Package ‘tsaux’

March 31, 2025
Type Package

Title Time Series Forecasting Auxiliary Functions
Version 1.0.0
Maintainer Alexios Galanos <alexios@4dscape.com>

Description
A suite of auxiliary functions that enhance time series estimation and forecasting, including a ro-
bust anomaly detection routine based on Chen and Liu (1993) <doi:10.2307/2290724> (im-
ported and wrapped from the 'tsoutliers' package), utilities for managing calendar and time con-
versions, performance metrics to assess both point forecasts and distributional predictions, ad-
vanced simulation by allowing the generation of time series components—such as trend, sea-
sonal, ARMA, irregular, and anomalies—in a modular fashion based on the innova-
tions form of the state space model and a number of transformation methods including Box-
Cox, Logit, 'Softplus-Logit' and Sigmoid.

Depends R (>=4.1.0), tsmethods

Imports methods, zoo, xts, lubridate, car, Rdpack, scoringRules,
stlplus, tsoutliers, forecast, data.table

RdMacros Rdpack
License GPL-2
Encoding UTF-8

BugReports https://github.com/tsmodels/tsaux/issues

URL https://github.com/tsmodels/tsaux
RoxygenNote 7.3.2

Suggests knitr, kableExtra, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Alexios Galanos [aut, cre, cph]
(<https://orcid.org/0009-0000-9308-0457>)

Repository CRAN
Date/Publication 2025-03-31 17:30:01 UTC

https://doi.org/10.2307/2290724
https://github.com/tsmodels/tsaux/issues
https://github.com/tsmodels/tsaux
https://orcid.org/0009-0000-9308-0457

2 Contents

Contents
additive_outlier e e 3
add_anomaly L 4
add_arma L L e e 4
add_custom L e 5
add_polynomial e 6
add_regressor e e e e e e e e e e e e 7
add_seasonal e 7
add_transform e 8
auto_cClean e 9
AULO_TEEIESSOTS « « v v v v v e e e e e e e e e e e e e e e e e 10
DOX_COX . . . o o e e 12
calendar_eom L e e e e 14
calendar_€0q e e e 14
calendar_€OW e 15
calendar_eoy 16
check_Xreg e 16
fourier_Series e e e e 17
future_dates L. e e 18
initialize_simulator L. 18
lines.issm.componento e e e e e e e e e 19
logit e 20
MAPE . .« ¢ v v e 20
mixture_modelspec 24
PlOLiSSM.COMPONENt o vt e e e e e e e e e 24
PrOCeSS_tIME v v vt et e e e e e e e e e e e e e 25
sampling_frequency e e e 25
Sampling_Sequence e e e 26
seasonality_test 27
seasonal_dummies e e 27
SIgMOId L e e e e e 28
softlogit 29
time_splits e e e e e 30
tsdecompose.iSSM.COMPONENE . . .« . v v v v v v v v e e e e e e e e e e e e 31
tsensemble.tSSIM.MIXIUIe o L e e e e e e e 31
tshinear. e e e e 32
tstransform L L e e e e e e 33

Index 34

additive_outlier 3

additive_outlier Anomaly Creation

Description

Creates specific types of anomalies given a series.

Usage

additive_outlier(y, time = 1, parameter = 0.5, add = TRUE)

temporary_change(y, time = 1, parameter = 0.5, alpha = 0.7, add = TRUE)

level_shift(y, time = 1, parameter = 0.5, add = TRUE)

Arguments
y a univariate xts object or numeric series.
time the time index at which the anomaly takes place.
parameter the coefficient on the anomaly (the percent of the value of y at the specified time
index representing the anomaly).
add whether to contaminate the series (add the anomaly to the series) else will return
a matrix with the anomaly (without the effect of the parameter).
alpha the AR(1) coefficient for the temporary change which determines how quickly
the effect decays.
Details

These functions allow the generation of anomalies and may be chained together.

Value

Either the contaminated series else a matrix of the anomaly.

Author(s)

Alexios Galanos for this wrapper function.

4 add_arma

add_anomaly Anomaly Component

Description

Anomaly Component

Usage

add_anomaly(x, ...)

S3 method for class 'issm.component'

add_anomaly(x, time = NULL, delta = @, ratio = 0.5, ...)
Arguments
X an object of class issm.component or other supported class.

additional parameters.

time the numeric index of when the anomaly occurs. If NULL, a random time will
be chosen.
delta the autoregressive component determining the type of anomaly. A value of zero

results in an additive outlier, a value of 1 in a level shift and anything in between
a temporary change with a half life of -log(2)/log(delta).

ratio the anomaly to series ratio at the time it occurs. For instance, a value of 1 means
that the anomaly will jump by 100 percent compared to the data series.

Value

An object of class issm.component updated with the anomaly component.

add_arma ARMA Component
Description
ARMA Component
Usage
add_arma(x, ...)

S3 method for class 'issm.component'
add_arma(x, order = c(0, @), ar = @, ma = @, mu

1l
[
~

add_custom

Arguments

X an object of class issm.component or other supported class.

additional parameters.

order the ar and ma orders.

ar a vector of ar coefficients.

ma a vector of ma coefficients.

mu the mean parameter (defaults to zero) of the ARMA process.
Value

An object of class issm.component updated with the ARMA component.

add_custom Custom Component

Description

Custom Component

Usage

add_custom(x, ...)

S3 method for class 'issm.component'

add_custom(x, custom = NULL, ...)
Arguments
X an object of class issm.component or other supported class.

additional parameters.

custom a matrix of custom components

Value

An object of class issm.component updated with the custom components.

6 add_polynomial

add_polynomial Polynomial Trend Component

Description

Polynomial Trend Component

Usage

add_polynomial(x, ...)

S3 method for class 'issm.component'
add_polynomial(

X ’
order = 1,
alpha = 0.1,
beta = 0.01,
phi =1,
lo = 100,
bo = 1,
)
Arguments
X an object of class issm.component or other supported class.
additional parameters.
order the order of the polynomial (min 1 and max 2).
alpha the decay coefficient on the error of the level.
beta the decay coefficient on the error of the slope.
phi dampening parameter for the slope.
10 initial level.
bo initial slope.
Value

An object of class issm.component updated with the polynomial trend component.

add_regressor

add_regressor Regressor Component

Description

Regressor Component

Usage

add_regressor(x, ...)

S3 method for class 'issm.component'

add_regressor(x, xreg = NULL, pars = NULL, ...)
Arguments
X an object of class issm.component or other supported class.

additional parameters.

xreg a matrix of regressors.
pars regressors coefficients.
Value

An object of class issm.component updated with the regressor components.

add_seasonal Seasonal Trend Component

Description

Seasonal Trend Component

Usage

add_seasonal(x, ...)

S3 method for class 'issm.component'
add_seasonal(
X,
frequency = 12,
gamma = 0.01,
s@ = NULL,
init_harmonics = frequency/2,
normalized_seasonality = TRUE,
init_scale =1,

8 add_transform

Arguments
X an object of class issm.component or other supported class.
additional parameters.
frequency seasonal frequency.
gamma the decay coefficient on the error of the seasonal component
s0 a vector of length frequency - 1 for the initial seasonal component.

init_harmonics number of harmonics to initialize sO when this is not provided.
normalized_seasonality

whether normalize the seasonal component based on the method of Roberts and
McKenzie. This is applied only to a single seasonal frequency.

init_scale the scaling multiplier for sO (when this is not provided).

Value

An object of class issm.component updated with the seasonal component.

add_transform Transform

Description

Transform

Usage

add_transform(x, ...)

S3 method for class 'issm.component'

add_transform(x, method = "box-cox", lambda = 1, lower = @, upper =1, ...)
Arguments
X an object of class issm.component or other supported class.

additional parameters.

method a valid transform.

lambda the Box-Cox parameter.

lower the lower bound for the transform.

upper the upper bound for the transform.
Details

The inverse transform is applied to the simulated series. Valid methods are the “box-cox”, “logit”,
“softplus-logit” and “sigmoid” transforms.

auto_clean 9

Value

An object of class issm.component updated with the transformation.

auto_clean Automatic Cleaning of Outliers and Temporary Changes

Description

A wrapper function for tso from the tsoutliers package. Takes as input a univariate xts object and
returns a series decontaminated from outliers and temporary changes.

Usage

auto_clean(
Y,
frequency = 1,
lambda = NULL,
types = c("AQ0", "TC"),
stlm_opts = list(etsmodel = "AAN"),
auto_arima_opts = list(max.p = 1, max.q = 1, d = 1, allowdrift = FALSE),
method = c("sequential”, "full"),

)
Arguments

y a univariate xts object.

frequency the frequency of the time series. If the frequency is 1 then seasonal estimation
will be turned off. Will also accept multiple seasonal frequencies.

lambda an optional Box Cox transformation parameter. The routines are then run on the
transformed dataset.

types the types of anomalies to search and decontaminate series from. Defaults to
Additive outliers and temporary changes. Can be enhanced with trend breaks
but not suggested for the purpose of forecasting.

stlm_opts additional arguments to the stlm function.

auto_arima_opts
additional arguments to the auto.arima function in the tso routine.

method whether to apply a sequential identification of anomalies using STL decomposi-
tion in order to only pass the stationary residuals to the tso function, else to pass
the series directly to the tso package.

any additional arguments passed to the tso functions (refer to the documentation
of the tsoutliers package).

10 auto_regressors

Details

Calls the auto_regressors function to obtain the matrix of regressors and coefficients which are
then used to decontaminate the series. If lambda is not NULL, the series is first transformed to
perform the decontamination and then back transformed afterwards.

Value

A xts vector.

Author(s)

Alexios Galanos for this wrapper function.
Rob Hyndman for the forecast package.
Javier Lopez-de-Lacalle for the tsoutliers package.

auto_regressors Automatic Detection of Outliers, Trends Breaks and Temporary
Changes

Description

A wrapper function for function tso from the tsoutliers package. Takes as input a univariate xts
object and returns a list with an xts object with any identified outliers, trend breaks and/or temporary
changes to be used as regressors during estimation as well initial coefficients (see details).

Usage

auto_regressors(
y)
frequency = 1,
lambda = NULL,
forc_dates = NULL,
sampling = NULL,
h =0,
stlm_opts = list(etsmodel = "AAN"),
auto_arima_opts = list(max.p = 1, max.q = 1, d = 1, allowdrift = FALSE),
return_table = FALSE,
method = c("sequential”, "full"),

)
Arguments
y a univariate xts object.
frequency the frequency of the time series. If the frequency is 1 then seasonal estimation

will be turned off. Will also accept multiple seasonal frequencies.

auto_regressors 11

lambda an optional Box Cox transformation parameter. The routines are then run on the
transformed dataset.

forc_dates an optional vector of Date to be used for indexing the series when h is not NULL.
If this is not provided then the sampling frequency of the series will be estimated
in order to generate this.

sampling the sampling frequency the series. If h>0 and forc_dates is not provided, then
this is required in order to generate future time indices (valid values are days,
months, hours, mins, secs etc).

h an optional value for the forecast horizon (if planning to also use for prediction).

stlm_opts additional arguments to the stlm function.
auto_arima_opts
additional arguments to the auto.arima function in the tso routine.

return_table whether to return a data.table instead with the anomalies detected rather than an
xts matrix with the pre-processed and ready to use anomalies.

method whether to apply a sequential identification of anomalies using STL decomposi-
tion in order to only pass the stationary residuals to the tso function, else to pass
the series directly to the tso package.

any additional arguments passed to the tso functions (refer to the documentation
of the tsoutliers package).

Details

For generating future values of the identified outliers, the filter function is used with additive outliers
having a filter value of 0, trend changes a value of 1, and temporary changes have value between 0
and 1. For the sequential method, the routine first interpolates any missing values, followed by an
optional Box Cox transformation, and then elimination (and identification) of any outliers during
the first pass. The cleaned series is then run through an stl filter (if any frequency is greater than 1) in
order to deseasonalize the data (with multiple seasonality supported), after which the deseasonalized
series is passed to the tso function where any additive outliers (AO), temporary shifts (TC) or level
shift (LS) are identified. Additive outliers from this stage are added to any identified outliers from
the initial stage. For each regressor, initial parameter values are returned together with the regressor
matrix which should be passed to the estimation routine. This is critically important since in the
absence of good parameter scaling, initial values are key to good convergence. Care should be taken
with regards to any automatic Box Cox parameter estimation. In the presence of large outliers or
level shifts, this is likely to be badly estimated which is why we do not allow automatic calculation
of this, but instead place the burden on the user to decide what is a reasonable value (if any). If
a Box Cox transformation is used in the estimation routine, then it is important to use the same
lambda parameter in this function in order to get sensible results. Again, avoid automatic Box
Cox calculations throughout when you suspect significant contamination of the series by outliers
and breaks. For the full method, the series is directly passed to the tso function of the tsoutliers
package. Finally, it should be noted that this function is still experimental, and may change in the
future.

Value

A list with an xts outlier matrix (if any where identified) as well as a vector of initial parameter for
use in the initialization of the optimizer.

box_cox

Author(s)

Alexios Galanos for this wrapper function.
Rob Hyndman for the forecast package.
Javier Lopez-de-Lacalle for the tsoutliers package.

Examples

library(xts)

set.seed(200)

y = cumprod(c(100, (1+rnorm(100,0.01, 0.04))))

y = xts(y, as.Date(1:101, origin = as.Date("2000-01-01")))
yclean =y

outlier1l = rep(@, 101)

outlier1[20] = @.35

outlier2 = rep(0, 101)

outlier2[40] = 0.25

outlier2 = as.numeric(filter(outlier2, filter = .6, method = "recursive"))
y =y + yxxts(outlier1, index(y))

y =y + y*xts(outlier2, index(y))

may need some tweaking of the tso options.

x = auto_regressors(y, frequency = 1, sampling = "days”, h = 20,
check.rank = TRUE, discard.cval = 4)

head(x$xreg)

tail(x$xreg)

min(which(x$xregl,11==1))

min(which(x$xregl,2]==1))

#plot(as.numeric(y), type = "1", ylab = "")
#lines(as.numeric(yclean) + (x$xreg %x% x$init)[1:101], col = 2)

box_cox Box-Cox transform specification

Description

Creates a specification for the Box Cox transformation.

Usage

box_cox(lambda = NA, lower = @, upper = 1.5, multivariate = FALSE, ...)
Arguments

lambda the power parameters. If NA then it will automatically calculate the optimal

parameter using the method of Guerrero (for univariate case) else for the mul-
tivariate case, the method of Velilla (1993) which is implemented in the car
package of John Fox. This targets a transformation to multivariate normality. If
any of the inputs has a frequency other than 1, then an stl decomposition is first
applied and the seasonal component removed prior to the estimation in order

box_cox 13

to avoid confounding the estimation by seasonality. It is also possible to pass
a vector equal to the number of columns of the dataset (with numeric values
mixed with NAs which will calculate the univariate optimal lambda).

lower optional parameter lower bound for cases when it is calculated.
upper optional parameter upper bound for cases when it is calculated.

multivariate flag for the multivariate case. If lambda is a single parameter, then that is ap-
plied to all series (including NA which results in the multivariate transformation
described above).

not currently used.

Details

The function returns a list of 2 functions called “transform” and “inverse” which can be called with
a data object and a frequency to calculate the transformed values. The auto_lambda function uses
the method of Guerrero(1993).

Value

A list with the transform and inverse functions.

Note

The returned transform function will take additional argument “frequency”” which determines whether
a series is seasonal or not. When estimating lambda (when setting this to NA), a series with fre-
quency > 1 will first be de-seasonalized using an STL decomposition.

Author(s)

Alexios Galanos for the BoxCox function.
John Fox for the powerTransform function used in the multivariate case.

References

Box GE, Cox DR (1964). “An analysis of transformations.” Journal of the Royal Statistical Society
Series B: Statistical Methodology, 26(2), 211-243.

Velilla S (1993). “A note on the multivariate Box—Cox transformation to normality.” Statistics &
Probability Letters, 17(4), 259-263.

Guerrero VM (1993). “Time-series analysis supported by power transformations.” Journal of fore-
casting, 12(1), 37-48.

Examples

y = cumprod(c(1, 1 + rnorm(100,0.01, 0.005)))
B = box_cox(lambda = NA)

yt = B$transform(y, frequency = 1)

lambda = attr(yt,"lambda")

ye = B$inverse(yt, lambda)

14

calendar_eoq

calendar_eom End of Month Date

Description

Returns the last day of the month from a Date within the month.

Usage
calendar_eom(date, ...)
Arguments
date a Date vector
not used
Details

Given a Date (such as 2019-01-02), will return the last Date within that year month.

Value

Date object

Author(s)

Alexios Galanos

calendar_eoq End of Quarter Date

Description

Returns the last day of the quarter from a Date.

Usage

calendar_eoq(date, ...)
Arguments

date a Date vector

not used

calendar_eow 15

Details

Given a date (such as 2019-01-02), will return the last date within that year quarter.

Value

Date object

Author(s)

Alexios Galanos

calendar_eow End of Week Date

Description

Returns the last day of the week from a Date given a choice of week days.

Usage
calendar_eow(date, day = 7, ...)
Arguments
date a Date vector
day a value between 1 (Monday) and 7 (Sunday).
not used
Details

Given a Date (such as 2019-01-02) and a day of 7, will return the Date for the Sunday at or imme-
diately after that. The week starting day is Monday (1). A simple use case is when one wants to
aggregate daily data to a regular weekly sequence.

Value

Date object

Author(s)

Alexios Galanos

16 check_xreg

calendar_eoy End of Year Date

Description

Returns the last day of the year from a Date.

Usage
calendar_eoy(date, ...)
Arguments
date a Date vector
not used
Details

Given a date (such as 2019-01-02), will return the last date within that year.

Value

Date object

Author(s)

Alexios Galanos

check_xreg Checks on regressor matrix.

Description

Used internally by other packages, these functions provides some commonly used validation checks
on regressor matrices in both in and out of sample.

Usage

check_xreg(xreg, valid_index)

check_newxreg(newdata, xreg_names = NULL, h = 1, forc_dates = NULL)

fourier_series

Arguments

xreg
valid_index
newdata
Xreg_names
h

forc_dates

Value

17

an xts matrix of named regressors.

a vector of dates against which the xreg matrix index is compared for validity.
an xts matrix of out of named sample regressors.

names of regressors used in sample.

the forecast horizon

an optional vector of forecast dates. This is used if newdata is not an xts matrix
in which case it formats the data into such using the forc_dates vector.

Returns the xts input matrix if checks are passed else raises an error.

fourier_series

Fourier terms for modeling seasonality

Description

Returns a matrix containing terms from a Fourier series, up to order K

Usage

fourier_series(dates, period = NULL, K = NULL)

Arguments

dates

period

Value

a Date vector representing the length of the series for which the fourier terms
are required.

frequency of the underlying series, if NULL will try to infer it from the differ-
ence in the Date vector.

maximum order of the Fourier terms.

A matrix of size N (length of dates) by 2*K.

18 initialize_simulator

future_dates Generate Regular Interval Future Dates

Description

Generates regular interval future dates for use in forecast routine.

Usage

future_dates(start, frequency, n = 1)

Arguments
start a Date string for the start date.
frequency frequency of the interval (daily, weekly, monthly or yearly).
n number of future periods to generate dates for.

Value

A Date vector

Author(s)

Alexios Galanos

initialize_simulator Simulator Initializer

Description

Simulator Initializer

Usage
initialize_simulator(x, index = NULL, sampling = NULL, model = "issm", ...)
Arguments
X a vector of zero mean errors to use in the model.
index an optional Date or POSIXct vector of same length as x. Used for indexing the
simulated values.
sampling an optional string denoting the sampling frequency for the simulator. If no index

is present, will automatically generate one based on the sampling frequency
given with start date 2000-01-01. Valid sampling frequencies are days, weeks,
months, years, secs, mins, hours and subintervals of those as documented in the
seq.POSIXt function.

lines.issm.component 19

model the type of model to initialize a class for.

additional parameters to the function (not currently used).

Value

A object whose class depends on the type of model used.

lines.issm.component Add Connected Line Segments to a Simulation Object

Description

Add Connected Line Segments to a Simulation Object

Usage
S3 method for class 'issm.component'
lines(x, y = NULL, type = "1", ...)
Arguments
X an object of class issm.component or other supported class.
y not used.
type character indicating the type of plotting.

additional parameters passed to the lines function.

Details

Overlays the simulated series from the object (x), and is meant to be used when plotting different
simulations from the same series for comparison.

Value

a line plot.

20 mape

logit The logit transformation

Description

The logit transformation as an alternative to the Box Cox for bounded outcomes.

Usage
logit(lower = @, upper =1, ...)
Arguments
lower lower bound of the variable.
upper upper bound of the variable.
not currently used.
Value

A list with the transform and inverse functions.

Author(s)

Alexios Galanos

mape Forecast Performance Metrics

Description

Functions to calculate a number of performance metrics.

Usage

mape (actual, predicted)

bias(actual, predicted)

mslre(actual, predicted)

mase(actual, predicted, original_series = NULL, frequency = 1)
mis(actual, lower, upper, alpha)

wape(actual, predicted, weights)

mape 21

wslre(actual, predicted, weights)
wse(actual, predicted, weights)
pinball(actual, distribution, alpha = 0.1)
crps(actual, distribution)

rmape (actual, predicted)

smape(actual, predicted)

msis(actual, lower, upper, original_series, frequency = 1, alpha)

Arguments
actual the actual values corresponding to the forecast period.
predicted the predicted values corresponding to the forecast period.

original_series
the actual values corresponding to the training period.

frequency the seasonal frequency of the series used in the model.

lower the lower distributional forecast for the quantile corresponding to the coverage
ratio alpha (i.e. alpha/2).

upper the upper distributional forecast for the quantile corresponding to the coverage
ratio alpha (i.e. 1 - alpha/2).

alpha the distributional coverage.

weights a vector of weights for generating weighted metrics. If the actual and predicted
inputs are univariate, this should be equal to the length of the actual series and
calculates a time-weighted average; otherwise, the weights should be of length
equal to the number of series in a multivariate case, in which case a cross-
sectional average is calculated.

distribution the forecast distribution (returned in the distribution slot of the prediction ob-
ject). This is used in the continuous ranked probability score (crps) of Gneiting
et al. (2005), and calculated using the function from the ‘scoringRules* package.

Details

The following performance metrics are implemented:

Mean Absolute Percentage Error (MAPE) Measures the average percentage deviation of predic-

tions from actual values.
n

MAPE = 1 Z

n
t=1

At_Pt
Ay

where A; is the actual value and P, is the predicted value.

22

mape

Rescaled Mean Absolute Percentage Error (RMAPE) A transformation of MAPE using a Box-
Cox transformation for scale invariance (Swanson et al.).

Symmetric Mean Absolute Percentage Error (SMAPE) An alternative to MAPE that symmetrizes
the denominator.

2~ |4 — P
SMAPE = — _—
n; [Ae| + | P2

Mean Absolute Scaled Error (MASE) Compares the absolute error to the mean absolute error of
a naive seasonal forecast.

3 [P — Ay

MASE = —*=;
N—s Zt:s+1 |At - At78|

where s is the seasonal period.

Mean Squared Logarithmic Relative Error (MSLRE) Measures squared log relative errors to pe-
nalize large deviations.

n

1
MSLRE = — > " (log(1 + Ay) —log(1+ P,))?

t=1

Mean Interval Score (MIS) Evaluates the accuracy of prediction intervals.

n

MIS = LS (U, ~ L)+ 2 [(Le— AI(Ay < L) + (A~ UNI(Ay > U,)]

t=1
where L; and U, are the lower and upper bounds of the interval.
Mean Scaled Interval Score (MSIS) A scaled version of MIS, dividing by the mean absolute sea-
sonal error.
%[(Lt — ANI(Ay < L) + (A — Up)I(Ae > Uy))
N
ﬁ Zt:erl |At - At—s‘

h
1 (Ut—Lt)+
MSIS = —
SIS h;

Bias Measures systematic overestimation or underestimation.

n

) 1
Bias = - Z(Pt —Ay)

t=1
Weighted Absolute Percentage Error (WAPE) A weighted version of MAPE.

| P — Ay

W APE = Zw "

t=1
where w is the weight vector.

Weighted Squared Logarithmic Relative Error (WSLRE) A weighted version of squared log rel-
ative errors.

WSLRE = znjw(log(Pt/At))2

t=1

mape 23

Weighted Squared Error (WSE) A weighted version of squared errors.

n

P2
t
WSE =Y w <At)
t=1
Pinball Loss A scoring rule used for quantile forecasts.

n

Pinball = %Z [T(Ar = QD)I(A; > QF) + (1 = 7)(QF — A)I(A; < Q7))

t=1

where
Q7

is the predicted quantile at level

Continuous Ranked Probability Score (CRPS) A measure of probabilistic forecast accuracy.
I e— [
crPS =3 [(F) - 10y = 4)Pdy
t=1"Y —>

where F}(y) is the cumulative forecast distribution.

Value

A numeric value.

Note

The RMAPE is the rescaled measure for MAPE based on the paper by Swanson et al.

Author(s)

Alexios Galanos

References

Tofallis C (2015). “A better measure of relative prediction accuracy for model selection and model
estimation.” Journal of the Operational Research Society, 66(8), 1352—-1362.

Hyndman RJ, Koehler AB (2006). “Another look at measures of forecast accuracy.” International
Journal of forecasting, 22(4), 679-688.

Gneiting T, Raftery AE, Westveld III AH, Goldman T (2005). “Calibrated probabilistic forecasting
using ensemble model output statistics and minimum CRPS estimation.” Monthly weather review,
133(5), 1098-1118.

Gneiting T, Raftery AE (2007). “Strictly proper scoring rules, prediction, and estimation.” Journal
of the American statistical Association, 102(477), 359-378.

Swanson DA, Tayman J, Bryan TM (2011). “MAPE-R: a rescaled measure of accuracy for cross-
sectional subnational population forecasts.” Journal of Population Research, 28, 225-243.

24

plot.issm.component

mixture_modelspec Ensemble Setup

Description

Ensemble Setup

Usage

mixture_modelspec(...)

Arguments

either a list of valid simulation objects or individual objects passed to the func-

tion

Details

The function performs certain checks on the inputs to ensure they conform to the simulation models

in the package and are of the same length.

Value

A object of class tssim.mixture ready for ensembling,

plot.issm.component Plot Simulation Object

Description

Plot Simulation Object

Usage
S3 method for class 'issm.component'
plot(x, y = c("simulated”, "components”), ...)
Arguments
X an object of class issm.component or other supported class.
y the type of output to plot.

additional parameters passed to the plot.zoo function.

Value

a plot of the simulated series or multiple plots of the simulation components.

process_time

25

process_time POSIXct Processing

Description

Ceiling, Floor and Other operations on a POSIXct object

Usage

process_time(x, second_precision = 3600, method = ceiling, ...)
Arguments

X a POSIXct vector

second_precision
the precision in seconds on which the processing operates on

method the method for processing
not used
Value
POSIXct object
Author(s)

Alexios Galanos

Examples

end of hour
process_time(as.POSIXct('2022-08-03 ©3:00:01', tz = 'UTC'), 3600, method
start of hour

process_time(as.POSIXct('2022-08-03 03:00:01', tz = 'UTC'), 3600, method
end of minute
process_time(as.POSIXct('2022-08-03 03:00:01', tz

'UTC'), 60, method =

= ceiling)
= floor)

ceiling)

sampling_frequency Infers the sampling frequency of a time series

Description

Given either a vector of time indices or an xts object will infer the sampling frequency.

Usage

sampling_frequency(x)

26 sampling_sequence

Arguments
X either an xts object (or one which has an index attribute) else a vector of class
Date or POSIX based time index
Value

the sampling period (character).

Examples

w <- sampling_frequency(seq(as.Date("2010-01-01"), as.Date("2011-01-01"), by="weeks"))
m <- sampling_frequency(seq(as.POSIXct("2010-01-01 12:00:00"),
as.POSIXct("2010-01-02 12:00:00"), by="15 mins"))

sampling_sequence Sampling frequency sequence

Description

Given a sampling period, the function will return the proportion of units of that period in secs, mins,
hours, days, weeks, months and years, but will return NA for periods of higher frequency i.e. for
a period of days it will return NA for secs, mins and hours. The function serves as a helper for
seasonal periodicity calculations.

Usage

sampling_sequence(period)

Arguments

period the period returned by a call to the function sampling_frequency.

Value

A named numeric vector.

Author(s)

Alexios Galanos

Examples

w <- sampling_sequence(sampling_frequency(seq(as.Date("2010-01-01"),
as.Date("2011-01-01"), by="weeks")))

m <- sampling_sequence(sampling_frequency(seq(as.POSIXct("2010-01-01 12:00:00"),
as.POSIXct("2010-01-02 12:00:00"), by="15 mins")))

seasonality_test 27

seasonality_test Simple Seasonality Test

Description

Checks for the presence of seasonality based on the QS test of Gomez and Maravall (1996).

Usage

seasonality_test(x, frequency = NULL)

Arguments

X an (xts) vector (usually of a stationary series).

frequency overrides any frequency automatically identified in the index of x.
Details

Given the identified frequency of the xts vector (using the sampling_frequency), the function
checks for seasonality at that frequency. The frequency can be overridden by directly supplying a
frequency argument, in which case y does not need to be a xts vector.

Value

Logical.

Author(s)

Alexios Galanos

References

Goémez V, Maravall A (1995). Programs TRAMO and SEATS. European University Institute, Flo-
rence.

seasonal_dummies Seasonal Dummies

Description

Creates a matrix of seasonal dummies.

Usage

seasonal_dummies(y = NULL, n = nrow(y), seasons = 12)

28 sigmoid

Arguments
y optional data series.
n if y is missing, then the length of the series is required.
seasons number of seasons in a cycle.

Details

Generates seasons-1 dummy variables.

Value

Either a matrix (if y is missing or y is not an xts vector) or an xts matrix (when y is an xts vector).

Author(s)

Alexios Galanos

Examples

head(seasonal_dummies(n=100, seasons=12))

sigmoid The sigmoid transformation

Description

The sigmoid function is a smooth, S-shaped function that maps any real-valued input into a bounded
interval, typically (0,1) . It is widely used in probability modeling, logistic regression, and neural
networks as an activation function.

Usage
sigmoid(lower = @, upper =1, ...)
Arguments
lower lower bound of the variable.
upper upper bound of the variable.
not currently used.
Value

A list with the transform and inverse functions.

softlogit 29

Author(s)

Alexios Galanos

Examples

y = cumprod(c(1, 1 + rnorm(100,0.01, 0.005)))
B = sigmoid()

yt = B$transform(y)

ye = B$inverse(yt)

softlogit The softplus logit transformation

Description

The softplus logit transformation is an alternative to the logit transform for bounded outcomes with
positive output.

Usage
softlogit(lower = @, upper =1, ...)
Arguments
lower lower bound of the variable.
upper upper bound of the variable.
not currently used.
Value

A list with the transform and inverse functions.

Author(s)

Alexios Galanos

Examples

y = cumprod(c(1, 1 + rnorm(100,0.01, 0.005)))
B = softlogit(lower = @, wupper = 15)

yt = B$transform(y)

ye = B$inverse(yt)

30

time_splits

time_splits

Generate Train/Test Splits

Description

Generates train/test splits given a vector of dates and other options

Usage
time_splits(
X’
start = x[1],

test_length =

1,

by = test_length,

window_size
calendar_end

NULL,

= NULL,

complete_index = TRUE,

Arguments

X
start
test_length
by
window_size

calendar_end

complete_index

Value

a vector of timestamps (POSIXct) or dates (Date) in the dataset
starting date (first estimation/train date)

type of calendar period to split on

every how many periods to split on

the size of the training set (for moving window). If NULL will use an expanding
window.

an optional function to use for the period ending split, such as calendar_eow,
applied to x. This should be greater in frequency than the underlying frequency
of x (i.e. do not use calendar_eow on monthly indices). This overwrites the use
of window_size.

whether to return the full indices for train and test else just the start and end
indices.

any additional parameters passed to the calendar_end function. For example,
the “day” argument when using the calendar_eow function.

A list with each slot having the training dates and test dates

Note

For months, quarters and years this will split into the end date of these. For splitting into mins or
hours, x must also have this resolution else will throw an error. Additionally, the strict requirement
of regularly spaced time is required (no gaps).

tsdecompose.issm.component 31

Author(s)

Alexios Galanos

tsdecompose. issm.component
State Decomposition

Description

State Decomposition

Usage
S3 method for class 'issm.component'
tsdecompose(object, ...)

Arguments

object an object of class issm.component or other supported class.

additional parameters.

Details
Creates a simplified decomposition of the states and aligns their time indices so that the sum up to
the simulated component per period.

Value

A matrix of the simplified state decomposition.

tsensemble.tssim.mixture
Ensembling of Simulations

Description

Ensembling of Simulations

Usage

S3 method for class 'tssim.mixture'
tsensemble(object, weights = NULL, difference = TRUE, ...)

32 tslinear

Arguments
object an object of class tssim.mixture.
weights the weighting (or probability) matrix for aggregating the simulations (see de-
tails).
difference whether to take the rates of changes first before aggregating and reconverting to
levels.
additional parameters.
Details

When mixing dynamics for the same series, and when series are not stationary, differences should
be used. In that case the rate of change transformation is applied to each simulated series and then
weighted by the weights matrix. Since the weights matrix will have one more row than is required
(the first row), this can be used to choose how the initial level is generated. For instance, if we want
to use the level of the first simulated series, then the first row would have a 1 on the first column and
zeros in the rest. For aggregating series, difference should be set to FALSE since we are looking
at summation of data (under the assumption of flow variables). In this case, the p matrix is usually
static by column (i.e. the same weights).

Value

A vector of the simulated series.

tslinear Linear Time Series Filter

Description

Estimates a simple linear time series model with trend, seasonal and regressors.

Usage

tslinear(y, trend = FALSE, seasonal = FALSE, xreg = NULL, frequency =1, ...)
Arguments

y a vector.

trend whether to include a linear trend.

seasonal whether to include seasonal dummies.

xreg an optional matrix of regressors.

frequency the frequency of the series (required if seasonal is TRUE).

not currently used.

Value

An object of class “tslinear” which also inherits “Im”.

tstransform

Author(s)

Alexios Galanos

33

tstransform

General transformation function

Description

Includes the Box Cox, logit, softplus-logit and sigmoid transforms. Returns a list of functions for
the transform and its inverse.

Usage

tstransform(method = "box-cox"”, lambda = NULL, lower = @, upper =1, ...)
Arguments

method valid methods are currently “box-cox”, “logit”, “softplus-logit” and “sigmoid”.

lambda parameter in the Box Cox transformation.

lower lower bound for the transformations.

upper upper bound for the transformations.

additional arguments taken by the transformations.

Value

A list with the transform and inverse functions.

Author(s)

Alexios Galanos

Index

add_anomaly, 4
add_arma, 4
add_custom, 5
add_polynomial, 6
add_regressor, 7
add_seasonal, 7
add_transform, 8
additive_outlier, 3
auto_clean, 9
auto_regressors, 10, 10

bias (mape), 20
box_cox, 12

calendar_eom, 14
calendar_eoq, 14
calendar_eow, 15, 30
calendar_eoy, 16
check_newxreg (check_xreg), 16
check_xreg, 16

crps (mape), 20

fourier_series, 17
future_dates, 18

initialize_simulator, 18

level_shift (additive_outlier), 3
lines (lines.issm.component), 19
lines.issm.component, 19
logit, 20

mape, 20

mase (mape), 20

mis (mape), 20
mixture_modelspec, 24
msis (mape), 20

mslre (mape), 20

pinball (mape), 20
plot (plot.issm.component), 24

34

plot.issm.component, 24
plot.zoo, 24
process_time, 25

rmape (mape), 20

sampling_frequency, 25, 26, 27
sampling_sequence, 26
seasonal_dummies, 27
seasonality_test, 27
seq.POSIXt, I8

sigmoid, 28

smape (mape), 20

softlogit, 29

temporary_change (additive_outlier), 3
time_splits, 30
tsdecompose
(tsdecompose. issm.component),
31
tsdecompose.issm.component, 31
tsensemble (tsensemble. tssim.mixture),
31
tsensemble.tssim.mixture, 31
tslinear, 32
tso, 9, 10
tstransform, 33

wape (mape), 20
wse (mape), 20
wslre (mape), 20

	additive_outlier
	add_anomaly
	add_arma
	add_custom
	add_polynomial
	add_regressor
	add_seasonal
	add_transform
	auto_clean
	auto_regressors
	box_cox
	calendar_eom
	calendar_eoq
	calendar_eow
	calendar_eoy
	check_xreg
	fourier_series
	future_dates
	initialize_simulator
	lines.issm.component
	logit
	mape
	mixture_modelspec
	plot.issm.component
	process_time
	sampling_frequency
	sampling_sequence
	seasonality_test
	seasonal_dummies
	sigmoid
	softlogit
	time_splits
	tsdecompose.issm.component
	tsensemble.tssim.mixture
	tslinear
	tstransform
	Index

