
Package ‘ulex’
June 17, 2024

Title Unique Location Extractor

Version 0.1.0

Description Extracts coordinates of an event location from text based on dictionaries of land-
marks, roads, and areas. Only returns the location of an event of interest and ignores other loca-
tion references; for example, if determining the location of a road traf-
fic crash from the text ``crash near [location 1] heading towards [location 2]'', only the coordi-
nates of ``location 1'' would be returned. Moreover, accounts for differences in spelling be-
tween how a user references a location and how a location is captured in location dictionaries.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.1

Imports dplyr, tidyr, readr, purrr, tidytext, stringr, stringi, ngram,
hunspell, stringdist, tm, raster, parallel, sf, quanteda,
geodist, spacyr, utils

URL https://dime-worldbank.github.io/ulex/

NeedsCompilation no

Author Robert Marty [aut, cre] (<https://orcid.org/0000-0002-3164-3813>)

Maintainer Robert Marty <rmarty@worldbank.org>

Repository CRAN

Date/Publication 2024-06-17 18:20:02 UTC

Contents

augment_gazetteer . 2
locate_event . 6

Index 9

1

https://dime-worldbank.github.io/ulex/
https://orcid.org/0000-0002-3164-3813

2 augment_gazetteer

augment_gazetteer Augments Landmark Gazetteer

Description

Augments Landmark Gazetteer

Usage

augment_gazetteer(
landmarks,
landmarks.name_var = "name",
landmarks.type_var = "type",
grams.min_words = 3,
grams.max_words = 6,
grams.skip_gram_first_last_word_match = TRUE,
grams.add_only_if_name_new = FALSE,
grams.add_only_if_specific = FALSE,
types_rm = c("route", "road", "toilet", "political", "locality", "neighborhood",

"area", "section of populated place"),
types_rm.except_with_type = c("flyover", "round about", "roundabout"),
types_rm.except_with_name = c("flyover", "round about", "roundabout"),
parallel.sep_slash = TRUE,
parallel.rm_begin = c(tm::stopwords("en"), c("near", "at", "the", "towards", "near")),
parallel.rm_end = c("bar", "shops", "restaurant", "sports bar", "hotel", "bus station"),
parallel.word_diff = "default",
parallel.word_diff_iftype = list(list(words = c("stage", "bus stop", "bus station"),

type = "transit_station")),
parallel.rm_begin_iftype = NULL,
parallel.rm_end_iftype = list(list(words = c("stage", "bus stop", "bus station"), type

= "transit_station")),
parallel.word_begin_addtype = NULL,
parallel.word_end_addtype = list(list(words = c("stage", "bus stop", "bus station"),

type = "stage")),
parallel.add_only_if_name_new = FALSE,
parallel.add_only_if_specific = FALSE,
rm.contains = c("road", "rd"),
rm.name_begin = c(tm::stopwords("en"), c("near", "at", "the", "towards", "near")),
rm.name_end = c("highway", "road", "rd", "way", "ave", "avenue", "street", "st"),
pos_rm.all = c("ADJ", "ADP", "ADV", "AUX", "CCONJ", "INTJ", "NUM", "PRON", "SCONJ",

"VERB", "X"),
pos_rm.except_type = list(pos = c("NOUN", "PROPN"), type = c("bus", "restaurant",

"bank"), name = ""),
close_thresh_km = 1,
quiet = TRUE

)

augment_gazetteer 3

Arguments

landmarks sf spatial points data.frame of landmarks.

landmarks.name_var

Name of variable indicating name of landmark. (Default: "name").

landmarks.type_var

Name of variable indicating type of landmark. (Default: "type").

grams.min_words

Minimum number of words in name to make n/skip-grams out of name. (De-
fault: 3).

grams.max_words

Maximum number of words in name to make n/skip-grams out of name. Set-
ting a cap helps to reduce spurious landmarks that may come out of really long
names. (Default: 6).

grams.skip_gram_first_last_word_match

For skip-grams, should first and last word be the same as the original word?
(Default: TRUE).

grams.add_only_if_name_new

When creating new landmarks based on n- and skip-grams, only add an ad-
ditional landmark if the name of the landmark is new; i.e., the name doesn’t
already exist in the gazetteer. (Default: FALSE).

grams.add_only_if_specific

When creating new landmarks based on n- and skip-grams, only add an addi-
tional landmark if the name of the landmark represents a specific location. A
specific location is a location where most landmark entries with the same name
are close together (within close_thresh_km kilometers). (Default: FALSE).

types_rm If landmark has one of these types, remove - unless types_rm.except_with_type
or types_rm.except_with_name prevents removing. (Default: c("route",
"road", "toilet", "political", "locality", "neighborhood", "area", "section
of populated place")).

types_rm.except_with_type

Landmark types to always keep. This parameter only becomes relevant in cases
where a landmark has more than one type. If a landmark has both a "types_rm"
and a "types_always_keep" landmark, this landmark will be kept. (Default:
c("flyover", "round about", "roundabout")).

types_rm.except_with_name

Landmark names to always keep. This parameter only becomes relevant in
cases where a landmark is one of "types_rm" Here, we keep the landmark if
"names_always_keep" is somewhere in the name. For example, if the land-
mark is a road but has flyover in the name, we may want to keep the landmark
as flyovers are small spatial areas. (Default: c("flyover", "round about",
"roundabout")).

parallel.sep_slash

If a landmark contains a slash, create new landmarks before and after the slash.
(Default: TRUE).

4 augment_gazetteer

parallel.rm_begin

If a landmark name begins with one of these words, add a landmark that excludes
the word. (Default: c(tm::stopwords("en"), c("near","at","the", "towards",
"near"))).

parallel.rm_end

If a landmark name ends with one of these words, add a landmark that excludes
the word. (Default: c("bar", "shops", "restaurant","sports bar","hotel",
"bus station")).

parallel.word_diff

If the landmark includes one of these words, add a landmark that swaps the word
for the other word (e.g., "center" with "centre"). By default, uses a set collection
of words. Users can also manually specify different word versions. Input should
be a data.frame with the following variables: version_1 (for one spelling of
the word) and version_2 (for a second spelling of the word).

parallel.word_diff_iftype

If the landmark includes one of these words, add a landmark that swaps the
word for the other word (e.g., "bus stop" with "bus station"). Enter a named
list of words, with words = c() and type = c(). (Default: list(list(words =
c("stage", "bus stop", "bus station"), type = "transit_station"))).

parallel.rm_begin_iftype

If a landmark name begins with one of these words, add a landmark that excludes
the word if the landmark is a certain type. (Default: NULL).

parallel.rm_end_iftype

If a landmark name ends with one of these words, add a landmark that ex-
cludes the word if the landmark is a certain type. (Default: list(list(words =
c("stage", "bus stop", "bus station"), type = "transit_station"))).

parallel.word_begin_addtype

If the landmark begins with one of these words, add the type. For example, if
landmark is "restaurant", this indicates the landmark is a restaurant. Adding the
"restaurant" to landmark ensures that the type is reflected. (Default: NULL).

parallel.word_end_addtype

If the landmark ends with one of these words, add the type. For example, if land-
mark is "X stage", this indicates the landmark is a bus stage. Adding the "stage"
to landmark ensures that the type is reflected. (Default: list(list(words =
c("stage", "bus stop", "bus station"), type = "stage"))).

parallel.add_only_if_name_new

When creating parallel landmarks using the above parameters, only add an ad-
ditional landmark if the name of the landmark is new; i.e., the name doesn’t
already exist in the gazetteer. (Default: FALSE).

parallel.add_only_if_specific

When creating parallel landmarks using the above parameters, only add an ad-
ditional landmark if the name of the landmark represents a specific location. A
specific location is a location where most landmark entries with the same name
are close together (within close_thresh_km kilometers). (Default: FALSE).

rm.contains Remove the landmark if it contains one of these words. Implemented after
N/skip-grams and parallel landmarks are added. (Default: c("road", "rd")).

augment_gazetteer 5

rm.name_begin Remove the landmark if it begins with one of these words. Implemented after
N/skip-grams and parallel landmarks are added. (Default: c(tm::stopwords("en"),
c("near","at","the", "towards", "near"))).

rm.name_end Remove the landmark if it ends with one of these words. Implemented af-
ter N/skip-grams and parallel landmarks are added. (Default: c("highway",
"road", "rd", "way", "ave", "avenue", "street", "st")).

pos_rm.all Part-of-speech categories to remove. Part-of-speech determined by Spacy. (De-
fault: c("ADJ", "ADP", "ADV", "AUX", "CCONJ", "INTJ", "NUM", "PRON", "SCONJ",
"VERB", "X")).

pos_rm.except_type

When specify part-of-speech categories to remove in pos_rm.all, when to over-
ride pos_rm.all and keep the word. Names list with: (1) pos (if the word is
also another type of part-of-speech); (2) type (if the word is also a certain type
of place); and (3) name (if the word includes certain text). Example: list(pos =
c("NOUN", "PROPN"), type = c("bus", "restaurant", "bank"), name = c("parliament")).
(Default: list(pos = c("NOUN", "PROPN"), type = c("bus", "restaurant",
"bank"), name = "")).

close_thresh_km

When to consider locations close together. Used when determining if a landmark
name with multiple locations are specific (close together) or general (far apart).
(Default: 1).

quiet Print progress of function. (Default: TRUE).

Value

sf spatial point data.frame of landmarks.

Examples

library(ulex)
library(spacyr)
spacy_install()

lm_sf <- data.frame(name = c("white house",
"the world bank group",
"the george washington university"),

lat = c(38.897778,
38.89935,
38.9007),

lon = c(-77.036389,
-77.04275,
-77.0508),

type = c("building", "building", "building")) |>
sf::st_as_sf(coords = c("lon", "lat"),

crs = 4326)

lm_aug_sf <- augment_gazetteer(lm_sf)

6 locate_event

locate_event Locate Event

Description

Locate Event

Usage

locate_event(
text,
landmark_gazetteer,
landmark_gazetteer.name_var = "name",
landmark_gazetteer.type_var = "type",
roads,
roads.name_var = "name",
areas,
areas.name_var = "name",
event_words,
prepositions_list = list(c("at", "next to", "around", "just after", "opposite", "opp",
"apa", "hapa", "happened at", "just before", "at the", "outside", "right before"),
c("near", "after", "toward", "along", "towards", "approach"), c("past", "from",
"on")),

junction_words = c("intersection", "junction"),
false_positive_phrases = "",
type_list = NULL,
clost_dist_thresh = 500,
fuzzy_match = TRUE,
fuzzy_match.min_word_length = c(5, 11),
fuzzy_match.dist = c(1, 2),
fuzzy_match.ngram_max = 3,
fuzzy_match.first_letters_same = TRUE,
fuzzy_match.last_letters_same = TRUE,
quiet = TRUE,
mc_cores = 1

)

Arguments

text Vector of texts to be geolocated.
landmark_gazetteer

sf spatial data.frame representing landmarks.
landmark_gazetteer.name_var

Name of variable indicating name of landmark.
landmark_gazetteer.type_var

Name of variable indicating type of landmark.

locate_event 7

roads sf spatial data.frame representing roads.

roads.name_var Name of variable indicating name of road.

areas sf spatial data.frame representing areas, such as administrative areas or neigh-
borhoods.

areas.name_var Name of variable indicating name of area.

event_words Vector of event words, representing events to be geocoded.
prepositions_list

List of vectors of prepositions. Order of list determines order of preposition
precedence. (Default: list(c("at", "next to","around", "just after",
"opposite","opp", "apa", "hapa","happened at", "just before","at the","outside",
"right before"), c("near", "after", "toward", "along", "towards", "approach"),
c("past","from","on"))).

junction_words Vector of junction words to check for when determining intersection of roads.
(Default: c("intersection", "junction")).

false_positive_phrases

Common words found in text that include spurious location references (eg,
githurai bus is the name of a bus, but githurai is also a place). These may
be common phrases that should be checked and ignored in the text. (Default:
"").

type_list List of vectors of types. Order of list determines order or type precedence.
(Default: NULL).

clost_dist_thresh

Distance (meters) as to what is considered "close"; for example, when consider-
ing whether a landmark is close to a road. (Default: 500).

fuzzy_match Whether to implement fuzzy matching of landmarks using levenstein distance.
(Default: TRUE).

fuzzy_match.min_word_length

Minimum word length to use for fuzzy matching; vector length must be the same
as fuzzy_match.dist. (Default: c(5,11)).

fuzzy_match.dist

Allowable levenstein distances for fuzzy matching; vector length must be same
as fuzzy_match.min_word_length. (Default: c(1,2)).

fuzzy_match.ngram_max

The number of n-grams that should be extracted from text to calculate a lev-
ensteing distance against landmarks. For example, if the text is composed of 5
words: w1 w2 w3 w4 and fuzzy_match.ngram_max = 3, the function extracts
w1 w2 w3 and compares the levenstein distance to all landmarks. Then in checks
w2 w3 w4, etc. (Default: 3).

fuzzy_match.first_letters_same

When implementing a fuzzy match, should the first letter of the original and
found word be the same? (Default: TRUE).

fuzzy_match.last_letters_same

When implementing a fuzzy match, should the last letter of the original and
found word be the same? (Default: TRUE).

quiet If FALSE, prints text that is being geocoded. (Default: TRUE).

8 locate_event

mc_cores If > 1, uses geolocates events in parallel across multiple cores relying on the
parallel package. (Default: 1).

Value

sf spatial dataframe of geolocated events.

Examples

library(ulex)
library(sf)

Landmarks
landmarks_sf <- data.frame(lat = runif(3),

lon = runif(3),
name = c("restaurant", "bank", "hotel"),
type = c("poi", "poi", "poi")) |>

st_as_sf(coords = c("lon", "lat"),
crs = 4326)

Road
coords <- matrix(runif(4), ncol = 2)
road_sf <- coords |>

st_linestring() |>
st_sfc(crs = 4326)

road_sf <- st_sf(geometry = road_sf)
road_sf$name <- "main st"

Area
n <- 5
coords <- matrix(runif(2 * n, min = 0, max = 10), ncol = 2)
coords <- rbind(coords, coords[1,])
polygon <- st_polygon(list(coords))
area_sf <- st_sfc(polygon, crs = 4326)
area_sf <- st_sf(geometry = area_sf)
area_sf$name <- "place"

Locate Event
event_sf <- locate_event(text = "accident near hotel",

landmark_gazetteer = landmarks_sf,
roads = road_sf,
areas = area_sf,
event_words = c("accident", "crash"))

Index

augment_gazetteer, 2

locate_event, 6

9

	augment_gazetteer
	locate_event
	Index

