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gen_friedman Friedman benchmark data
Description

Simulate data from the Friedman 1 benchmark problem. These data were originally described in

Friedman (1991) and Breiman (1996). For details, see sklearn.datasets.make_friedmanl.

Usage

gen_friedman(
n_samples = 100,
n_features = 10,
n_bins = NULL,
sigma = 0.1,
seed = NULL


https://orcid.org/0000-0002-8120-0084
https://orcid.org/0000-0002-3611-8516
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman1.html

list_metrics 3

Arguments
n_samples Integer specifying the number of samples (i.e., rows) to generate. Default is 100.
n_features Integer specifying the number of features to generate. Default is 10.
n_bins Integer specifying the number of (roughly) equal sized bins to split the response
into. Default is NULL for no binning. Setting to a positive integer > 1 effec-
tively turns this into a classification problem where n_bins gives the number of
classes.
sigma Numeric specifying the standard deviation of the noise.
seed Integer specifying the random seed. If NULL (the default) the results will be
different each time the function is run.
References

Breiman, Leo (1996) Bagging predictors. Machine Learning 24, pages 123-140.

Friedman, Jerome H. (1991) Multivariate adaptive regression splines. The Annals of Statistics 19
(1), pages 1-67.

Examples

gen_friedman()

list_metrics List metrics

Description

List all available performance metrics.

Usage

list_metrics()

Value
A data frame with the following columns:

* metric - the optimization or tuning metric;
* description - a brief description about the metric;
* task - whether the metric is suitable for regression or classification;

* smaller_is_better - logical indicating whether or not a smaller value of the metric is con-
sidered better.

» yardstick_function - the name of the corresponding function from the yardstick package.

Examples

(metrics <- list_metrics())
metrics[metrics$task == "Multiclass classification”, ]
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titanic Survival of Titanic passengers

Description

A data set containing the survival outcome, passenger class, age, sex, and the number of family
members for a large number of passengers aboard the ill-fated Titanic.

Usage

titanic

Format
A data frame with 1309 observations on the following 6 variables:

* survived - binary with levels "yes" for survived and "no"” otherwise;

* pclass - integer giving the corresponding passenger (i.e., ticket) class with values 1-3;
* age - the age in years of the corresponding passenger (with 263 missing values);

* age - factor giving the sex of each passenger with levels "male” and "female”;

* sibsp - integer giving the number of siblings/spouses aboard for each passenger (ranges from
0-8);

* parch - integer giving the number of parents/children aboard for each passenger (ranges from
0-9).

Note
As mentioned in the column description, age contains 263 NAs (or missing values). For a complete
version (or versions) of the data set, see titanic_mice.

Source

https://hbiostat.org/data/.

titanic_mice Survival of Titanic passengers

Description

The titanic data set contains 263 missing values (i.e., NA’s) in the age column. This version of
the data contains imputed values for the age column using multivariate imputation by chained
equations via the mice package. Consequently, this is a list containing 11 imputed versions of the
observations containd in the titanic data frame; each completed data sets has the same dimension
and column structure as titanic.


https://hbiostat.org/data/
https://cran.r-project.org/package=mice
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Usage

titanic_mice

Format

An object of class mild (inherits from list) of length 21.

Source

Greenwell, Brandon M. (2022). Tree-Based Methods for Statistical Learning in R. CRC Press.

Vi Variable importance

Description

Compute variable importance scores for the predictors in a model.

Usage

vi(object, ...)

## Default S3 method:
vi(
object,
method = c("model”, "firm", "permute”, "shap"),
feature_names = NULL,
abbreviate_feature_names = NULL,
sort = TRUE,
decreasing = TRUE,
scale = FALSE,

rank = FALSE,
)
Arguments

object A fitted model object (e.g., a randomForest object) or an object that inherits from
class "vi".
Additional optional arguments to be passed on to vi_model, vi_firm, vi_permute,
or vi_shap; see their respective help pages for details.

method Character string specifying the type of variable importance (VI) to compute.

Current options are:

* "model” (the default), for model-specific VI scores (see vi_model for de-
tails).
e "firm", for variance-based VI scores (see vi_firm for details).



feature_names
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e "permute”, for permutation-based VI scores (see vi_permute for details).
* "shap”, for Shapley-based VI scores (see vi_shap for details).

Character string giving the names of the predictor variables (i.e., features) of
interest.

abbreviate_feature_names

sort

decreasing

scale

rank

Value

Integer specifying the length at which to abbreviate feature names. Default is
NULL which results in no abbreviation (i.e., the full name of each feature will be
printed).

Logical indicating whether or not to order the sort the variable importance scores.
Default is TRUE.

Logical indicating whether or not the variable importance scores should be
sorted in descending (TRUE) or ascending (FALSE) order of importance. Default
is TRUE.

Logical indicating whether or not to scale the variable importance scores so that
the largest is 100. Default is FALSE.

Logical indicating whether or not to rank the variable importance scores (i.e.,
convert to integer ranks). Default is FALSE. Potentially useful when comparing
variable importance scores across different models using different methods.

A tidy data frame (i.e., a tibble object) with two columns:

* Variable - the corresponding feature name;

* Importance - the associated importance, computed as the average change in performance
after a random permutation (or permutations, if nsim > 1) of the feature in question.

For Im/glm-like objects, whenever method = "model”, the sign (i.e., POS/NEG) of the original
coefficient is also included in a column called Sign.

If method = "permute” and nsim > 1, then an additional column (StDev) containing the standard
deviation of the individual permutation scores for each feature is also returned; this helps assess the
stability/variation of the individual permutation importance for each feature.

Examples

#

# A projection pursuit regression example

#

# Load the sample data

data(mtcars)

# Fit a projection pursuit regression model
mtcars.ppr <- ppr(mpg ~ ., data = mtcars, nterms = 1)

# Prediction wrapper that tells vi() how to obtain new predictions from your

# fitted model

pfun <- function(object, newdata) predict(object, newdata = newdata)
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# Compute permutation-based variable importance scores

set.seed(1434) # for reproducibility

(vis <- vi(mtcars.ppr, method = "permute”, target = "mpg", nsim = 10,
metric = "rmse"”, pred_wrapper = pfun, train = mtcars))

# Plot variable importance scores
vip(vis, include_type = TRUE, all_permutations = TRUE,

geom = "point"”, aesthetics = list(color = "forestgreen”, size = 3))
#
# A binary classification example
#
## Not run:

library(rpart) # for classification and regression trees

# Load Wisconsin breast cancer data; see ?mlbench::BreastCancer for details
data(BreastCancer, package = "mlbench")
bc <- subset(BreastCancer, select = -Id) # for brevity

# Fit a standard classification tree
set.seed(1032) # for reproducibility
tree <- rpart(Class ~ ., data = bc, cp = 0)

# Prune using 1-SE rule (e.g., use ‘plotcp(tree)* for guidance)
cp <- tree$cptable

cp <- cplepl, "nsplit”] == 2L, "CP"]

tree2 <- prune(tree, cp = cp) # tree with three splits

# Default tree-based VIP
vip(tree2)

# Computing permutation importance requires a prediction wrapper. For

# classification, the return value depends on the chosen metric; see

# “?vip::vi_permute for details.

pfun <- function(object, newdata) {
# Need vector of predicted class probabilities when using log-loss metric
predict(object, newdata = newdata, type = "prob”)[, "malignant”]

3

# Permutation-based importance (note that only the predictors that show up

# in the final tree have non-zero importance)

set.seed(1046) # for reproducibility

vi(tree2, method = "permute”, nsim = 10, target = "Class”, train = bc,
metric = "logloss"”, pred_wrapper = pfun, reference_class = "malignant”)

# Equivalent (but not sorted)

set.seed(1046) # for reproducibility

vi_permute(tree2, nsim = 10, target = "Class”, metric = "logloss”,
pred_wrapper = pfun, reference_class = "malignant”)

## End(Not run)
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vip

Variable importance plots

Description

Plot variable importance scores for the predictors in a model.

Usage

vip(object,

L)

## Default S3 method:

vip(
object,
num_features = 10L,
geom = c("col”, "point"”, "boxplot"”, "violin"),
mapping = NULL,
aesthetics = list(),

horizontal = TRUE,
all_permutations = FALSE,
jitter = FALSE,

include_type

)

= FALSE,

## S3 method for class 'model_fit'

vip(object,

L)

## S3 method for class 'workflow'

vip(object,

)

## S3 method for class 'WrappedModel'

vip(object,

.)

## S3 method for class 'Learner'

vip(object,

Arguments

object

num_features

geom

)

A fitted model (e.g., of class randomForest object) or a vi object.

Additional optional arguments to be passed on to vi.

Integer specifying the number of variable importance scores to plot. Default is

10.

Character string specifying which type of plot to construct. The currently avail-

able options are described below.
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e geom = "col” uses geom_col to construct a bar chart of the variable impor-
tance scores.

* geom = "point” uses geom_point to construct a Cleveland dot plot of the
variable importance scores.

* geom = "boxplot” uses geom_boxplot to construct a boxplot plot of the
variable importance scores. This option can only for the permutation-based
importance method with nsim > 1 and keep = TRUE; see vi_permute for de-
tails.

* geom = "violin" uses geom_violin to construct a violin plot of the variable
importance scores. This option can only for the permutation-based impor-
tance method with nsim > 1 and keep = TRUE; see vi_permute for details.

mapping Set of aesthetic mappings created by aes-related functions and/or tidy eval helpers.
See example usage below.

aesthetics List specifying additional arguments passed on to layer. These are often aes-
thetics, used to set an aesthetic to a fixed value, likecolour = "red” or size =
3. See example usage below.

horizontal Logical indicating whether or not to plot the importance scores on the x-axis
(TRUE). Default is TRUE.

all_permutations
Logical indicating whether or not to plot all permutation scores along with the
average. Default is FALSE. (Only used for permutation scores when nsim > 1.)

jitter Logical indicating whether or not to jitter the raw permutation scores. Default
is FALSE. (Only used when all_permutations = TRUE.)

include_type  Logical indicating whether or not to include the type of variable importance
computed in the axis label. Default is FALSE.

Examples

#
# A projection pursuit regression example using permutation-based importance
#

# Load the sample data
data(mtcars)

# Fit a projection pursuit regression model
model <- ppr(mpg ~ ., data = mtcars, nterms = 1)

# Construct variable importance plot (permutation importance, in this case)

set.seed(825) # for reproducibility

pfun <- function(object, newdata) predict(object, newdata = newdata)

vip(model, method = "permute"”, train = mtcars, target = "mpg"”, nsim = 10,
metric = "rmse”, pred_wrapper = pfun)

# Better yet, store the variable importance scores and then plot

set.seed(825) # for reproducibility

vis <- vi(model, method = "permute”, train = mtcars, target = "mpg",
nsim = 10, metric = "rmse”, pred_wrapper = pfun)
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"point”, horiz = FALSE)
FALSE, aesthetics = list(size = 3))

vip(vis, geom
vip(vis, geom = "point”, horiz

# Plot unaggregated permutation scores (boxplot colored by feature)

library(ggplot2) # for ‘aes()‘-related functions and tidy eval helpers

vip(vis, geom = "boxplot"”, all_permutations = TRUE, jitter = TRUE,
#mapping = aes_string(fill = "Variable"), # for ggplot2 (< 3.0.90)
mapping = aes(fill = .data[["Variable”]1]), # for ggplot2 (>= 3.0.0)
aesthetics = list(color = "grey35"”, size = 0.8))

#

# A binary classification example
#

## Not run:

library(rpart) # for classification and regression trees

# Load Wisconsin breast cancer data; see ?mlbench::BreastCancer for details
data(BreastCancer, package = "mlbench")
bc <- subset(BreastCancer, select = -Id) # for brevity

# Fit a standard classification tree
set.seed(1032) # for reproducibility
tree <- rpart(Class ~ ., data = bc, cp = 0)

# Prune using 1-SE rule (e.g., use ‘plotcp(tree)* for guidance)
cp <- tree$cptable

cp <- cplepl, "nsplit”] == 2L, "CP"]

tree2 <- prune(tree, cp = cp) # tree with three splits

# Default tree-based VIP
vip(tree2)

# Computing permutation importance requires a prediction wrapper. For

# classification, the return value depends on the chosen metric; see

# “?vip::vi_permute for details.

pfun <- function(object, newdata) {
# Need vector of predicted class probabilities when using log-loss metric
predict(object, newdata = newdata, type = "prob”)[, "malignant”]

3

# Permutation-based importance (note that only the predictors that show up
# in the final tree have non-zero importance)
set.seed(1046) # for reproducibility
vip(tree2, method = "permute”, nsim = 10, target = "Class”,
metric = "logloss”, pred_wrapper = pfun, reference_class = "malignant”)

## End(Not run)

vi_firm

vi_firm Variance-based variable importance




vi_firm

Description
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Compute variance-based variable importance (VI) scores using a simple feature importance ranking
measure (FIRM) approach; for details, see Greenwell et al. (2018) and Scholbeck et al. (2019).

Usage

vi_firm(object,

)

## Default S3 method:

vi_firm(
object,
feature_names
train = NULL,

= NULL,

var_fun = NULL,
var_continuous = stats::sd,
var_categorical = function(x) diff(range(x))/4,

Arguments

object

feature_names

train

var_fun

var_continuous

var_categorical

Details

A fitted model object (e.g., a randomForest object).

Additional arguments to be passed on to the pdp: :partial() function (e.g.,
ice = TRUE, prob = TRUE, or a prediction wrapper via the pred. fun argument);
see ?pdp: :partial for details on these and other useful arguments.

Character string giving the names of the predictor variables (i.e., features) of
interest. If NULL (the default) then the internal get_feature_names() function
will be called to try and extract them automatically. It is good practice to always
specify this argument.

A matrix-like R object (e.g., a data frame or matrix) containing the training data.
If NULL (the default) then the internal get_training_data() function will be
called to try and extract it automatically. It is good practice to always specify
this argument.

Deprecated; use var_continuous and var_categorical instead.

Function used to quantify the variability of effects for continuous features. De-
faults to using the sample standard deviation (i.e., stats: :sd()).

Function used to quantify the variability of effects for categorical features. De-
faults to using the range divided by four; that is, function(x) diff(range(x))
/ 4.

This approach is based on quantifying the relative "flatness" of the effect of each feature and as-

sumes the user has

some familiarity with the pdp: :partial () function. The Feature effects can be

assessed using partial dependence (PD) plots (Friedman, 2001) or individual conditional expecta-
tion (ICE) plots (Goldstein et al., 2014). These methods are model-agnostic and can be applied to


https://arxiv.org/abs/1805.04755
https://arxiv.org/abs/1904.03959
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any supervised learning algorithm. By default, relative "flatness" is defined by computing the stan-
dard deviation of the y-axis values for each feature effect plot for numeric features; for categorical
features, the default is to use range divided by 4. This can be changed via the var_continuous and
var_categorical arguments. See Greenwell et al. (2018) for details and additional examples.

Value

A tidy data frame (i.e., a tibble object) with two columns:

* Variable - the corresponding feature name;

* Importance - the associated importance, computed as described in Greenwell et al. (2018).

Note

This approach can provide misleading results in the presence of interaction effects (akin to inter-
preting main effect coefficients in a linear with higher level interaction effects).

References

J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics,
29: 1189-1232, 2001.

Goldstein, A., Kapelner, A., Bleich, J., and Pitkin, E., Peeking Inside the Black Box: Visualizing
Statistical Learning With Plots of Individual Conditional Expectation. (2014) Journal of Computa-
tional and Graphical Statistics, 24(1): 44-65, 2015.

Greenwell, B. M., Boehmke, B. C., and McCarthy, A. J. A Simple and Effective Model-Based
Variable Importance Measure. arXiv preprint arXiv:1805.04755 (2018).

Scholbeck, C. A. Scholbeck, and Molnar, C., and Heumann C., and Bischl, B., and Casalicchio, G.
Sampling, Intervention, Prediction, Aggregation: A Generalized Framework for Model-Agnostic
Interpretations. arXiv preprint arXiv:1904.03959 (2019).

Examples

## Not run:

#

# A projection pursuit regression example
#

# Load the sample data
data(mtcars)

# Fit a projection pursuit regression model
mtcars.ppr <- ppr(mpg ~ ., data = mtcars, nterms = 1)

# Compute variable importance scores using the FIRM method; note that the pdp
# package knows how to work with a "ppr"” object, so there's no need to pass
# the training data or a prediction wrapper, but it's good practice.
vi_firm(mtcars.ppr, train = mtcars)

# For unsopported models, need to define a prediction wrapper; this approach
# will work for ANY model (supported or unsupported, so better to just always


https://arxiv.org/abs/1805.04755
https://arxiv.org/abs/1805.04755
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# define it pass it)

pfun <- function(object, newdata) {
# To use partial dependence, this function needs to return the AVERAGE
# prediction (for ICE, simply omit the averaging step)
mean(predict(object, newdata = newdata))

3
# Equivalent to the previous results (but would work if this type of model
# was not explicitly supported)

vi_firm(mtcars.ppr, pred.fun = pfun, train = mtcars)

# Equivalent VI scores, but the output is sorted by default
vi(mtcars.ppr, method = "firm")

# Use MAD to estimate variability of the partial dependence values
vi_firm(mtcars.ppr, var_continuous = stats::mad)

# Plot VI scores
vip(mtcars.ppr, method = "firm”, train = mtcars, pred.fun = pfun)

## End(Not run)

vi_model Model-specific variable importance

Description

Compute model-specific variable importance scores for the predictors in a fitted model.
Usage
vi_model (object, ...)

## Default S3 method:
vi_model (object, ...)

## S3 method for class 'C5.0'
vi_model (object, type = c("usage", "splits"), ...)

## S3 method for class 'train'
vi_model(object, ...)

## S3 method for class 'cubist'
vi_model (object, ...)

## S3 method for class 'earth'

vi_model (object, type = c("nsubsets”, "rss”, "gcv"), ...)

## S3 method for class 'gbm'
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vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for

type = c("relative.influence”, "permutation”),

class 'glmnet'
lambda = NULL, ...)

class 'cv.glmnet'
lambda = NULL, ...)

class 'H20BinomialModel'

)

class 'H20MultinomialModel'
)

class 'H20RegressionModel'

)

class 'lgb.Booster'
type = c("gain"”, "cover”, "frequency"), ...)

class 'mixo_pls'
ncomp = NULL, ...)

class 'mixo_spls'
ncomp = NULL, ...)

class 'WrappedModel'

L)
class 'Learner'
L)
class 'nn'
type = c("olden”, "garson"), ...)

class 'nnet'
type = c("olden”, "garson"), ...)

class 'RandomForest'
type = c("accuracy”, "auc"), ...)

class 'constparty'

)

class 'cforest'

)

class 'mvr'

vi_model
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vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for
vi_model (object,

## S3 method for

.2

class 'mixo_pls'
ncomp = NULL, ...)

class 'mixo_spls'
ncomp = NULL, ...)

class 'WrappedModel'

L)
class 'Learner'
)
class 'randomForest'
L)
class 'ranger'
L)
class 'rpart'
.2)
class 'mlp'

type = c("olden”, "garson”),

class 'ml_model_decision_tree_regression'

.2

class 'ml_model_decision_tree_classification'

)

class 'ml_model_gbt_regression'

.2

class 'ml_model_gbt_classification'

)

class 'ml_model_generalized_linear_regression'

.2

class 'ml_model_linear_regression'

)

class 'ml_model_random_forest_regression’

)

class 'ml_model_random_forest_classification’

)

15
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vi_model (object, ...)
## S3 method for class 'lm'
vi_model (object, type = c("stat”, "raw"), ...)
## S3 method for class 'model_fit'
vi_model(object, ...)
## S3 method for class 'workflow'
vi_model (object, ...)
## S3 method for class 'xgb.Booster'
vi_model (object, type = c("gain", "cover"”, "frequency"), ...)
Arguments
object A fitted model object (e.g., a randomForest object). See the details section below

to see how variable importance is computed for supported model types.

Additional optional arguments to be passed on to other methods. See the details
section below for arguments that can be passed to specific object types.

type Character string specifying the type of variable importance to return (only used
for some models). See the details section below for which methods this argu-
ment applies to.

lambda Numeric value for the penalty parameter of a glmnet model (this is equivalent to
the s argument in coef.glmnet). See the section on glmnet in the details below.

ncomp An integer for the number of partial least squares components to be used in the
importance calculations. If more components are requested than were used in
the model, all of the model’s components are used.

Details

Computes model-specific variable importance scores depending on the class of object:

C5.0 - Variable importance is measured by determining the percentage of training set samples
that fall into all the terminal nodes after the split. For example, the predictor in the first split
automatically has an importance measurement of 100 percent since all samples are affected
by this split. Other predictors may be used frequently in splits, but if the terminal nodes cover
only a handful of training set samples, the importance scores may be close to zero. The same
strategy is applied to rule-based models and boosted versions of the model. The underlying
function can also return the number of times each predictor was involved in a split by using
the option metric = "usage". See C5imp for details.

cubist - The Cubist output contains variable usage statistics. It gives the percentage of times
where each variable was used in a condition and/or a linear model. Note that this output will
probably be inconsistent with the rules shown in the output from summary.cubist. At each
split of the tree, Cubist saves a linear model (after feature selection) that is allowed to have
terms for each variable used in the current split or any split above it. Quinlan (1992) discusses
a smoothing algorithm where each model prediction is a linear combination of the parent and
child model along the tree. As such, the final prediction is a function of all the linear models
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from the initial node to the terminal node. The percentages shown in the Cubist output reflects
all the models involved in prediction (as opposed to the terminal models shown in the output).
The variable importance used here is a linear combination of the usage in the rule conditions
and the model. See summary.cubist and varImp for details.

» glmnet - Similar to (generalized) linear models, the absolute value of the coefficients are re-
turned for a specific model. It is important that the features (and hence, the estimated co-
efficients) be standardized prior to fitting the model. You can specify which coefficients to
return by passing the specific value of the penalty parameter via the 1ambda argument (this is
equivalent to the s argument in coef.glmnet). By default, 1ambda = NULL and the coefficients
corresponding to the final penalty value in the sequence are returned; in other words, you
should ALWAYS SPECIFY lambda! For cv.glmnet objects, the largest value of lambda such
that the error is within one standard error of the minimum is used by default. For a multinomial
response, the coefficients corresponding to the first class are used; that is, the first component
of coef.glmnet.

* cforest - Variable importance is measured in a way similar to those computed by importance.
Besides the standard version, a conditional version is available that adjusts for correlations
between predictor variables. If conditional = TRUE, the importance of each variable is com-
puted by permuting within a grid defined by the predictors that are associated (with 1 - p-value
greater than threshold) to the variable of interest. The resulting variable importance score is
conditional in the sense of beta coefficients in regression models, but represents the effect of
a variable in both main effects and interactions. See Strobl et al. (2008) for details. Note,
however, that all random forest results are subject to random variation. Thus, before inter-
preting the importance ranking, check whether the same ranking is achieved with a different
random seed - or otherwise increase the number of trees ntree in ctree_control. Note that in
the presence of missings in the predictor variables the procedure described in Hapfelmeier et
al. (2012) is performed. See varimp for details.

« earth - The earth package uses three criteria for estimating the variable importance in a MARS
model (see evimp for details):

— The nsubsets criterion (type = "nsubsets”) counts the number of model subsets that
include each feature. Variables that are included in more subsets are considered more
important. This is the criterion used by summary.earth to print variable importance. By
"subsets" we mean the subsets of terms generated by earth()’s backward pass. There
is one subset for each model size (from one to the size of the selected model) and the
subset is the best set of terms for that model size. (These subsets are specified in the
$prune. terms component of earth()’s return value.) Only subsets that are smaller than
or equal in size to the final model are used for estimating variable importance. This is the
default method used by vi_model.

— The rss criterion (type = "rss") first calculates the decrease in the RSS for each subset
relative to the previous subset during earth()’s backward pass. (For multiple response
models, RSS’s are calculated over all responses.) Then for each variable it sums these
decreases over all subsets that include the variable. Finally, for ease of interpretation the
summed decreases are scaled so the largest summed decrease is 100. Variables which
cause larger net decreases in the RSS are considered more important.

— The gcv criterion (type = "gcv") is similar to the rss approach, but uses the GCV statis-
tic instead of the RSS. Note that adding a variable can sometimes increase the GCV.
(Adding the variable has a deleterious effect on the model, as measured in terms of its es-
timated predictive power on unseen data.) If that happens often enough, the variable can
have a negative total importance, and thus appear less important than unused variables.
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e gbm - Variable importance is computed using one of two approaches (See summary.gbm for
details):

— The standard approach (type = "relative.influence") described in Friedman (2001).
When distribution = "gaussian” this returns the reduction of squared error attributable
to each variable. For other loss functions this returns the reduction attributable to each
variable in sum of squared error in predicting the gradient on each iteration. It describes
the relative influence of each variable in reducing the loss function. This is the default
method used by vi_model.

— An experimental permutation-based approach (type = "permutation”). This method
randomly permutes each predictor variable at a time and computes the associated reduc-
tion in predictive performance. This is similar to the variable importance measures Leo
Breiman uses for random forests, but gbm currently computes using the entire training
dataset (not the out-of-bag observations).

* H20OModel - See h2o.varimp or visithttps: //docs.h20.ai/h2o/latest-stable/h20-docs/
variable-importance.html for details.

* nnet - Two popular methods for constructing variable importance scores with neural networks
are the Garson algorithm (Garson 1991), later modified by Goh (1995), and the Olden al-
gorithm (Olden et al. 2004). For both algorithms, the basis of these importance scores is
the network’s connection weights. The Garson algorithm determines variable importance by
identifying all weighted connections between the nodes of interest. Olden’s algorithm, on the
other hand, uses the product of the raw connection weights between each input and output
neuron and sums the product across all hidden neurons. This has been shown to outperform
the Garson method in various simulations. For DNNs, a similar method due to Gedeon (1997)
considers the weights connecting the input features to the first two hidden layers (for simplic-
ity and speed); but this method can be slow for large networks.. To implement the Olden and
Garson algorithms, use type = "olden” and type = "garson”, respectively. See garson and
olden for details.

* Im/glm - In (generalized) linear models, variable importance is typically based on the absolute
value of the corresponding #-statistics (Bring, 1994). For such models, the sign of the original
coefficient is also returned. By default, type = "stat" is used; however, if the inputs have
been appropriately standardized then the raw coefficients can be used with type = "raw”.
Note that Bring (1994) provides motivation for using the absolute value of the associated
t-statistics.

e sparklyr - The Spark ML library provides standard variable importance measures for tree-
based methods (e.g., random forests). See ml_feature_importances for details.

» randomForest Random forests typically provide two measures of variable importance.

— The first measure is computed from permuting out-of-bag (OOB) data: for each tree, the
prediction error on the OOB portion of the data is recorded (error rate for classification
and MSE for regression). Then the same is done after permuting each predictor vari-
able. The difference between the two are then averaged over all trees in the forest, and
normalized by the standard deviation of the differences. If the standard deviation of the
differences is equal to O for a variable, the division is not done (but the average is almost
always equal to 0 in that case).

— The second measure is the total decrease in node impurities from splitting on the variable,
averaged over all trees. For classification, the node impurity is measured by the Gini
index. For regression, it is measured by residual sum of squares.


https://docs.h2o.ai/h2o/latest-stable/h2o-docs/variable-importance.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/variable-importance.html
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See importance for details, including additional arguments that can be passed via the ...
argument in vi_model.

* cforest - Same approach described in cforest (from package partykit) above. See varimp and
varimpAUC (if type = "auc") for details.

 ranger - Variable importance for ranger objects is computed in the usual way for random
forests. The approach used depends on the importance argument provided in the initial call
to ranger. See importance for details.

* rpart - As stated in one of the rpart vignettes. A variable may appear in the tree many times,
either as a primary or a surrogate variable. An overall measure of variable importance is the
sum of the goodness of split measures for each split for which it was the primary variable,
plus "goodness" * (adjusted agreement) for all splits in which it was a surrogate. Imagine
two variables which were essentially duplicates of each other; if we did not count surrogates,
they would split the importance with neither showing up as strongly as it should. See rpart for
details.

e caret - Various model-specific and model-agnostic approaches that depend on the learning
algorithm employed in the original call to caret. See varlmp for details.

* xgboost - For linear models, the variable importance is the absolute magnitude of the estimated
coefficients. For that reason, in order to obtain a meaningful ranking by importance for a
linear model, the features need to be on the same scale (which you also would want to do
when using either L1 or L2 regularization). Otherwise, the approach described in Friedman
(2001) for gbms is used. See xgb.importance for details. For tree models, you can obtain three
different types of variable importance:

— Using type = "gain” (the default) gives the fractional contribution of each feature to the
model based on the total gain of the corresponding feature’s splits.

— Using type = "cover" gives the number of observations related to each feature.

— Using type = "frequency” gives the percentages representing the relative number of
times each feature has been used throughout each tree in the ensemble.

* lightgbm - Same as for xgboost models, except Igb.importance (which this method calls in-
ternally) has an additional argument, percentage, that defaults to TRUE, resulting in the VI
scores shown as a relative percentage; pass percentage = FALSE in the call to vi_model () to
produce VI scores for lightgbm models on the raw scale.

Value
A tidy data frame (i.e., a tibble object) with two columns:
* Variable - the corresponding feature name;

* Importance - the associated importance, computed as the average change in performance
after a random permutation (or permutations, if nsim > 1) of the feature in question.

For Im/glm-like objects, the sign (i.e., POS/NEG) of the original coefficient is also included in a
column called Sign.

Note

Inspired by the caret’s varlmp function.


https://cran.r-project.org/package=caret
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Source

Johan Bring (1994) How to Standardize Regression Coefficients, The American Statistician, 48:3,
209-213, DOI: 10.1080/00031305.1994.10476059.

Examples

## Not run:
# Basic example using imputed titanic data set
t3 <- titanic_mice[[1L]]

# Fit a simple model
set.seed(1449) # for reproducibility
bst <- lightgbm::1lightgbm(

data = data.matrix(subset(t3, select = -survived)),

label = ifelse(t3$survived == "yes”, 1, @),

params = list("objective" = "binary"”, "force_row_wise” = TRUE),
verbose = 0

)

# Compute VI scores
vi(bst) # defaults to ‘method = "model”*
vi_model(bst) # same as above

# Same as above (since default is ‘method = "model”‘), but returns a plot
vip(bst, geom = "point")

vi_model(bst, type = "cover")

vi_model(bst, type = "cover"”, percentage = FALSE)

# Compare to
lightgbm::1gb.importance(bst)

## End(Not run)

vi_permute Permutation-based variable importance

Description
Compute permutation-based variable importance scores for the predictors in a model; for details on
the algorithm, see Greenwell and Boehmke (2020).
Usage
vi_permute(object, ...)
## Default S3 method:

vi_permute(
object,
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feature_names = NULL,
train = NULL,

target = NULL,

metric = NULL,
smaller_is_better = NULL,

type = c("difference”, "ratio"),
nsim = 1,
keep = TRUE,

sample_size = NULL,
sample_frac = NULL,
reference_class = NULL,
event_level = NULL,
pred_wrapper = NULL,
verbose = FALSE,
parallel = FALSE,

parallelize_by = c("features”, "repetitions"),
)
Arguments
object A fitted model object (e.g., a randomForest object).

Additional optional arguments to be passed on to foreach (e.g., . packages or
.export).

feature_names Character string giving the names of the predictor variables (i.e., features) of in-
terest. If NULL (the default) then they will be inferred from the train and target
arguments (see below). It is good practice to always specify this argument.

train A matrix-like R object (e.g., a data frame or matrix) containing the training data.
If NULL (the default) then the internal get_training_data() function will be
called to try and extract it automatically. It is good practice to always specify
this argument.

target Either a character string giving the name (or position) of the target column in
train or, if train only contains feature columns, a vector containing the target
values used to train object.

metric Either a function or character string specifying the performance metric to use
in computing model performance (e.g., RMSE for regression or accuracy for
binary classification). If metric is a function, then it requires two arguments,
actual and predicted, and should return a single, numeric value. Ideally, this
should be the same metric that was used to train object. See list_metrics()

for a list of built-in metrics.
smaller_is_better

Logical indicating whether or not a smaller value of metric is better. Default is
NULL. Must be supplied if metric is a user-supplied function.
type Character string specifying how to compare the baseline and permuted perfor-
mance metrics. Current options are "difference” (the default) and "ratio”.
nsim Integer specifying the number of Monte Carlo replications to perform. Default
is 1. If nsim > 1, the results from each replication are simply averaged together
(the standard deviation will also be returned).
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keep Logical indicating whether or not to keep the individual permutation scores for
all nsimrepetitions. If TRUE (the default) then the individual variable importance
scores will be stored in an attribute called "raw_scores”. (Only used when
nsim>1.)

sample_size Integer specifying the size of the random sample to use for each Monte Carlo
repetition. Default is NULL (i.e., use all of the available training data). Cannot
be specified with sample_frac. Can be used to reduce computation time with
large data sets.

sample_frac Proportion specifying the size of the random sample to use for each Monte Carlo
repetition. Default is NULL (i.e., use all of the available training data). Cannot
be specified with sample_size. Can be used to reduce computation time with
large data sets.

reference_class
Deprecated, use event_level instead.

event_level String specifying which factor level of truth to consider as the "event". Options
are "first"” (the default) or "second”. This argument is only applicable for bi-

nary classification when metric is one of "roc_auc”, "pr_auc”, or "youden".
This argument is passed on to the corresponding yardstick metric.

pred_wrapper Prediction function that requires two arguments, object and newdata. The
output of this function should be determined by the metric being used:

* Regression - A numeric vector of predicted outcomes.

* Binary classification - A vector of predicted class labels (e.g., if using mis-
classification error) or a vector of predicted class probabilities for the refer-
ence class (e.g., if using log loss or AUC).

* Multiclass classification - A vector of predicted class labels (e.g., if using
misclassification error) or a A matrix/data frame of predicted class proba-
bilities for each class (e.g., if using log loss or AUC).

verbose Logical indicating whether or not to print information during the construction
of variable importance scores. Default is FALSE.

parallel Logical indicating whether or not to run vi_permute() in parallel (using a
backend provided by the foreach package). Default is FALSE. If TRUE, a fore-
ach-compatible backend must be provided by must be provided. Note that
set.seed() will not not work with foreach’s parellelized for loops; for a workaround,
see this solution.

parallelize_by Character string specifying whether to parallelize across features (parallelize_by
= "features") or repetitions (parallelize_by = "reps”); the latter is only
useful whenever nsim > 1. Default is "features”.

Value

A tidy data frame (i.e., a tibble object) with two columns:

* Variable - the corresponding feature name;

* Importance - the associated importance, computed as the average change in performance
after a random permutation (or permutations, if nsim > 1) of the feature in question.


https://github.com/koalaverse/vip/issues/145
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If nsim > 1, then an additional column (StDev) containing the standard deviation of the individual
permutation scores for each feature is also returned; this helps assess the stability/variation of the
individual permutation importance for each feature.

References

Brandon M. Greenwell and Bradley C. Boehmke, The R Journal (2020) 12:1, pages 343-366.

Examples

## Not run:

#

# Regression example
#

library(ranger) # for fitting random forests

# Simulate data from Friedman 1 benchmark; only x1-x5 are important!
trn <- gen_friedman(500, seed = 101) # ?vip::gen_friedman

# Prediction wrapper

pfun <- function(object, newdata) {
# Needs to return vector of predictions from a ranger object; see
# ‘ranger::predcit.ranger® for details on making predictions
predict(object, data = newdata)$predictions

3

# Fit a (default) random forest
set.seed(0803) # for reproducibility
rfo <- ranger(y ~ ., data = trn)

# Compute permutation-based VI scores

set.seed(2021) # for reproducibility

vis <- vi(rfo, method = "permute"”, target = "y", metric = "rsq",
pred_wrapper = pfun, train = trn)

print(vis)

# Same as above, but using ‘vi_permute()‘ directly
set.seed(2021) # for reproducibility

vi_permute(rfo, target = "y", metric = "rsq", pred_wrapper = pfun
train = trn)

# Plot VI scores (could also replace ‘vi()‘ with ‘vip()‘ in above example)
vip(vis, include_type = TRUE)

# Mean absolute error
mae <- function(truth, estimate) {
mean(abs(truth - estimate))

}

# Permutation-based VIP with user-defined MAE metric
set.seed(1101) # for reproducibility
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non

vi_permute(rfo, target = "y", metric = mae, smaller_is_better = TRUE,
pred_wrapper = pfun, train = trn)

# Same as above, but using ‘yardstick‘ package instead of user-defined metric
set.seed(1101) # for reproducibility

vi_permute(rfo, target = "y", metric = yardstick::mae_vec,
smaller_is_better = TRUE, pred_wrapper = pfun, train = trn)

#
# Classification (binary) example
#

library(randomForest) # another package for fitting random forests

# Complete (i.e., imputed version of titanic data); see ‘“?vip::titanic_mice"
head(t1 <- titanic_mice[[1L]])
t1$pclass <- as.ordered(ti$pclass) # makes more sense as an ordered factor

# Fit another (default) random forest
set.seed(2053) # for reproducibility
(rfo2 <- randomForest(survived ~ ., data = t1))

# Define prediction wrapper for predicting class labels from a
# "randomForest"” object
pfun_class <- function(object, newdata) {

# Needs to return factor of classifications

predict(object, newdata = newdata, type = "response")

}

# Sanity check
pfun_class(rfo2, newdata =
#H1 2 3 4 5 6
## yes yes yes no yes no
## Levels: no yes

head(t1))

# Compute mean decrease in accuracy
set.seed(1359) # for reproducibility

vi(rfo2,
method = "permute”,
train = t1,
target = "survived”,
metric = "accuracy”, # or pass in ‘yardstick::accuracy_vec' directly

# smaller_is_better = FALSE, # no need to set for built-in metrics
pred_wrapper = pfun_class,
nsim = 30 # use 30 repetitions

## # A tibble: 5 x 3
##  Variable Importance  StDev

##  <chr> <dbl> <dbl>
## 1 sex 0.228 0.0110

## 2 pclass 0.0825 0.00505
## 3 age 0.0721 0.00557
## 4 sibsp 0.0346 0.00430

vi_permute
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## 5 parch 0.0183 0.00236

# Define prediction wrapper for predicting class probabilities from a

# "randomForest” object

pfun_prob <- function(object, newdata) {
# Needs to return vector of class probabilities for event level of interest
predict(object, newdata = newdata, type = "prob")[, "yes"]

3

# Sanity check

pfun_prob(rfo2, newdata = head(t1)) # estiated P(survived=yes | x)
## 1 2 3 4 5 6

#i# 0.990 0.864 0.486 0.282 0.630 0.078

# Compute mean increase in Brier score
set.seed(1411) # for reproducibility

vi(rfo2,
method = "permute”,
train = t1,
target = "survived”,

metric = yardstick::brier_class_vec, # or pass in ‘"brier”‘ directly
smaller_is_better = FALSE, # need to set when supplying a function
pred_wrapper = pfun_prob,

nsim = 30 # use 30 repetitions

## # A tibble: 5 x 3
## Variable Importance  StDev

##  <chr> <dbl> <dbl>

## 1 sex 0.210 0.00869

## 2 pclass 0.0992 0.00462

## 3 age 0.0970 0.00469

## 4 parch 0.0547 0.00273

## 5 sibsp 0.0422 0.00200

# Some metrics, like AUROC, treat one class as the "event” of interest. In
# such cases, it's important to make sure the event level (which typically
# defaults to which ever event class comes first in alphabetical order)

# matches the event class that corresponds to the prediction wrappers

# returned probabilities. To do this, you can (and should) set the

# ‘event_class' argument. For instance, our prediction wrapper specified

# “survived = "yes"‘ as the event of interest, but this is considered the
# second event:

levels(t1$survived)
## [1] ”I’]O” ”yes”

# So, we need to specify the second class as the event of interest via the
# “event_level‘ argument (otherwise, we would get the negative of the results
# we were hoping for; a telltale sign the event level and prediction wrapper
do not match)
set.seed(1413) # for reproducibility
vi(rfo,

method = "permute”,
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train = t1,
target = "survived”,
metric = "roc_auc”,
event_level = "second”, # use "yes" as class label/"event” of interest
pred_wrapper = pfun_prob,
nsim = 30 # use 30 repetitions
)
## # A tibble: 5 x 3
## Variable Importance  StDev
##  <chr> <dbl> <dbl>
## 1 sex 0.229 0.0137
## 2 pclass 0.0920 0.00533
## 3 age 0.0850 0.00477
## 4 sibsp 0.0283 0.00211
## 5 parch 0.0251 0.00351
## End(Not run)
vi_shap SHAP-based variable importance
Description

Compute SHAP-based VI scores for the predictors in a model. See details below.

Usage

vi_shap(object, ...)

## Default S3 method:

vi_shap(object, feature_names = NULL, train = NULL, ...)
Arguments
object A fitted model object (e.g., a randomForest object).

feature_names

train

Additional arguments to be passed on to fastshap::explain() (e.g., nsim=
30, adjust = TRUE, or avprediction wrapper via the pred_wrapper argument);
see ?fastshap: :explain for details on these and other useful arguments.

Character string giving the names of the predictor variables (i.e., features) of in-

terest. If NULL (the default) then they will be inferred from the train and target
arguments (see below). It is good practice to always specify this argument.

A matrix-like R object (e.g., a data frame or matrix) containing the training data.

If NULL (the default) then the internal get_training_data() function will be
called to try and extract it automatically. It is good practice to always specify

this argument.
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Details

This approach to computing VI scores is based on the mean absolute value of the SHAP values for
each feature; see, for example, https://github.com/shap/shap and the references therein.

Strumbelj, E., and Kononenko, I. Explaining prediction models and individual predictions with
feature contributions. Knowledge and information systems 41.3 (2014): 647-665.

Value

A tidy data frame (i.e., a tibble object) with two columns:

* Variable - the corresponding feature name;

* Importance - the associated importance, computed as the mean absolute Shapley value.

Examples

## Not run:
library(ggplot2) # for theme_light() function
library(xgboost)

# Simulate training data
trn <- gen_friedman(500, sigma = 1, seed = 101) # ?vip::gen_friedman

# Feature matrix
X <- data.matrix(subset(trn, select = -y)) # matrix of feature values

# Fit an XGBoost model; hyperparameters were tuned using 5-fold CV

set.seed(859) # for reproducibility

bst <- xgboost(X, label = trn$y, nrounds = 338, max_depth = 3, eta = 0.1,
verbose = 0)

# Construct VIP using "exact” SHAP values from XGBoost's internal Tree SHAP
# functionality
vip(bst, method = "shap”, train = X, exact = TRUE, include_type = TRUE,
geom = "point"”, horizontal = FALSE,
aesthetics = list(color = "forestgreen”, shape = 17, size = 5)) +
theme_light()

# Use Monte-Carlo approach, which works for any model; requires prediction
# wrapper
pfun_prob <- function(object, newdata) { # prediction wrapper
# For Shapley explanations, this should ALWAYS return a numeric vector
predict(object, newdata = newdata, type = "prob")[, "yes"]
3

# Compute Shapley-based VI scores

set.seed(853) # for reproducibility

vi_shap(rfo, train = subset(tl, select = -survived), pred_wrapper = pfun_prob,
nsim = 30)

## # A tibble: 5 x 2

## Variable Importance

##  <chr> <dbl>


https://github.com/shap/shap
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## 1 pclass
## 2 age
## 3 sex

## 4 sibsp
## 5 parch

## End(Not run)

0.104
0.0649
0.272
0.0260
0.0291

vi_shap
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