005

III

2005

IV

2006

II

2006

III

0
5

10
15

20

Infected
Threshold
Alarm

The observed number of cases is below the computed threshold several
times in 2005 to 2006 and alarms are given.

• Mtilde and M

These parameters are necessary for the so called ”window-limited”
GLR scheme. Here the maximation is not performed for all 1 ≤ k ≤ n

but instead only for a window k ∈ {n − M, ..., n − M̃ + 1} of values.
Note that 1 ≤ M̃ ≤ M , where the minimum delay M̃ is the minimal
required sample size to obtain a sufficient estimate of θ1 = (µ0, κ)
(Höhle and Paul, 2008). The advantage of using a window of values
instead of all values is the faster computation, but in the setup with
intercept-charts and θ1 = κ this doesn’t bother much and M̃ = 1 is
sufficient.

5 Discussion

As seen, the function algo.glrnb allows many possibilities for doing surveil-
lance for a time series of counts. In order to achieve fast computations, the
function is implemented in C. An important issue in surveillance is the
quality of the used algorithms. This can be measured by the sensitivity
and the specificity of the result. The aim of our future work is to provide
the possibility for computing the quality and in the next step to include a
ROC-approach in order to have a more formal framework for the choice of
threshold cγ .

11

References

Farrington, C. P., Andrews, N. J., Beale, A. D., and Catchpole, M. A. (1996).
A statistical algorithm for the early detection of outbreaks of infectious
disease. Journal of the Royal Statistical Society. Series A (Statistics in
Society), 159:547–563.

Höhle, M. (2007). surveillance: An R package for the monitoring of
infectious diseases. Computational Statistics, 22(4):571–582.

Höhle, M. and Paul, M. (2008). Count data regression charts for the moni-
toring of surveillance time series. Computational Statistics and Data Anal-
ysis, 52(9):4357–4368.

Lai, T. L. (1995). Sequential changepoint detection in quality control and
dynamical systems. Journal of the Royal Statistical Society. Series B
(Methodological), 57(4):613–658.

Stroup, D., Williamson, G., Herndon, J., and Karon, J. (1989). Detection
of aberrations in the occurrence of notifiable diseases surveillance data.
Statistics in Medicine, 8:323–329.

12

	Introduction
	Preliminaries
	LR and GLR-charts
	Control-settings
	Discussion

