Package 'treestructure'

October 14, 2022

Type Package

Title Detect Population Structure Within Phylogenetic Trees

Version 0.1.0

Date 2020-01-20

Author Erik Volz

Maintainer Erik Volz <erik.volz@gmail.com>

Description Algorithms for detecting population structure from the history of coalescent events recorded in phylogenetic trees. This method classifies each tip and internal node of a tree into disjoint sets characterized by similar coalescent patterns. The methods are described in Volz, E., Wiuf, C., Grad, Y., Frost, S., Dennis, A., & Didelot, X. (2020) <doi:10.1093/sysbio/syaa009>.

License GPL (>= 2)

Suggests ggtree,ggplot2,knitr

Imports ape (>= 5.0)

LinkingTo Rcpp

VignetteBuilder knitr

RoxygenNote 6.1.0

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-02-17 15:20:02 UTC

R topics documented:

	plot.TreeStructure	2
	trestruct	2
Index		4

plot.TreeStructure *Plot TreeStructure tree with cluster and partition variables*

Description

Plot TreeStructure tree with cluster and partition variables

Usage

```
## S3 method for class 'TreeStructure'
plot(x, use_ggtree = TRUE, ...)
```

Arguments

х	A TreeStructure object
use_ggtree	Toggle ggtree or ape plotting behaviour
	Additional arguments passed to ggtree or ape::plot.phylo

trestruct Detect cryptic population structure in time trees	
---	--

Description

Detect cryptic population structure in time trees

Usage

```
trestruct(tre, minCladeSize = 25, minOverlap = -Inf, nsim = 1000,
    level = 0.01, ncpu = 1, verbosity = 1, debugLevel = 0)
```

Arguments

tre	A tree of type ape::phylo. Must be rooted and binary.
minCladeSize	All clusters within parititon must have at least this many tips.
minOverlap	Threshold time overlap required to find splits in a clade
nsim	Number of simulations for computing null distribution of test statistics
level	Significance level for finding new split within a set of tips
ncpu	If >1 will compute statistics in parallel using multiple CPUs
verbosity	If > 0 will print information about progress of the algorithm
debugLevel	If > 0 will produce additional data in return value

trestruct

Details

Estimates a partition of a time-scaled tree by contrasting coalescent patterns. The algorithm is premised on a Kingman coalescent null hypothesis and a test statistic is formulated based on the rank sum of node times in the tree.

Value

A TreeStructure object which includes cluster and partitition assignment for each tip of the tree.

References

E.M. Volz, Wiuf, C., Grad, Y., Frost, S., Dennis, A., Didelot, X.D. (2020) Identification of hidden population structure in time-scaled phylogenies.

Author(s)

Erik M Volz <erik.volz@gmail.com>

Examples

```
tree <- ape::rcoal(50)
struct <- trestruct( tree )</pre>
```

Index

plot.TreeStructure,2

trestruct, 2