
Package ‘systemfonts’
April 30, 2025

Type Package

Title System Native Font Finding

Version 1.2.3

Description Provides system native access to the font catalogue. As font
handling varies between systems it is difficult to correctly locate
installed fonts across different operating systems. The 'systemfonts'
package provides bindings to the native libraries on Windows, macOS
and Linux for finding font files that can then be used further by e.g.
graphic devices. The main use is intended to be from compiled code but
'systemfonts' also provides access from R.

License MIT + file LICENSE

URL https://github.com/r-lib/systemfonts,

https://systemfonts.r-lib.org

BugReports https://github.com/r-lib/systemfonts/issues

Depends R (>= 3.2.0)

Imports base64enc, grid, jsonlite, lifecycle, tools, utils

Suggests covr, farver, graphics, knitr, rmarkdown, testthat (>= 2.1.0)

LinkingTo cpp11 (>= 0.2.1)

VignetteBuilder knitr

Config/build/compilation-database true

Config/Needs/website tidyverse/tidytemplate

Config/usethis/last-upkeep 2025-04-23

Encoding UTF-8

RoxygenNote 7.3.2

SystemRequirements fontconfig, freetype2

NeedsCompilation yes

Author Thomas Lin Pedersen [aut, cre] (ORCID:
<https://orcid.org/0000-0002-5147-4711>),

Jeroen Ooms [aut] (ORCID: <https://orcid.org/0000-0002-4035-0289>),
Devon Govett [aut] (Author of font-manager),
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>)

1

https://github.com/r-lib/systemfonts
https://systemfonts.r-lib.org
https://github.com/r-lib/systemfonts/issues
https://orcid.org/0000-0002-5147-4711
https://orcid.org/0000-0002-4035-0289
https://ror.org/03wc8by49

2 add_fonts

Maintainer Thomas Lin Pedersen <thomas.pedersen@posit.co>

Repository CRAN

Date/Publication 2025-04-30 17:50:02 UTC

Contents
add_fonts . 2
fonts_as_import . 3
font_fallback . 5
font_feature . 6
font_info . 7
glyph_info . 9
glyph_outline . 10
glyph_raster . 11
glyph_raster_grob . 12
match_fonts . 13
register_font . 15
register_variant . 16
require_font . 18
reset_font_cache . 19
search_web_fonts . 19
shape_string . 20
string_metrics_dev . 23
string_width . 24
string_widths_dev . 25
str_split_emoji . 26
system_fonts . 27
web-fonts . 27

Index 28

add_fonts Add local font files to the search path

Description

systemfonts is mainly about getting system native access to the fonts installed on the OS you are
executing the code on. However, you may want to access fonts without doing a full installation,
either because you want your project to be reproducible on all systems, because you don’t have
administrator priviliges on the system, or for a different reason entirely. add_fonts() provide a
way to side load font files so that they are found during font matching. The function differs from
register_font() and register_variant() in that they add the font file as-is using the family
name etc that are provided by the font. scan_local_fonts() is run when systemfonts is loaded
and will automatically add font files stored in ./fonts (project local) and ~/fonts (user local).

fonts_as_import 3

Usage

add_fonts(files)

scan_local_fonts()

clear_local_fonts()

Arguments

files A character vector of font file paths or urls to add

Value

This function is called for its sideeffects

Font matching

During font matching, systemfonts has to look in three different locations. The font registry (popu-
lated by register_font()/register_variant()), the local fonts (populated with add_fonts()/scan_local_fonts()),
and the fonts installed on the system. It does so in that order: registry > local > installed.

The matching performed at each step also differs. The fonts in the registry is only matched by
family name. The local fonts are matched based on all the provided parameters (family, weight,
italic, etc) in a way that is local to systemfonts, but try to emulate the system native matching. The
installed fonts are matched using the system native matching functionality on macOS and Linux. On
Windows the installed fonts are read from the system registry and matched using the same approach
as for local fonts. Matching will always find a font no matter what you throw at it, defaulting to
"sans" if nothing else is found.

Examples

example code
empty_font <- system.file("unfont.ttf", package = "systemfonts")

add_fonts(empty_font)

clear_local_fonts()

fonts_as_import Create import specifications for web content

Description

If you create content in a text-based format such as HTML or SVG you need to make sure that
the font is available on the computer where it is viewed. This can be achieved through the use of
stylesheets that can either be added with a <link> tag or inserted with an @import statement. This
function facilitates the creation of either of these (or the bare URL to the stylesheet). It can rely on
the Google Fonts or Font Library repository for serving the fonts. If the requested font is not found
it can optionally hard code the data into the stylesheet.

4 fonts_as_import

Usage

fonts_as_import(
family,
italic = NULL,
weight = NULL,
width = NULL,
...,
type = c("url", "import", "link"),
may_embed = TRUE,
repositories = c("Google Fonts", "Font Library")

)

Arguments

family The name of the font families to match

italic logical indicating the font slant

weight The weight to query for, either in numbers (0, 100, 200, 300, 400, 500, 600,
700, 800, or 900) or strings ("undefined", "thin", "ultralight", "light",
"normal", "medium", "semibold", "bold", "ultrabold", or "heavy"). NA
will be interpreted as "undefined"/0

width The width to query for either in numbers (0, 1, 2, 3, 4, 5, 6, 7, 8, or 9) or strings
("undefined", "ultracondensed", "extracondensed", "condensed", "semicondensed",
"normal", "semiexpanded", "expanded", "extraexpanded", or "ultraexpanded").
NA will be interpreted as "undefined"/0

... Additional arguments passed on to the specific functions for the repositories.
Currently:

• Google Fonts:
– text A piece of text containing the glyphs required. Using this can

severely cut down on the size of the required download
– display One of "auto", "block", "swap", "fallback", or "optional".

Controls how the text is displayed while the font is downloading.

type The type of return value. "url" returns the bare url pointing to the style sheet.
"import" returns the stylesheet as an import statement (@import url(<url>)).
"link" returns the stylesheet as a link tag (<link rel="stylesheet" href="<url>"/>)

may_embed Logical. Should fonts that can’t be found in the provided repositories be embed-
ded as data-URLs. This is only possible if the font is available locally and in a
woff2, woff, otf, or ttf file.

repositories The repositories to try looking for the font. Currently "Google Fonts" and
"Font Library" are supported. Set this to NULL together with may_embed =
TRUE to force embedding of the font data.

Value

A character vector with stylesheet specifications according to type

font_fallback 5

font_fallback Get the fallback font for a given string

Description

A fallback font is a font to use as a substitute if the chosen font does not contain the requested
characters. Using font fallbacks means that the user doesn’t have to worry about mixing characters
from different scripts or mixing text and emojies. Fallback is calculated for the full string and the
result is platform specific. If no font covers all the characters in the string an undefined "best match"
is returned. The best approach is to figure out which characters are not covered by your chosen font
and figure out fallbacks for these, rather than just request a fallback for the full string.

Usage

font_fallback(
string,
family = "",
italic = FALSE,
bold = FALSE,
path = NULL,
index = 0

)

Arguments

string The strings to find fallbacks for

family The name of the font families to match

italic logical indicating the font slant

bold logical indicating whether the font weight

path, index path an index of a font file to circumvent lookup based on family and style

Value

A data frame with a path and index column giving fallback for the specified string and font com-
binations

Examples

font_fallback("\U0001f604") # Smile emoji

6 font_feature

font_feature Define OpenType font feature settings

Description

This function encapsulates the specification of OpenType font features. Some specific features have
named arguments, but all available features can be set by using its specific 4-letter tag For a list of
the 4-letter tags available see e.g. the overview on Wikipedia.

Usage

font_feature(ligatures = NULL, letters = NULL, numbers = NULL, ...)

Arguments

ligatures Settings related to ligatures. One or more types of ligatures to turn on (see
details).

letters Settings related to the appearance of single letters (as opposed to ligatures that
substitutes multiple letters). See details for supported values.

numbers Settings related to the appearance of numbers. See details for supported values.

... key-value pairs with the key being the 4-letter tag and the value being the setting
(usually TRUE to turn it on).

Details

OpenType features are defined by a 4-letter tag along with an integer value. Often that value is a
simple 0 (off) or 1 (on), but some features support additional values, e.g. stylistic alternates (salt)
where a font may provide multiple variants of a letter and the value will be used to chose which one
to use.

Common features related to appearance may be given with a long form name to either the ligatures,
letters, or numbers argument to avoid remembering the often arbitrary 4-letter tag. Providing a
long form name is the same as setting the tag to 1 and can thus not be used to set tags to other
values.

The possible long form names are given below with the tag in parenthesis:

Ligatures

• standard (liga): Turns on standard multiple letter substitution

• historical (hlig): Use obsolete historical ligatures

• contextual (clig): Apply secondary ligatures based on the character patterns surrounding the
potential ligature

• discretionary (dlig): Use ornamental ligatures

Letters

• swash (cswh): Use contextual swashes (ornamental decorations)

https://en.wikipedia.org/wiki/List_of_typographic_features

font_info 7

• alternates (calt): Use alternate letter forms based on the sourrounding pattern

• historical (hist): Use obsolete historical forms of the letters

• localized (locl): Use alternate forms preferred by the script language

• randomize (rand): Use random variants of the letters (e.g. to mimick handwriting)

• alt_annotation (nalt): Use alternate annotations (e.g. circled digits)

• stylistic (salt): Use a stylistic alternative form of the letter

• subscript (subs): Set letter in subscript

• superscript (sups): Set letter in superscript

• titling (titl): Use letter forms well suited for large text and titles

• small_caps (smcp): Use small caps variants of the letters

Numbers

• lining (lnum): Use number variants that rest on the baseline

• oldstyle (onum): Use old style numbers that use descender and ascender for various numbers

• proportional (pnum): Let numbers take up width based on the visual width of the glyph

• tabular (tnum): Enforce all numbers to take up the same width

• fractions (frac): Convert numbers separated by / into a fraction glyph

• fractions_alt (afrc): Use alternate fraction form with a horizontal divider

Value

A font_feature object

Examples

font_feature(letters = "stylistic", numbers = c("lining", "tabular"))

Use the tag directly to access additional stylistic variants
font_feature(numbers = c("lining", "tabular"), salt = 2)

font_info Query font-specific information

Description

Get general information about a font, relative to a given size. Size specific measures will be returned
in pixel units. The function is vectorised to the length of the longest argument.

8 font_info

Usage

font_info(
family = "",
italic = FALSE,
bold = FALSE,
size = 12,
res = 72,
path = NULL,
index = 0

)

Arguments

family The name of the font families to match

italic logical indicating the font slant

bold logical indicating whether the font weight

size The pointsize of the font to use for size related measures

res The ppi of the size related mesures

path, index path an index of a font file to circumvent lookup based on family and style

Value

A data.frame giving info on the requested font + size combinations. The data.frame will contain the
following columns:

path The path to the font file

index The 0-based index of the font in the fontfile

family The family name of the font

style The style name of the font

italic A logical giving if the font is italic

bold A logical giving if the font is bold

monospace A logical giving if the font is monospace

weight A factor giving the weight of the font

width A factor giving the width of the font

kerning A logical giving if the font supports kerning

color A logical giving if the font has color glyphs

scalable A logical giving if the font is scalable

vertical A logical giving if the font is vertical

n_glyphs The number of glyphs in the font

n_sizes The number of predefined sizes in the font

n_charmaps The number of character mappings in the font file

bbox A bounding box large enough to contain any of the glyphs in the font

glyph_info 9

max_ascend The maximum ascend of the tallest glyph in the font

max_descent The maximum descend of the most descending glyph in the font

max_advance_width The maximum horizontal advance a glyph can make

max_advance_height The maximum vertical advance a glyph can make

lineheight The height of a single line of text in the font

underline_pos The position of a potential underlining segment

underline_size The width the the underline

Examples

font_info('serif')

Avoid lookup if font file is already known
sans <- match_fonts('sans')
font_info(path = sans$path, index = sans$index)

glyph_info Query glyph-specific information from fonts

Description

This function allows you to extract information about the individual glyphs in a font, based on a
specified size. All size related measures are in pixel-units. The function is vectorised to the length
of the glyphs vector.

Usage

glyph_info(
glyphs,
family = "",
italic = FALSE,
bold = FALSE,
size = 12,
res = 72,
path = NULL,
index = 0

)

Arguments

glyphs A vector of glyphs. Strings will be split into separate glyphs automatically

family The name of the font families to match

italic logical indicating the font slant

bold logical indicating whether the font weight

10 glyph_outline

size The pointsize of the font to use for size related measures
res The ppi of the size related mesures
path, index path an index of a font file to circumvent lookup based on family and style

Value

A data.frame with information about each glyph, containing the following columns:

glyph The glyph as a character
index The index of the glyph in the font file
width The width of the glyph
height The height of the glyph
x_bearing The horizontal distance from the origin to the leftmost part of the glyph
y_bearing The vertical distance from the origin to the top part of the glyph
x_advance The horizontal distance to move the cursor after adding the glyph
y_advance The vertical distance to move the cursor after adding the glyph
bbox The tight bounding box surrounding the glyph

glyph_outline Get the outline of glyphs

Description

This function allows you to retrieve the outline of glyphs as polygon coordinates. The glyphs are
given as indexes into a font file and not as characters allowing you to retrieve outlines for glyphs
that doesn’t have a character counterpoint. Glyphs that are given as bitmaps are ignored.

Usage

glyph_outline(
glyph,
path,
index = 0,
size = 12,
tolerance = 0.2,
verbose = FALSE

)

Arguments

glyph The index of the glyph in the font file
path The path to the font file encoding the glyph
index The index of the font in the font file
size The size of the font in big points (1/72 inch)
tolerance The deviation tolerance for decomposing bezier curves of the glyph. Given in

the same unit as size. Smaller values give more detailed polygons
verbose Should font and glyph loading errors be reported as warnings

glyph_raster 11

Value

A data frame giving the outlines of the glyphs provide in glyph. It contains the columns glyph
pointing to the element in the input it relates to, contour enumerating the contours the glyph con-
sists of, and x and y giving the coordinates in big points

Examples

Get the shape of s in the default font
font <- font_info()
glyph <- glyph_info("s", path = font$path, index = font$index)

s <- glyph_outline(glyph$index, font$path, font$index, size = 150)

plot(sx, sy, type = 'l')

glyph_raster Render glyphs to raster image

Description

Not all glyphs are encoded as vector outlines (emojis often not). Even for fonts that provide an
outline you might be interested in a raster version. This function gives you just that. It converts a
glyph into an optimized raster object that can be plotted with e.g. graphics::rasterImage() or
grid::grid.raster(). For convenience, you can also use glyph_raster_grob() for plotting the
result.

Usage

glyph_raster(
glyph,
path,
index = 0,
size = 12,
res = 300,
col = "black",
verbose = FALSE

)

Arguments

glyph The index of the glyph in the font file
path The path to the font file encoding the glyph
index The index of the font in the font file
size The size of the font in big points (1/72 inch)
res The resolution to render the glyphs to
col The color of the glyph assuming the glyph doesn’t have a native coloring
verbose Should font and glyph loading errors be reported as warnings

12 glyph_raster_grob

Value

A list of nativeRaster objects (or NULL if it failed to render a given glyph). The nativeRasters have
additional attributes attached. "size" will give the size of the glyph in big points and "offset"
will give the location of the top-left corner of the raster with respect to where it should be rendered.

Examples

font <- font_info()
glyph <- glyph_info("R", path = font$path, index = font$index)

R <- glyph_raster(glyph$index, font$path, font$index, size = 150)

plot.new()
plot.window(c(0,150), c(0, 150), asp = 1)
rasterImage(R[[1]], 0, 0, attr(R[[1]], "size")[2], attr(R[[1]], "size")[1])

glyph_raster_grob Convert an extracted glyph raster to a grob

Description

This is a convenience function that helps in creating rasterGrob with the correct settings for the
glyph. It takes inot account the sizing and offset returned by glyph_raster() and allows you to
only consider the baseline position of the glyph.

Usage

glyph_raster_grob(glyph, x, y, ..., default.units = "bigpts")

Arguments

glyph The nativeRaster object returned as one of the elements by glyph_raster()

x, y The baseline location of the glyph

... Arguments passed on to grid::rasterGrob

image Any R object that can be coerced to a raster object.
width A numeric vector or unit object specifying width.
height A numeric vector or unit object specifying height.
just The justification of the rectangle relative to its (x, y) location. If there are

two values, the first value specifies horizontal justification and the second
value specifies vertical justification. Possible string values are: "left",
"right", "centre", "center", "bottom", and "top". For numeric values,
0 means left alignment and 1 means right alignment.

hjust A numeric vector specifying horizontal justification. If specified, over-
rides the just setting.

match_fonts 13

vjust A numeric vector specifying vertical justification. If specified, overrides
the just setting.

name A character identifier.
gp An object of class "gpar", typically the output from a call to the function

gpar. This is basically a list of graphical parameter settings.
vp A Grid viewport object (or NULL).
interpolate A logical value indicating whether to linearly interpolate the im-

age (the alternative is to use nearest-neighbour interpolation, which gives a
more blocky result).

default.units A string indicating the default units to use if x, y, width, or height are only
given as numeric vectors.

Value

A rasterGrob object

Examples

font <- font_info()
glyph <- glyph_info("R", path = font$path, index = font$index)

R <- glyph_raster(glyph$index, font$path, font$index, size = 150)

grob <- glyph_raster_grob(R[[1]], 50, 50)

grid::grid.newpage()
Mark the baseline location
grid::grid.points(50, 50, default.units = "bigpts")
Draw the glyph
grid::grid.draw(grob)

match_fonts Find a system font by name and style

Description

This function locates the font file (and index) best matching a name and optional style. A font file
will be returned even if a perfect match isn’t found, but it is not necessarily similar to the requested
family and it should not be relied on for font substitution. The aliases "sans", "serif", "mono",
"symbol", and "emoji" match to their respective system defaults ("" is equivalent to "sans").
match_font() has been deprecated in favour of match_fonts() which provides vectorisation, as
well as querying for different weights (rather than just "normal" and "bold") as well as different
widths.

14 match_fonts

Usage

match_fonts(family, italic = FALSE, weight = "normal", width = "undefined")

match_font(family, italic = FALSE, bold = FALSE)

Arguments

family The name of the font families to match

italic logical indicating the font slant

weight The weight to query for, either in numbers (0, 100, 200, 300, 400, 500, 600,
700, 800, or 900) or strings ("undefined", "thin", "ultralight", "light",
"normal", "medium", "semibold", "bold", "ultrabold", or "heavy"). NA
will be interpreted as "undefined"/0

width The width to query for either in numbers (0, 1, 2, 3, 4, 5, 6, 7, 8, or 9) or strings
("undefined", "ultracondensed", "extracondensed", "condensed", "semicondensed",
"normal", "semiexpanded", "expanded", "extraexpanded", or "ultraexpanded").
NA will be interpreted as "undefined"/0

bold logical indicating whether the font weight

Value

A list containing the paths locating the font files, the 0-based index of the font in the files and the
features for the font in case a registered font was located.

Font matching

During font matching, systemfonts has to look in three different locations. The font registry (popu-
lated by register_font()/register_variant()), the local fonts (populated with add_fonts()/scan_local_fonts()),
and the fonts installed on the system. It does so in that order: registry > local > installed.

The matching performed at each step also differs. The fonts in the registry is only matched by
family name. The local fonts are matched based on all the provided parameters (family, weight,
italic, etc) in a way that is local to systemfonts, but try to emulate the system native matching. The
installed fonts are matched using the system native matching functionality on macOS and Linux. On
Windows the installed fonts are read from the system registry and matched using the same approach
as for local fonts. Matching will always find a font no matter what you throw at it, defaulting to
"sans" if nothing else is found.

Examples

Get the system default sans-serif font in italic
match_fonts('sans', italic = TRUE)

Try to match it to a thin variant
match_fonts(c('sans', 'serif'), weight = "thin")

register_font 15

register_font Register font collections as families

Description

By design, systemfonts searches the fonts installed natively on the system. It is possible, however,
to register other fonts from e.g. font packages or local font files, that will get searched before
searching any installed fonts. You can always get an overview over all registered fonts with the
registry_fonts() function that works as a registry focused analogue to system_fonts(). If you
wish to clear out the registry, you can either restart the R session or call clear_registry().

Usage

register_font(
name,
plain,
bold = plain,
italic = plain,
bolditalic = plain,
features = font_feature()

)

registry_fonts()

clear_registry()

Arguments

name The name the collection will be known under (i.e. family)
plain, bold, italic, bolditalic

Fontfiles for the different faces of the collection. can either be a filepath or a list
containing a filepath and an index (only for font files containing multiple fonts).
If not given it will default to the plain specification.

features A font_feature object describing the specific OpenType font features to turn
on for the registered font.

Details

register_font also makes it possible to use system fonts with traits that is not covered by the
graphic engine in R. In plotting operations it is only possible to specify a family name and whether
or not the font should be bold and/or italic. There are numerous fonts that will never get matched to
this, especially because bold is only one of many weights.

Apart from granting a way to use new varieties of fonts, font registration also allows you to override
the default sans, serif, and mono mappings, simply by registering a collection to the relevant
default name. As registered fonts are searched first it will take precedence over the default.

16 register_variant

Value

register_font() and clear_registry() returns NULL invisibly. registry_fonts() returns a
data table in the same style as system_fonts() though less detailed and not based on information
in the font file.

Font matching

During font matching, systemfonts has to look in three different locations. The font registry (popu-
lated by register_font()/register_variant()), the local fonts (populated with add_fonts()/scan_local_fonts()),
and the fonts installed on the system. It does so in that order: registry > local > installed.

The matching performed at each step also differs. The fonts in the registry is only matched by
family name. The local fonts are matched based on all the provided parameters (family, weight,
italic, etc) in a way that is local to systemfonts, but try to emulate the system native matching. The
installed fonts are matched using the system native matching functionality on macOS and Linux. On
Windows the installed fonts are read from the system registry and matched using the same approach
as for local fonts. Matching will always find a font no matter what you throw at it, defaulting to
"sans" if nothing else is found.

Examples

Create a random font collection
fonts <- system_fonts()
plain <- sample(which(!fonts$italic & fonts$weight <= 'normal'), 1)
bold <- sample(which(!fonts$italic & fonts$weight > 'normal'), 1)
italic <- sample(which(fonts$italic & fonts$weight <= 'normal'), 1)
bolditalic <- sample(which(fonts$italic & fonts$weight > 'normal'), 1)
register_font(

'random',
plain = list(fonts$path[plain], fonts$index[plain]),
bold = list(fonts$path[bold], fonts$index[bold]),
italic = list(fonts$path[italic], fonts$index[italic]),
bolditalic = list(fonts$path[bolditalic], fonts$index[bolditalic])

)

Look at your creation
registry_fonts()

Reset
clear_registry()

register_variant Register a font as a variant as an existing one

Description

This function is a wrapper around register_font() that allows you to easily create variants of
existing system fonts, e.g. to target different weights and/or widths, or for attaching OpenType
features to a font.

register_variant 17

Usage

register_variant(
name,
family,
weight = NULL,
width = NULL,
features = font_feature()

)

Arguments

name The new family name the variant should respond to

family The name of an existing font family that this is a variant of

weight One or two of "thin", "ultralight", "light", "normal", "medium", "semibold",
"bold", "ultrabold", or "heavy". If one is given it sets the weight for the
whole variant. If two is given the first one defines the plain weight and the sec-
ond the bold weight. If NULL then the variants of the given family closest to
"normal" and "bold" will be chosen.

width One of "ultracondensed", "extracondensed", "condensed", "semicondensed",
"normal", "semiexpanded", "expanded", "extraexpanded", or "ultraexpanded"
giving the width of the variant. If NULL then the width closest to "normal" will
be chosen.

features A font_feature object describing the specific OpenType font features to turn
on for the registered font variant.

Font matching

During font matching, systemfonts has to look in three different locations. The font registry (popu-
lated by register_font()/register_variant()), the local fonts (populated with add_fonts()/scan_local_fonts()),
and the fonts installed on the system. It does so in that order: registry > local > installed.

The matching performed at each step also differs. The fonts in the registry is only matched by
family name. The local fonts are matched based on all the provided parameters (family, weight,
italic, etc) in a way that is local to systemfonts, but try to emulate the system native matching. The
installed fonts are matched using the system native matching functionality on macOS and Linux. On
Windows the installed fonts are read from the system registry and matched using the same approach
as for local fonts. Matching will always find a font no matter what you throw at it, defaulting to
"sans" if nothing else is found.

Examples

Get the default "sans" family
sans <- match_fonts("sans")$path
sans <- system_fonts()$family[system_fonts()$path == sans][1]

Register a variant of it:
register_variant(

"sans_ligature",
sans,

18 require_font

features = font_feature(ligatures = "discretionary")
)

registry_fonts()

clean up
clear_registry()

require_font Ensure font availability in a script

Description

When running a script on a different machine you are not always in control of which fonts are in-
stalled on the system and thus how graphics created by the script ends up looking. require_font()
is a way to specify your font requirements for a script. It will look at the available fonts and if the
required font family is not present it will attempt to fetch it from one of the given repositories (in
the order given). If that fails, it will either throw an error or, if fallback is given, provide an alias
for the fallback so it maps to the required font.

Usage

require_font(
family,
fallback = NULL,
dir = tempdir(),
repositories = c("Google Fonts", "Font Squirrel"),
error = TRUE

)

Arguments

family The font family to require

fallback An available font to fall back to if family cannot be found or downloaded

dir The location to put the font file downloaded from repositories

repositories The repositories to search for the font in case it is not available on the system.
They will be tried in the order given. Currently only "Google Fonts" and "Font
Squirrel" is available.

error Should the function throw an error if unsuccessful?

Value

Invisibly TRUE if the font is available or FALSE if not (this can only be returned if error = FALSE)

reset_font_cache 19

Examples

Should always work
require_font("sans")

reset_font_cache Reset the system font cache

Description

Building the list of system fonts is time consuming and is therefore cached. This, in turn, means
that changes to the system fonts (i.e. installing new fonts), will not propagate to systemfonts. The
solution is to reset the cache, which will result in the next call to e.g. match_fonts() will trigger a
rebuild of the cache.

Usage

reset_font_cache()

Examples

all_fonts <- system_fonts()

##-- Install a new font on the system --##

all_fonts_new <- system_fonts()

all_fonts_new will be equal to all_fonts

reset_font_cache()

all_fonts_new <- system_fonts()

all_fonts_new will now contain the new font

search_web_fonts Search font repositories for a font based on family name

Description

While it is often advisable to visit the webpage for a font repository when looking for a font, in
order to see examples etc, search_web_fonts() provide a quick lookup based on family name in
the repositories supported by systemfonts (currently Google Fonts and Font Squirrel). The lookup
is based on fuzzy matching provided by utils::adist() and the matching parameters can be
controlled through ...

https://fonts.google.com
https://www.fontsquirrel.com

20 shape_string

Usage

search_web_fonts(family, n_max = 10, ...)

Arguments

family The font family name to look for
n_max The maximum number of matches to return
... Arguments passed on to utils::adist

costs a numeric vector or list with names partially matching ‘insertions’,
‘deletions’ and ‘substitutions’ giving the respective costs for comput-
ing the Levenshtein distance, or NULL (default) indicating using unit cost
for all three possible transformations.

counts a logical indicating whether to optionally return the transformation counts
(numbers of insertions, deletions and substitutions) as the "counts" at-
tribute of the return value.

fixed a logical. If TRUE (default), the x elements are used as string literals.
Otherwise, they are taken as regular expressions and partial = TRUE is
implied (corresponding to the approximate string distance used by agrep
with fixed = FALSE).

partial a logical indicating whether the transformed x elements must exactly
match the complete y elements, or only substrings of these. The latter cor-
responds to the approximate string distance used by agrep (by default).

ignore.case a logical. If TRUE, case is ignored for computing the distances.
useBytes a logical. If TRUE distance computations are done byte-by-byte rather

than character-by-character.

Value

A data.frame with the columns family, giving the family name of the matched font, and repository
giving the repository it was found in.

Examples

Requires an internet connection

search_web_fonts("Spectral")

shape_string Calculate glyph positions for strings

Description

Do basic text shaping of strings. This function will use freetype to calculate advances, doing kerning
if possible. It will not perform any font substitution or ligature resolving and will thus be much in
line with how the standard graphic devices does text shaping. Inputs are recycled to the length of
strings.

shape_string 21

Usage

shape_string(
strings,
id = NULL,
family = "",
italic = FALSE,
bold = FALSE,
size = 12,
res = 72,
lineheight = 1,
align = "left",
hjust = 0,
vjust = 0,
width = NA,
tracking = 0,
indent = 0,
hanging = 0,
space_before = 0,
space_after = 0,
path = NULL,
index = 0

)

Arguments

strings A character vector of strings to shape

id A vector grouping the strings together. If strings share an id the shaping will
continue between strings

family The name of the font families to match

italic logical indicating the font slant

bold logical indicating whether the font weight

size The pointsize of the font to use for size related measures

res The ppi of the size related mesures

lineheight A multiplier for the lineheight

align Within text box alignment, either 'left', 'center', or 'right'

hjust, vjust The justification of the textbox surrounding the text

width The requested with of the string in inches. Setting this to something other than
NA will turn on word wrapping.

tracking Tracking of the glyphs (space adjustment) measured in 1/1000 em.

indent The indent of the first line in a paragraph measured in inches.

hanging The indent of the remaining lines in a paragraph measured in inches.
space_before, space_after

The spacing above and below a paragraph, measured in points

path, index path an index of a font file to circumvent lookup based on family and style

22 shape_string

Value

A list with two element: shape contains the position of each glyph, relative to the origin in the
enclosing textbox. metrics contain metrics about the full strings.

shape is a data.frame with the following columns:

glyph The glyph as a character

index The index of the glyph in the font file

metric_id The index of the string the glyph is part of (referencing a row in the metrics data.frame)

string_id The index of the string the glyph came from (referencing an element in the strings
input)

x_offset The x offset in pixels from the origin of the textbox

y_offset The y offset in pixels from the origin of the textbox

x_mid The x offset in pixels to the middle of the glyph, measured from the origin of the glyph

metrics is a data.frame with the following columns:

string The text the string consist of

width The width of the string

height The height of the string

left_bearing The distance from the left edge of the textbox and the leftmost glyph

right_bearing The distance from the right edge of the textbox and the rightmost glyph

top_bearing The distance from the top edge of the textbox and the topmost glyph

bottom_bearing The distance from the bottom edge of the textbox and the bottommost glyph

left_border The position of the leftmost edge of the textbox related to the origin

top_border The position of the topmost edge of the textbox related to the origin

pen_x The horizontal position of the next glyph after the string

pen_y The vertical position of the next glyph after the string

Examples

string <- "This is a long string\nLook; It spans multiple lines\nand all"

Shape with default settings
shape_string(string)

Mix styles within the same string
string <- c(

"This string will have\na ",
"very large",
" text style\nin the middle"

)

shape_string(string, id = c(1, 1, 1), size = c(12, 24, 12))

string_metrics_dev 23

string_metrics_dev Get string metrics as measured by the current device

Description

This function is much like string_widths_dev() but also returns the ascent and descent of the
string making it possible to construct a tight bounding box around the string.

Usage

string_metrics_dev(
strings,
family = "",
face = 1,
size = 12,
cex = 1,
unit = "cm"

)

Arguments

strings A character vector of strings to measure

family The font families to use. Will get recycled

face The font faces to use. Will get recycled

size The font size to use. Will get recycled

cex The cex multiplier to use. Will get recycled

unit The unit to return the width in. Either "cm", "inches", "device", or "relative"

Value

A data.frame with width, ascent, and descent columns giving the metrics in the requested unit.

See Also

Other device metrics: string_widths_dev()

Examples

Get the metrics as measured in cm (default)
string_metrics_dev(c('some text', 'a string with descenders'))

24 string_width

string_width Calculate the width of a string, ignoring new-lines

Description

This is a very simple alternative to shape_string() that simply calculates the width of strings
without taking any newline into account. As such it is suitable to calculate the width of words or
lines that has already been splitted by \n. Input is recycled to the length of strings.

Usage

string_width(
strings,
family = "",
italic = FALSE,
bold = FALSE,
size = 12,
res = 72,
include_bearing = TRUE,
path = NULL,
index = 0

)

Arguments

strings A character vector of strings

family The name of the font families to match

italic logical indicating the font slant

bold logical indicating whether the font weight

size The pointsize of the font to use for size related measures

res The ppi of the size related mesures
include_bearing

Logical, should left and right bearing be included in the string width?

path, index path an index of a font file to circumvent lookup based on family and style

Value

A numeric vector giving the width of the strings in pixels. Use the provided res value to convert it
into absolute values.

Examples

strings <- c('A short string', 'A very very looong string')
string_width(strings)

string_widths_dev 25

string_widths_dev Get string widths as measured by the current device

Description

For certain composition tasks it is beneficial to get the width of a string as interpreted by the device
that is going to plot it. grid provides this through construction of a textGrob and then converting the
corresponding grob width to e.g. cm, but this comes with a huge overhead. string_widths_dev()
provides direct, vectorised, access to the graphic device for as high performance as possible.

Usage

string_widths_dev(
strings,
family = "",
face = 1,
size = 12,
cex = 1,
unit = "cm"

)

Arguments

strings A character vector of strings to measure

family The font families to use. Will get recycled

face The font faces to use. Will get recycled

size The font size to use. Will get recycled

cex The cex multiplier to use. Will get recycled

unit The unit to return the width in. Either "cm", "inches", "device", or "relative"

Value

A numeric vector with the width of each of the strings given in strings in the unit given in unit

See Also

Other device metrics: string_metrics_dev()

Examples

Get the widths as measured in cm (default)
string_widths_dev(c('a string', 'an even longer string'))

26 str_split_emoji

str_split_emoji Split a string into emoji and non-emoji glyph runs

Description

In order to do correct text rendering, the font needed must be figured out. A common case is
rendering of emojis within a string where the system emoji font is used rather than the requested
font. This function will inspect the provided strings and split them up in runs that must be rendered
with the emoji font, and the rest. Arguments are recycled to the length of the string vector.

Usage

str_split_emoji(
string,
family = "",
italic = FALSE,
bold = FALSE,
path = NULL,
index = 0

)

Arguments

string A character vector of strings that should be splitted.

family The name of the font families to match

italic logical indicating the font slant

bold logical indicating whether the font weight

path, index path an index of a font file to circumvent lookup based on family and style

Value

A data.frame containing the following columns:

string The substring containing a consecutive run of glyphs

id The index into the original string vector that the substring is part of

emoji A logical vector giving if the substring is a run of emojis or not

Examples

emoji_string <- "This is a joke\U0001f642. It should be obvious from the smiley"
str_split_emoji(emoji_string)

system_fonts 27

system_fonts List all fonts installed on your system

Description

List all fonts installed on your system

Usage

system_fonts()

Value

A data frame with a row for each font and various information in each column

Examples

See all monospace fonts
fonts <- system_fonts()
fonts[fonts$monospace,]

web-fonts Download and add web font

Description

In order to use a font in R it must first be made available locally. These functions facilitate the
download and registration of fonts from online repositories.

Usage

get_from_google_fonts(family, dir = "~/fonts", woff2 = FALSE)

get_from_font_squirrel(family, dir = "~/fonts")

Arguments

family The font family to download (case insensitive)
dir Where to download the font to. The default places it in your user local font

folder so that the font will be available automatically in new R sessions. Set to
tempdir() to only keep the font for the session.

woff2 Should the font be downloaded in the woff2 format (smaller and more opti-
mized)? Defaults to FALSE as the format is not supported on all systems

Value

A logical invisibly indicating whether a font was found and downloaded or not

Index

∗ device metrics
string_metrics_dev, 23
string_widths_dev, 25

add_fonts, 2
add_fonts(), 3, 14, 16, 17
agrep, 20

clear_local_fonts (add_fonts), 2
clear_registry (register_font), 15

font_fallback, 5
font_feature, 6, 15, 17
font_info, 7
fonts_as_import, 3

get_from_font_squirrel (web-fonts), 27
get_from_google_fonts (web-fonts), 27
glyph_info, 9
glyph_outline, 10
glyph_raster, 11
glyph_raster(), 12
glyph_raster_grob, 12
glyph_raster_grob(), 11
gpar, 13
graphics::rasterImage(), 11
grid::grid.raster(), 11
grid::rasterGrob, 12

match_font (match_fonts), 13
match_fonts, 13
match_fonts(), 19

rasterGrob, 12
register_font, 15
register_font(), 2, 3, 14, 16, 17
register_variant, 16
register_variant(), 2, 3, 14, 16, 17
registry_fonts (register_font), 15
require_font, 18
reset_font_cache, 19

scan_local_fonts (add_fonts), 2
scan_local_fonts(), 3, 14, 16, 17
search_web_fonts, 19
shape_string, 20
shape_string(), 24
str_split_emoji, 26
string_metrics_dev, 23, 25
string_width, 24
string_widths_dev, 23, 25
string_widths_dev(), 23
system_fonts, 27
system_fonts(), 15, 16

utils::adist, 20
utils::adist(), 19

web-fonts, 27

28

	add_fonts
	fonts_as_import
	font_fallback
	font_feature
	font_info
	glyph_info
	glyph_outline
	glyph_raster
	glyph_raster_grob
	match_fonts
	register_font
	register_variant
	require_font
	reset_font_cache
	search_web_fonts
	shape_string
	string_metrics_dev
	string_width
	string_widths_dev
	str_split_emoji
	system_fonts
	web-fonts
	Index

