
Package ‘votesys’
October 12, 2022

Type Package

Title Voting Systems, Instant-Runoff Voting, Borda Method, Various
Condorcet Methods

Version 0.1.1

Date 2018-04-20

Maintainer Jiang Wu <textidea@sina.com>

Description Various methods to count ballots in voting systems are provided.
Functions to check validity of ballots are also provided to ensure flexibility.

License GPL-3

Depends R (>= 3.3.0)

Imports data.table, gtools, Matrix

Encoding UTF-8

LazyLoad true

LazyData true

RoxygenNote 6.0.1

NeedsCompilation no

Author Jiang Wu [aut, cre] (from Capital Normal University)

Repository CRAN

Date/Publication 2018-04-20 09:56:40 UTC

R topics documented:
votesys-package . 2
approval_method . 3
as_complete . 4
borda_method . 5
cdc_copeland . 7
cdc_dodgson . 8
cdc_kemenyyoung . 10
cdc_minmax . 11

1

2 votesys-package

cdc_rankedpairs . 13
cdc_schulze . 15
cdc_simple . 16
check_dup_wrong . 17
create_vote . 19
dowdall_method . 21
irv_method . 22
list2ballot . 24
plurality_method . 25
star_rating . 26

Index 28

votesys-package Voting Systems, Instant-Runoff Voting, Borda Method, Various Con-
dorcet Methods

Description

This package provides different methods for counting ballots, which can be used in election, deci-
sion making and evaluation. The basic idea is: different forms of ballots can all be transformed into
a score matrix; then the score matrix can be put into different counting methods. The functions in
this package provide more flexibility to deal with duplicated values (ties) and missing values. And
the comparison of results of different methods is also made easy.

Author(s)

Jiang Wu

Examples

Suppose we have the following ballot data
raw <- list2ballot(

x = list(
c('m', 'n', 'c', 'k'), c('n', 'c', 'k', 'm'),
c('c', 'k', 'n', 'm'), c('k', 'c', 'n', 'm'), c(NA, NA, NA, NA)

) ,
n = c(42, 26, 15, 17, 3)

)

Step 1: check validity of ballots. Delete
some of them, if needed.
check_validity <- check_dup_wrong(raw,

xtype = 3,
candidate = c("m", "n", "k", "c")

)
raw <- raw[- check_validity$row_all_na]

Step 2: create a vote object
vote <- create_vote(raw, xtype = 3, candidate = c("m", "n", "k", "c"))

approval_method 3

Step 3: use one or more methods
y <- plurality_method(vote) # winner is m
y <- irv_method(vote) # winner is k
y <- cdc_simple(vote) # winner is n
y <- cdc_rankedpairs(vote) # winner is n

approval_method Approval Method

Description

In approval method, each voter is required to mention one or more candidates, and the winner is the
one who gets the top frequency. For this function, a ballot with candidates more than required and
different scores is also valid. For a score matrix, the function will check the positions j, k...which
have the lowest scores (in a vote object, the lower, the better) in the ith row. However, the function
will first check the approval_able element of the vote object. If it is FALSE, the winner will be
NULL.

Usage

approval_method(x, min_valid = 1, n)

Arguments

x an object of class vote.

min_valid default is 1. If the number of valid entries of a ballot is less than this value, the
ballot will not be used.

n the number of candidates written down by a voter should not larger than this
value.

Value

a list object.

• (1) call the function call.

• (2) method the counting method.

• (3) candidate candidate names.

• (4) candidate_num number of candidate.

• (5) ballot_num number of ballots in x.

• (6) valid_ballot_num number of ballots that are used to compute the result.

• (7) winner the winners, may be one, more than one or NULL.

• (8) n equal to the argument n.

• (9) other_info frequencies of candidates mentioned by voters.

4 as_complete

Examples

raw <- matrix(NA, nrow = 22, ncol = 5)
for (i in 1: 20){

set.seed(i)
raw[i,] <- sample(c(1: 5, NA, NA, NA), 5)

}
raw[21,] <- c(4, 5, 3, 1, 2)
raw[22,] <- c(3, 5, 1, 2, 4)
vote <- create_vote(raw, xtype = 1)
y <- approval_method(vote, n = 3)
y <- approval_method(vote, n = 3, min_valid = 5)
y <- approval_method(vote, n = 4, min_valid = 3)

as_complete Convert Incomplete ranking/rating matrix into full matrix

Description

This function deals with incomplete ranking and rating matrix (e. g., created by create_vote and
stored in $ballot), so as to convert it into full ranking and rating. In each row of the score matrix,
the smallest value represents the most preferred and the biggest value represents the most hated.
For the methods used by this function, see Details. See Examples for how to modify an object of
class vote created with incomplete data.

Usage

as_complete(x, method = c("valid", "max", "len"), plus = 0, n = NULL)

Arguments

x the score matrix, should be a matrix, data.frame, or data.table.
method see Details, default is "valid".
plus see Details, default is 0.
n see Details, default is 0.

Details

Three methods are used and you should choose according to your need.

• (1) "valid": the default method. For the vector c(3, 1, 2, 2, NA, NA), as there should be
6 values but only 4 are given, 4 is the valid number, and the NAs will be converted to 4.
However, if the argument plus is a value other than 0, than NAs will be equal to the valid
number plus that value. For example, if plus = 10, the NAs will be 14 (4 + 10).

• (2) "max": the maximum value in each row plus the value given by plus. So for c(3, 1, 2,
2, NA, NA), and plus = 0, NAs will be 3 (3 + 0).

• (3) "len": In the case of topKlist, interviewees may, for example, choose 4 or 5 items from a
20-item list. When the method is "len", use n to indicate the total number of items or any other
number. The default value of n is ncol(x), which is equivalent to the way create_vote used
to convert NAs so as to calculate the Condorcet matrix.

borda_method 5

Value

Always a matrix. NAs are converted to numbers. However, if all entries in a row of the input data
are NAs, then that row will NOT be modified. NOTE: the order of the returned matrix (the 1st row,
the 2nd row, the 3rd row, etc) is DIFFERENT from the input data.

Examples

raw <- list2ballot(string = c("1: a, b, c", "2: b, c", "3: a, b"))
vote <- create_vote(raw, xtype = 3, candidate = c("a", "b", "c"))
ballot <- as_complete(vote$ballot, method = "max", plus = 5)
ballot <- as_complete(vote$ballot, method = "len", n = 10)
Now re-create the vote object
vote <- create_vote(ballot, xtype = 1)

m <- matrix(c(
1, 2, 3, NA, NA, NA,
1, 1.1, 2.2, 8.8, NA, NA,
1, 1.1, 2.2, 8.8, NA, NA,
1, 1.1, 2.2, 8.8, NA, NA,
1, 1.1, 2.2, 8.8, NA, NA,
NA, NA, NA, NA, NA, NA,
3, 2, NA, NA, NA, NA,
3, 2, NA, NA,NA,NA,
1, 2, 3, 4, 5, 6), ncol = 6, byrow = TRUE)

colnames(m) <- LETTERS[1: 6]
y <- as_complete(m, method = "valid", plus = 30)

borda_method Borda Count Method

Description

Both ordinary Borda method and modified Borda method are available. In an ordinary Borda sys-
tem, voters are required to assign score values to candidates. See Details.

Usage

borda_method(x, allow_dup = TRUE, min_valid = 1, modified = FALSE)

Arguments

x an object of class vote.

allow_dup whether ballots with duplicated score values are taken into account. Default is
TRUE.

min_valid default is 1. If the number of valid entries of a ballot is less than this value, the
ballot will not be used.

modified if the modified Borda is to be used. Default is FALSE.

6 borda_method

Details

Suppose there are 5 candidates. A voter’s 1st choice gets 1 point, the 2nd choice gets 2 points...
Candidate with the smallest total score wins. The function does not require voters to assign scores
to all candidates, for NAs are automatically assigned the highest (worst) score. Duplicated values
(two or more candidates share the same score) are also allowed (note: NAs and ties may not be
allowed in real ballots).

In modified Borda, the rule changes. Suppose there are 5 candidates. A voter writes down 5
candidates and his 1st choice gets 5 points. The one who gets the largest total score wins. However,
if the voter only write down 2 names, then, his 1st choice gets only 2 points rather than 5 points.
Thus the modified Borda encourages voters to write down more names. Besides, in modified Borda,
only the ranks of true scores, rather than the true scores themselves, are used. If the raw data is a list
each ballot of which contains candidate names, scores can also be extracted, that is, the 1st position
is the 1st choice which gets 1 point, the 2nd position, 2 points, and so on.

Value

a list object.

• (1) call the function call.

• (2) method the counting method.

• (3) candidate candidate names.

• (4) candidate_num number of candidate.

• (5) ballot_num number of ballots in x.

• (6) valid_ballot_num number of ballots that are used to compute the result.

• (7) winner the winners.

• (8) modified whether the modified Borda is used.

• (9) other_info a list with 2 elements, if modified is FALSE, then count_min records the
total scores, count_max is NULL; if modified is TRUE, the vice versa.

Examples

raw <- c(
rep(c('m', 'n', 'c', 'k'), 42),
rep(c('n', 'c', 'k', 'm'), 26),
rep(c('c', 'k', 'n', 'm'), 15),
rep(c('k', 'c', 'n', 'm'), 17)

)
raw <- matrix(raw, ncol = 4, byrow = TRUE)
vote <- create_vote(raw, xtype = 2, candidate = c('m', 'n', 'c', 'k'))
y <- borda_method(vote)

raw <- list(c('a', 'e', 'c', 'd', 'b'), c('b', 'a', 'e'),
c('c', 'd', 'b'), c('d', 'a', 'e')

)
vote <- create_vote(raw, xtype = 3, candidate = c('a', 'b', 'c', 'd', 'e'))
y <- borda_method(vote, modified = TRUE)

cdc_copeland 7

cdc_copeland Copeland Method

Description

Candidates enter into pairwise comparison. if the number of voters who prefer a is larger than the
number of voters who prefer b, then a wins b, a gets 1 point, b gets -1 point. If the numbers are
equal, then both of them gets 0 point. Then, sum up each one’s comparison points. For example, a
wins 3 times, loses 1 time, has equal votes with 2 candidate, his score is 3 * 1 + (-1) * 1 + 0 * 2 =
2. The one gets the most points wins. Essentially, this is a way to solve ties in ordinary Condorcet
method. However, there may be 2 or more winners. The other type of Copeland method is to count
only the times of wins, that is, the loser in pairwise comparison gets 0 point rather than -1 point.

Usage

cdc_copeland(x, allow_dup = TRUE, min_valid = 1, lose = -1)

Arguments

x it accepts the following types of input: 1st, it can be an object of class vote.
2nd, it can be a user-given Condorcet matrix, 3rd, it can be a result of another
Condorcet method, which is of class condorcet.

allow_dup whether ballots with duplicated score values are taken into account. Default is
TRUE.

min_valid default is 1. If the number of valid entries of a ballot is less than this value, it
will not be used.

lose the point the pairwise loser gets, should be -1 (default) or 0.

Value

a condorcet object, which is essentially a list.

• (1) call the function call.

• (2) method the counting method.

• (3) candidate candidate names.

• (4) candidate_num number of candidate.

• (5) ballot_num number of ballots in x. When x is not a vote object, it may be NULL.

• (6) valid_ballot_num number of ballots that are actually used to compute the result. When
x is not a vote object, it may be NULL.

• (7) winner the winners.

• (8) input_object the class of x.

• (9) cdc the Condorcet matrix which is actually used.

• (10) dif the score difference matrix. When x is not a vote object, it may be NULL.

8 cdc_dodgson

• (11) binary win and loss recorded with 1 (win), 0 (equal) and -1 (loss).

• (12) summary_m times of win (1), equal (0) and loss (-1).

• (13) other_info a list with 2 elements, the 1st is the point the loser gets, it is equal to lose.
The 2nd contains the scores.

References

• Merlin, V. & Saari, D. 1996. The Copeland method: I.: Relationships and the dictionary.
Economic Theory, 8(1), 51-76.

Examples

raw <- c(
rep(c('m', 'n', 'c', 'k'), 42), rep(c('n', 'c', 'k', 'm'), 26),
rep(c('c', 'k', 'n', 'm'), 15), rep(c('k', 'c', 'n', 'm'), 17)

)
raw <- matrix(raw, ncol = 4, byrow = TRUE)
vote <- create_vote(raw, xtype = 2, candidate = c('m', 'n', 'k', 'c'))
win1 <- cdc_simple(vote)
win2 <- cdc_copeland(vote) # winner is n
win2 <- cdc_copeland(win1$cdc)
win3 <- cdc_copeland(win2, lose = 0)

cdc_dodgson Dodgson Method

Description

The original Dodgson method checks the number of votes each candidate has to rob from other
candidates; the winner is with the smallest number. However, the function cdc_dodgson uses two
alternative methods rather than the original Dodgson method. The two methods are Tideman score
method and Dodgson Quick method. See Details.

Usage

cdc_dodgson(x, allow_dup = TRUE, min_valid = 1, dq_t = "dq")

Arguments

x it accepts the following types of input: 1st, it can be an object of class vote.
2nd, it can be a user-given Condorcet matrix, 3rd, it can be a result of another
Condorcet method, which is of class condorcet.

allow_dup whether ballots with duplicated score values are taken into account. Default is
TRUE.

min_valid default is 1. If the number of valid entries of a ballot is less than this value, it
will not be used.

dq_t the alternative Dodgson methods to be used. Default is "dq", for Dodgson Quick
method; it can also be "t", Tideman score method.

cdc_dodgson 9

Details

Suppose the candidates are A, B, C and D. If A wins B in pairwise comparison or has equal votes
with B, then add 0 to A. If C wins A, then add to A adv(C, A), that is, the number of voters that
prefer C than A, minus the number of voters that prefer A than A. Again, if D wins A, then add to
A that number. Then, we sum up the points belong to A. We do the same thing to B, C and D. The
one gets the least points is the winner. This is what we do in Tideman score method. In Dodgson
Quick method, we first compute the number of votes, then divide it by 2 and get the ceiling, and
sum all of them up.

Value

a condorcet object, which is essentially a list.

• (1) call the function call.

• (2) method the counting method.

• (3) candidate candidate names.

• (4) candidate_num number of candidate.

• (5) ballot_num number of ballots in x. When x is not a vote object, it may be NULL.

• (6) valid_ballot_num number of ballots that are actually used to compute the result. When
x is not a vote object, it may be NULL.

• (7) winner the winners.

• (8) input_object the class of x.

• (9) cdc the Condorcet matrix which is actually used.

• (10) dif the score difference matrix. When x is not a vote object, it may be NULL.

• (11) binary win and loss recorded with 1 (win), 0 (equal) and -1 (loss).

• (12) summary_m times of win (1), equal (0) and loss (-1).

• (13) other_info a list with four elements. The 1st indicates the method used to compute
score. The 2nd is the score for pairwise comparison (number of votes one has to rob). The 3rd
is Tideman score summary (the smaller the better). The 4th is Dodgson Quick summary (the
smaller the better).

References

• McCabe-Dansted, J. & Slinko, A. 2008. Approximability of Dodgson’s Rule. Social Choice
and Welfare, Feb, 1-26.

Examples

raw <- list2ballot(
x = list(

c('A', 'B', 'C', 'D', 'E', 'F'),
c('F', 'A', 'B', 'C', 'D', 'E'),
c('E', 'D', 'C', 'B', 'F', 'A'),
c('B', 'A', 'C', 'D', 'E', 'F'),
c('F', 'E', 'D', 'C', 'B', 'A'),
c('F', 'B', 'A', 'C', 'D', 'E'),

10 cdc_kemenyyoung

c('E', 'D', 'C', 'A', 'F', 'B'),
c('E', 'B', 'A', 'C', 'D', 'F'),
c('F', 'D', 'C', 'A', 'E', 'B'),
c('D', 'B', 'A', 'C', 'E', 'F'),
c('F', 'E', 'C', 'A', 'D', 'B')

),
n = c(19, 12, 12, 9, 9, 10, 10 , 10 , 10, 10, 10)

)
vote <- create_vote(raw, xtype = 3, candidate = c('A', 'B', 'C', 'D', 'E', 'F'))
win1 <- cdc_simple(vote) # no winner
win2 <- cdc_dodgson(vote, dq_t = "dq") # A
win2 <- cdc_dodgson(win1, dq_t = "dq") # A
win3 <- cdc_dodgson(vote, dq_t = "t") # B
win3 <- cdc_dodgson(win2, dq_t = "t") # B

cdc_kemenyyoung Kemeny-Young Method

Description

Kemeny-Young method first lists all the permutations of candidates, that is, all possible orders, or
possible ordered links. Then, it computes the sums of strength of these links. The top link is the one
with the highest strength score, and the winner is the first one in this link. Currently, the maximum
candidate number is 8 for speed and memory reasons.

Usage

cdc_kemenyyoung(x, allow_dup = TRUE, min_valid = 1, margin = FALSE,
keep_all_link = FALSE)

Arguments

x it accepts the following types of input: 1st, it can be an object of class vote.
2nd, it can be a user-given Condorcet matrix, 3rd, it can be a result of another
Condorcet method, which is of class condorcet.

allow_dup whether ballots with duplicated score values are taken into account. Default is
TRUE.

min_valid default is 1. If the number of valid entries of a ballot is less than this value, it
will not be used.

margin if it is FALSE (default), the values in Condorcet matrix are used, that is: if A vs.
B is 30, B vs. A is 18, then 30 and 18 are used to calculate link strength; if it is
TRUE, then 30 - 18 = 12 and -12 are used.

keep_all_link if TRUE, the result will store all the links and their strength. However, it is quite
memory-costing, so the default is FALSE.

cdc_minmax 11

Value

a condorcet object, which is essentially a list.

• (1) call the function call.

• (2) method the counting method.

• (3) candidate candidate names.

• (4) candidate_num number of candidate.

• (5) ballot_num number of ballots in x. When x is not a vote object, it may be NULL.

• (6) valid_ballot_num number of ballots that are actually used to compute the result. When
x is not a vote object, it may be NULL.

• (7) winner the winner.

• (8) input_object the class of x.

• (9) cdc the Condorcet matrix which is actually used.

• (10) dif the score difference matrix. When x is not a vote object, it may be NULL.

• (11) binary win and loss recorded with 1 (win), 0 (equal) and -1 (loss).

• (12) summary_m times of win (1), equal (0) and loss (-1).

• (13) other_info a list with 3 elements. win_link is the link with the highest strength.
Note: it is a matrix, maybe with 2 or more rows. win_link_value is the strength of the
link. all_link is NULL when keep_all_link is FALSE. if TRUE, it stores all the links and
scores sorted by scores in decreasing order (this costs much memory on your computer).

References

• Young, H. & Levenglick, A. 1978. A consistent extension of Condorcet’s election principle.
Society for Industrial and Applied Mathematics, 35(2), 285-300.

Examples

m <- matrix(c(0, 58, 58, 58, 42, 0, 32, 32, 42, 68, 0, 17, 42, 68, 83, 0), nr = 4)
colnames(m) <- c('m', 'n', 'c', 'k')
rownames(m) <- c('m', 'n', 'c', 'k')
y <- cdc_kemenyyoung(m, keep_all_link = TRUE) # winner is n

cdc_minmax Minmax Method

Description

Minmax method (also known as Simpson-Kramer method, successive reversal method) means three
different methods. The first is winning votes method. In pairwise comparison, if a wins b, a gets 0
point, the number of points for b is the number of voters who prefer a than b. The second method
is to use margins. In pairwise comparison, a gets b - a points and b gets a - b points. The third
method is pairwise opposition method. The number of points for a is the number of voters who
prefer b than a; the number of points for b is the number of voters who prefer a than b. Although

12 cdc_minmax

the point-assigning methods are different for the above three methods, they nonetheless do the same
thing: to check to what extent one candidate is defeated by others. So the summarizing method is
the same: for each candidate, we extract the maximum target points, and the one with the minimum
points wins.

Usage

cdc_minmax(x, allow_dup = TRUE, min_valid = 1, variant = 1)

Arguments

x it accepts the following types of input: 1st, it can be an object of class vote.
2nd, it can be a user-given Condorcet matrix, 3rd, it can be a result of another
Condorcet method, which is of class condorcet.

allow_dup whether ballots with duplicated score values are taken into account. Default is
TRUE.

min_valid default is 1. If the number of valid entries of a ballot is less than this value, it
will not be used.

variant should be 1, 2 or 3. 1 (default) for winning votes method, 2 for margins method,
3 for pairwise comparison method.

Value

a condorcet object, which is essentially a list.

• (1) call the function call.

• (2) method the counting method.

• (3) candidate candidate names.

• (4) candidate_num number of candidate.

• (5) ballot_num number of ballots in x. When x is not a vote object, it may be NULL.

• (6) valid_ballot_num number of ballots that are actually used to compute the result. When
x is not a vote object, it may be NULL.

• (7) winner the winners.

• (8) input_object the class of x.

• (9) cdc the Condorcet matrix which is actually used.

• (10) dif the score difference matrix. When x is not a vote object, it may be NULL.

• (11) binary win and loss recorded with 1 (win), 0 (equal) and -1 (loss).

• (12) summary_m times of win (1), equal (0) and loss (-1).

• (13) other_info a list of 4 elements. The 1st is the method, which is equal to variant.
The 2nd is the winning votes matrix. The 3rd is the margins matrix. The 4th is the pairwise
comparison matrix.

References

• https://en.wikipedia.org/wiki/Minimax_Condorcet_method

cdc_rankedpairs 13

Examples

raw <- c(
rep(c('m', 'n', 'c', 'k'), 42), rep(c('n', 'c', 'k', 'm'), 26),
rep(c('c', 'k', 'n', 'm'), 15), rep(c('k', 'c', 'n', 'm'), 17)

)
raw <- matrix(raw, ncol = 4, byrow = TRUE)
vote <- create_vote(raw, xtype = 2, candidate = c('m', 'n', 'k', 'c'))
win1 <- cdc_simple(vote)
win2 <- cdc_minmax(vote) # winner is n
win3 <- cdc_minmax(win1, variant = 2)
win4 <- cdc_minmax(win3$cdc, variant = 3)

cdc_rankedpairs Ranked Pairs Method

Description

It is also called Tideman method. See details.

Usage

cdc_rankedpairs(x, allow_dup = TRUE, min_valid = 1)

Arguments

x it accepts the following types of input: 1st, it can be an object of class vote.
2nd, it can be a user-given Condorcet matrix, 3rd, it can be a result of another
Condorcet method, which is of class condorcet.

allow_dup whether ballots with duplicated score values are taken into account. Default is
TRUE.

min_valid default is 1. If the number of valid entries of a ballot is less than this value, it
will not be used.

Details

The method first summarizes the result of pairwise comparison, the order used is the order of win-
ning votes from large to small. So if pairwise comparison has ties (that is, the number of voters who
prefer a than b is equal to the number of voters who prefer b than a, the method will fail, and the
winner will be NULL).

The second step is called tally. If a wins b with 100 votes, b wins c with 80 votes, then we put
a-b-100 ahead of b-c-80. Suppose a wins b with 100 votes, a wins c with 100 votes, then we have
a tie; so we have to check the relation between b and c. If b wins c, then we put a-c-100 ahead of
a-b-100. Suppose a wins b with 100 votes, d wins b with 100 votes, then again we have a tie and
have to check the a-d relation. If d wins a, then we put d-b-100 ahead of a-b-100. Suppose a wins b
with 100 votes, e wins f with 100 votes, then the ties cannot be solved, so the winner will be NULL.

The third step, after the above mentioned tally, is called lock-in. As the relations have been sorted
according to their strength from large to small in the tally step, we now add them one by one. The

14 cdc_rankedpairs

rule is: if a relation is contradictory with those already locked in relations, this relation will be
discarded.

For example, suppose we have already add relation a > b and b > c, then the two relations are locked
in. As a result, we should not add b > a. Also, as a > b and b > c indicate a > c, so we should not
add c > a. After this process, we will finally find the winner who defeats all others.

Value

a condorcet object, which is essentially a list.

• (1) call the function call.

• (2) method the counting method.

• (3) candidate candidate names.

• (4) candidate_num number of candidate.

• (5) ballot_num number of ballots in x. When x is not a vote object, it may be NULL.

• (6) valid_ballot_num the number of ballots that are actually used to compute the result.
When x is not a vote object, it may be NULL.

• (7) winner the winner, may be NULL.

• (8) input_object the class of x.

• (9) cdc the Condorcet matrix which is actually used.

• (10) dif the score difference matrix. When x is not a vote object, it may be NULL.

• (11) binary win and loss recorded with 1 (win), 0 (equal) and -1 (loss).

• (12) summary_m times of win (1), equal (0) and loss (-1).

• (13) other_info a list of 3 elements. The 1st is the reason of failure. If winner exists, it will
be blank. The 2nd is the tally result (it may contain unsolved ties). The 3rd is the lock-in
result; if the method fails, it will be NULL.

References

• Tideman, T. 1987. Independence of clones as a criterion for voting rules. Social Choice and
Welfare, 4(3), 185-206.

Examples

raw <- rbind(c('m', 'n', 'c', 'k'), c('n', 'c', 'k', 'm'),
c('c', 'k', 'n', 'm'), c('k', 'c', 'n', 'm'))

raw <- list2ballot(m = raw, n = c(42, 26, 15, 17))
vote <- create_vote(raw, xtype = 2, candidate = c('m', 'n', 'c', 'k'))
y <- cdc_rankedpairs(vote)

cdc_schulze 15

cdc_schulze Schulze Method

Description

Schulze method is essentially a widest path problem. With the Condorcet matrix, we must find the
so called the strongest path a > b > c > d, and the winner is a. The strength of a path is the strength
of its weakest link.

Usage

cdc_schulze(x, allow_dup = TRUE, min_valid = 1)

Arguments

x it accepts the following types of input: 1st, it can be an object of class vote.
2nd, it can be a user-given Condorcet matrix, 3rd, it can be a result of another
Condorcet method, which is of class condorcet.

allow_dup whether ballots with duplicated score values are taken into account. Default is
TRUE.

min_valid default is 1. If the number of valid entries of a ballot is less than this value, it
will not be used.

Value

a condorcet object, which is essentially a list.

• (1) call the function call.

• (2) method the counting method.

• (3) candidate candidate names.

• (4) candidate_num number of candidate.

• (5) ballot_num number of ballots in x. When x is not a vote object, it may be NULL.

• (6) valid_ballot_num number of ballots that are actually used to compute the result. When
x is not a vote object, it may be NULL.

• (7) winner the winners, may be NULL.

• (8) input_object the class of x.

• (9) cdc the Condorcet matrix which is actually used.

• (10) dif the score difference matrix. When x is not a vote object, it may be NULL.

• (11) binary win and loss recorded with 1 (win), 0 (equal) and -1 (loss).

• (12) summary_m times of win (1), equal (0) and loss (-1).

• (13) other_info a list of 2 elements. The 1st is the strength comparison matrix. The 2nd is
the strength comparison matrix in binary mode, 1 for win, 0 for else.

16 cdc_simple

References

• Schulze, M. 2010. A new monotonic, clone-independent, reversal symmetric, and Condorcet-
consistent single-winner election method. Social Choice and Welfare, 36(2), 267-303.

Examples

raw <- list2ballot(
x = list(

c('a', 'c', 'b', 'e', 'd'),
c('a', 'd', 'e', 'c', 'b'),
c('b', 'e', 'd', 'a', 'c'),
c('c', 'a', 'b', 'e', 'd'),
c('c', 'a', 'e', 'b', 'd'),
c('c', 'b', 'a', 'd', 'e'),
c('d', 'c', 'e', 'b', 'a'),
c('e', 'b', 'a', 'd', 'c')

),
n = c(5, 5, 8, 3, 7, 2, 7, 8)

)
vote <- create_vote(raw, xtype = 3, candidate = c('a', 'b', 'c', 'd', 'e'))
win1 <- cdc_simple(vote) # no winner
win2 <- cdc_schulze(vote) # winner is e
win2 <- cdc_schulze(win1)

cdc_simple Ordinary Condorcet Method

Description

Candidates enter into pairwise comparison. if the number of voters who prefer a is larger than the
number of voters who prefer b, then a wins b, a gets 1 point, b gets 0 point. If the numbers are
equal, then both of them gets 0 point. Suppose there are n candidates, the one gets n-1 points wins
(that is, he wins in all pairwise comparison). There may be no Condorcet winner. If thus, you can
try other Condorcet family methods.

Usage

cdc_simple(x, allow_dup = TRUE, min_valid = 1)

Arguments

x it accepts the following types of input: 1st, it can be an object of class vote.
2nd, it can be a user-given Condorcet matrix, 3rd, it can be a result of another
Condorcet method, which is of class condorcet.

allow_dup whether ballots with duplicated score values are taken into account. Default is
TRUE.

min_valid default is 1. If the number of valid entries of a ballot is less than this value, it
will not be used.

check_dup_wrong 17

Value

a condorcet object, which is essentially a list.

• (1) call the function call.

• (2) method the counting method.

• (3) candidate candidate names.

• (4) candidate_num number of candidate.

• (5) ballot_num number of ballots in x. When x is not a vote object, it may be NULL.

• (6) valid_ballot_num number of ballots that are actually used to compute the result. When
x is not a vote object, it may be NULL.

• (7) winner the winner; may be NULL.

• (8) input_object the class of x.

• (9) cdc the Condorcet matrix which is actually used.

• (10) dif the score difference matrix. When x is not a vote object, it may be NULL.

• (11) binary win and loss recorded with 1 (win), 0 (equal) and -1 (loss).

• (12) summary_m times of win (1), equal (0) and loss (-1).

• (13) other_info currently nothing.

Examples

raw <- c(
rep(c('m', 'n', 'c', 'k'), 42), rep(c('n', 'c', 'k', 'm'), 26),
rep(c('c', 'k', 'n', 'm'), 15), rep(c('k', 'c', 'n', 'm'), 17)

)
raw <- matrix(raw, ncol = 4, byrow = TRUE)
vote <- create_vote(raw, xtype = 2, candidate = c('m', 'n', 'k', 'c'))
win1 <- cdc_simple(vote) # winner is n
win2 <- cdc_simple(win1$cdc) # use a Condorceit matrix
win2 <- cdc_simple(win1) # use an existent result

check_dup_wrong Check Ballots with Duplicated Values, Mistakes, or without Any Valid
Entry

Description

The function simply checks validity of ballots and shows the check result. If you want a one-step
clean, set clean to TRUE and a set of cleaned ballots will be returned. Here, duplicated values
mean that the voter write the same candidate more than one time, or, when he assigns scores, he
assigns the same score to more than one candidates. Mistakes are names that do not appear in the
candidate list, or score values that are illegal (e.g., if voters are required to assign 1-5 to candidates,
then 6 is an illegal value). Ballots without a valid entry (that is, all entries are NAs) are also to be
picked out. Different formats can be input into the function, see Details.

18 check_dup_wrong

Usage

check_dup_wrong(x, xtype = 2, candidate = NULL, vv = NULL, isna = NULL,
clean = FALSE)

Arguments

x a data.frame, matrix or list of raw ballots. See Details.

xtype should be 1, 2 (default) or 3, designating the type of x. See Details.

candidate if xtype is 1, this argument is ignored. If xtype is 2 or3, candidate names must
be given as a character or numeric vector. If a name is not given, but is still on a
ballot, then the ballot is labelled as wrong.

vv if xtype is 2 or 3, it is ignored. If xtype is 1, this gives the valid score values
for x.

isna entries which should be taken as NAs. NA in x be taken as missing value, how-
ever, you can add more (e.g., you may use 99, 999 as missing values). If x
contains characters, this argument should also be provided with a character vec-
tor, and if numeric, then numeric vector. Do not add NA to isna, because the
default (NULL) means NA is already included.

clean the default is FALSE, that is, it does not return the cleaned data. If it is TRUE, a
set of ballots without duplicated values, without mistakes and with at least one
valid value, is returned.

Details

The function accepts the following input:

• (1) when xtype is 1, x must be a matrix. Column names are candidate names (if column names
are NULL, they will be created: x1, x2, x3...). Candidate number is the number of columns of
the matrix. Entry ij is the numeric score assigned by the ith voter to the jth candidate.

• (2) when xtype is 2, x can be a matrix or data.frame. Candidate number is the length of
candidate. Entries are names (character or numeric) of candidates. The i1, i2, i3... entries
are the 1st, 2nd, 3rd... preferences of voter i.

• (3) when xtype is 3, x should be a list. Each element of the list is a ballot, a vector contains
the names (character or numeric) of candidates. The 1st preference is in the 1st position of
the vector, the 2nd preference is in the 2nd position... The number of candidates is the length
of candidate; as a result, a ballot with number of names larger than candidate number is
labelled as wrong.

Value

a list with 3 or 4 elements: row_with_dup is the rows (not row names) of rows that have duplicated
values; row_with_wrong is the rows with illegal names or the lengths of them are larger than
candidate number (this could only happen when x is a list). row_all_na is the rows the entries of
which are all NAs. For a list, elements with NULL are also taken as all-NA ballots.

create_vote 19

Examples

raw=list(
c('a', 'e', 'c', 'd', 'b'),
c('b', 'a', 'e'),
c('c', 'd', 'b'),
c('d', 'a', 'b'),
c('a', 'a', 'b', 'b', 'b'),
c(NA, NA, NA, NA),
v7=NULL,
v8=c('a', NA, NA, NA, NA, NA, NA),
v9=rep(" ", 3)

)
y=check_dup_wrong(raw, xtype=3, candidate=letters[1: 5])
y=check_dup_wrong(raw, xtype=3, candidate=letters[1: 4])

create_vote Create a vote Object that can be used in counting methods

Description

Some counting methods in this package only accept vote object created by this function. So the
first step should always be using this function. The function will return the modified ballots and
some other helpful information. See Details and Values.

Usage

create_vote(x, xtype = 2, candidate = NULL, isna = NULL)

Arguments

x a data.frame, matrix or list of raw ballots. See Details.

xtype should be 1, 2 (default) or 3, designating the type of x. See Details.

candidate if xtype is 1, this argument is ignored. If xtype is 2 or 3, candidate names must
be given as a character or numeric vector. If a name is not given, but is still on a
ballot, then the name is ignored !

isna entries which should be taken as NAs. NA in x will always be taken as missing
value, however, you can add more (e.g., you may use 99, 999 as missing values).
If x contains characters, this argument should also be provided with a character
vector, and if numeric, then numeric vector. Do not add NA to isna, because the
default (NULL) means NA is already included.

Details

The function accepts the following input:

• (1) when xtype is 1, x must be a matrix. Column names are candidate names (if column names
are NULL, they will be created: x1, x2, x3...). Candidate number is the number of columns of
the matrix. Entry ij is the numeric score assigned by the ith voter to the jth candidate.

20 create_vote

• (2) when xtype is 2, x can be a matrix or data.frame. Candidate number is the length of
candidate. Entries are names (character or numeric) of candidates. The i1, i2, i3... entries
are the 1st, 2nd, 3rd... preferences of voter i.

• (3) when xtype is 3, x should be a list. Each element of the list is a ballot, a vector contains
the names (character or numeric) of candidates. The 1st preference is in the 1st position of
the vector, the 2nd preference is in the 2nd position... The number of candidates is the length
of candidate; as a result, a ballot with number of names larger than candidate number is
labelled as wrong.

The function also returns Condorcet matrix. Suppose candidates are i, j, k. The voter likes i best,
so he assigns 1 to i. The 2nd choice is j, so he assigns 2 to j, leaving k as NA. Now computing the
Condorcet matrix: since i’s score is smaller than j’ score, we add 1 to the ij cell of the matrix, and
add 0 to the ji cell. Candidate k’s NA is automatically set to the highest (that is, the worst) score: 3
(since there are 3 candidates); i < k, so we add 1 to the ik cell and add 0 to ki cell. Besides, there is
also a score difference matrix: we add 2 - 1 = 1 to the ij cell of score difference matrix, and add 3 -
1 = 2 to the ik cell. If tie appears, both sides acquire 0.

Note the ways we calculate the Condorcet matrix. (1) It allow ties, that is, duplicated score values.
(2) NA is deems as the worst, which means: if a voter does not mention a candidate, the candidate
will be given the highest (worst) score. (3) Ballots mention only one name are assumed to express
preference, since unmentioned candidates are assumed to be equally hated. (4) The Condorcet
matrix returned by create_vote uses ballots that may have duplicated values and have only one
valid entry. However, Condorcet family methods in this package provide possibility to recalculate
the matrix. And, the simplest way to get rid of duplicated values and NAs is to delete some ballots.

Value

an object of class vote is returned, which is essentially a list. It has the following elements.

• (1) call the call.
• (2) ballot the returned ballot. It is always a score matrix. The column names are candidate

names; entries are numeric scores assigned by voters. Missing values are all set to NA.
• (3) nas those which are taken as NA in data cleaning.
• (4) candidate candidate names.
• (5) candidate_num number of candidates.
• (6) ballot_num number of ballots.
• (7) ballot_at_least_one number of ballots that mention at least one candidate.
• (8) cdc the Condorcet matrix calculated with ballots that have no NA entries.
• (9) cdc_with_na the Condorcet matrix calculated with ballots that have at least one valid

entry.
• (10) dif the score difference matrix calculated with ballots that have no NA entries.
• (11) dif_with_na the score difference matrix calculated with ballots that have at least one

valid entry.
• (12) row_with_na rows of ballot with NAs.
• (13) row_non_na for rows with NAs, the number of non-NA entries of them.
• (14) row_with_dup rows of ballot with duplicated score values.
• (15) approval_able if length of row_non_dup is 0, then it is TRUE, else, FALSE. It indicates

whether approval method can be used. When xtype is 2 or 3, it is always TRUE.

dowdall_method 21

Examples

xtype is 2
raw <- c(

rep(c('m', 'n', 'c', 'k'), 42),
rep(c('n', 'c', 'k', 'm'), 26),
rep(c('c', 'k', 'n', 'm'), 15),
rep(c('k', 'c', 'n', 'm'), 17)

)
raw <- matrix(raw, ncol = 4, byrow = TRUE)
vote <- create_vote(raw, xtype = 2, candidate = c('m', 'n', 'k', 'c'))

xtype is 3
raw <- list(

c('a', 'e', 'c', 'd', 'b'),
c('b', 'a', 'e'),
c('c', 'd', 'b'),
c('d', 'a', 'b'),
c('a', 'a', 'b', 'b', 'b'),
c(NA, NA, NA, NA),
v7 = NULL,
v8 = c('a', NA, NA, NA, NA, NA, NA),
v9 = rep(" ", 3)

)
y <- check_dup_wrong(raw, xtype = 3, candidate = letters[1: 4])
raw2 <- raw[-y$row_with_wrong]
vote <- create_vote(raw2, xtype = 3, candidate = letters[1: 4])

xtype is 1
raw <- rbind(

c(1, 2, 5, 3, 3),
c(2, 1, 1, 3, 5),
c(1, 2, 5, 3, 4),
c(1, 2, 5, 3, 4),
c(NA, NA, NA, NA, NA),
c(NA, 3, 5, 1, 2),
c(NA, 999, NA, 1, 5)

)
vote <- create_vote(raw, xtype = 1, isna = 999)

dowdall_method Dowdall Method

Description

This is an alternative Borda method. Voters are required to assign preference scores to every can-
didate and one score value cannot be shared by two or more candidates. For a voter, his 1st choice
gets 1, his 2nd choice gets 1/2, his 3rd choice gets 1/3... The candidate who gets the most points
wins. For the function dowdall_method, ranks, rather than true values, are used. So 1, 3, 5 are
ranked as 1, 2, 3, and the scores are 1/1, 1/2, 1/3.

22 irv_method

Usage

dowdall_method(x, stop = FALSE)

Arguments

x an object of class vote. The ballots in the object should not have duplicated
values and NAs.

stop default is FALSE, when ballots do have duplicated values or NAs, error will not
be raised, but the winner will be NULL. If TRUE, an error will be raised.

Value

a list object.

• (1) call the function call.

• (2) method the counting method.

• (3) candidate candidate names.

• (4) candidate_num number of candidate.

• (5) ballot_num number of ballots in x.

• (6) valid_ballot_num number of ballots that are used to compute the result.

• (7) winner the winners.

• (8) other_info total scores.

References

• https://en.wikipedia.org/wiki/Borda_count

Examples

raw <- list2ballot(string =
c("51: a>c>b>d", "5: c>b>d>a", "23: b>c>d>a", "21: d>c>b>a")

)
vote <- create_vote(raw, xtype = 3, candidate = c("a", "b", "c", "d"))
y1 <- borda_method(vote) # winner is c
y2 <- dowdall_method(vote) # winner is a

irv_method Instant-Runoff Voting Method

irv_method 23

Description

Instant-runoff voting (IRV) method is also called alternative voting, transferable voting, ranked-
choice voting, single-seat ranked-choice voting, or preferential voting. In the 1st round, the candi-
date with absolute majority (that is, with more than 50 percent) wins. If no absolute winner exists,
the one who gets the least votes is deleted, all other candidates enter into the 2nd round. Again,
if no absolute winner exists, let the one with the least votes go and start the 3rd round... Finally,
an absolute winner will appear. Ties are solved with different methods in reality; however, this
function applies the following rules: (a) if more than one candidate gets the least votes, let all of
them go; (b) if all the candidates get the same number of votes in a certain round, then all of them
are winners. Note: the function accepts object of class vote and the method can only be used when
x$approval_able is TRUE, that is, there is no duplicated values in the score matrix; otherwise, the
winner will be NULL.

Usage

irv_method(x, min_valid = 1)

Arguments

x an object of class vote.

min_valid default is 1. If the number of valid entries of a ballot is less than this value, the
ballot will not be used.

Value

a list object.

• (1) call the function call.

• (2) method the counting method.

• (3) candidate candidate names.

• (4) candidate_num number of candidate.

• (5) ballot_num number of ballots in x.

• (6) valid_ballot_num number of ballots that are used to compute the result.

• (7) winner the winners, may be NULL.

• (8) absolute whether the winner wins absolute majority in the 1st round.

• (9) other_info the IRV may run for 2 or more rounds. So here the summary information of
each round is recorded. The length of the list is equal to the number of rounds.

References

• Reilly, B. 2004. The global spread of preferential voting: Australian institutional imperialism?
Australian Journal of Political Science, 39(2), 253-266.

24 list2ballot

Examples

raw <- c(
rep(c('m', 'n', 'c', 'k'), 42), rep(c('n', 'c', 'k', 'm'), 26),
rep(c('c', 'k', 'n', 'm'), 15), rep(c('k', 'c', 'n', 'm'), 17)

)
raw <- matrix(raw, ncol = 4, byrow = TRUE)
vote <- create_vote(raw, xtype = 2, candidate = c('m', 'n', 'k', 'c'))
y <- irv_method(vote) # winner is k

list2ballot Repeat ith element of list x or row of matrix/data.frames for j times

Description

Suppose you have 3 different unique ballots and the amount of each ballot is 10, 20, 30. Now you
want to create raw ballots as a list. Then you can use this function. See examples for usage.

Usage

list2ballot(x = NULL, n = rep(1, length(x)), m = NULL, string = NULL)

Arguments

x a list, each element of which should be a vector. Note: only one of x, m and
string can be a non-NULL object

n how many times each element of x or each row of m should be replicated. It
should be a numeric vector of non-negative integers and the length of it should
be equal to that of x or the row number of m. The default is 1 for each element
of x.

m a matrix or dataframe, the number of rows should be equal to the length of n.

string default is NULL. If it is not NULL, x, m and n are ignored. It should be a
character vector. Each one contains two parts, the 1st is the amount of that
ballot, and the 2nd part contains the names. The 1st and 2nd parts, as well as the
names, should be split by spaces or punctuations. But no space and punctuation
is allowed inside the names ("_" is not taken to be a punctuation). See examples.

Value

a list with replicated vectors, if x is not NULL, or a matrix/data.frame with duplicated rows, if m is
not NULL.

plurality_method 25

Examples

Use x and n
unique_ballot <- list(

c("A", "B", "C"), c("F", "A", "B"),
c("E", "D", "C", "B", "F", "A"), c("x","x", "A")

)
r <- c(1, 2, 3, 0)
y <- list2ballot(unique_ballot, r)

Use string, x and n will be ignored.
The characters can be written in a very loose way as follows,
for the function will automatically delete unwanted parts.
But do make sure there is no space or punctuation
inside the names.
unique_ballot <- c(
"2, Bob, Mike Jane", "3: barack_obama;;Bob>Jane",
"0 Smith Jane", " 1 Mike???!!!"
)
y <- list2ballot(string = unique_ballot)
Use a matrix.
m <- matrix(c(1, 2, 3, 3, 1, 2), nrow = 2, byrow = TRUE)
colnames(m) <- c("p1", "p2", "p3")
r <- c(3, 5)
y <- list2ballot(m = m, n = r)

plurality_method Plurality Method to Find Absolute or Relative Majority

Description

Although with plurality method each voter is required to mention only one candidate, a ballot with
more than one candidate and different scores is also valid. For a score matrix, the function will
check the position j which has the lowest score (in a vote object, the lower, the better) in the ith
row. Duplicated values may or may not be a problem. For instance, c(2, 3, 3) is valid, for the
lowest value is 2 and it is in the 1st position. However, c(2, 2, 3) is a problem, for the 1st and 2nd
positions all have the lowest value 2. If this problem exists, the winner returned by this function
will be NULL.

Usage

plurality_method(x, allow_dup = TRUE, min_valid = 1)

Arguments

x an object of class vote.
allow_dup whether ballots with duplicated score values are taken into account. Default is

TRUE.
min_valid default is 1. If the number of valid entries of a ballot is less than this value, the

ballot will not be used.

26 star_rating

Value

a list object.

• (1) call the function call.

• (2) method the counting method.

• (3) candidate candidate names.

• (4) candidate_num number of candidate.

• (5) ballot_num number of ballots in x.

• (6) valid_ballot_num number of ballots that are used to compute the result.

• (7) winner the winners, may be one, more than one or NULL.

• (8) absolute whether the winner is of absolute majority.

• (9) other_info a list with 2 elements, the 1st is the frequencies of candidates mentioned as
1st choice; the second element is the percentage. If winner is NULL, these two are NULL.

Examples

raw <- rbind(
c(1, 2, 5, 3, 3), c(1, 2, 5, 3, 4), c(1, 2, 5, 3, 4),
c(NA, NA, NA, NA, NA), c(NA, 3, 5, 1, 2),
c(NA, NA, NA, 2, 3), c(NA, NA, 1, 2, 3),
c(NA, NA, NA, NA, 2), c(NA, NA, NA, 2, 2),
c(NA, NA, 1, 1, 2), c(1, 1, 5, 5, NA)

)
vote <- create_vote(raw, xtype = 1)
y <- plurality_method(vote, allow_dup = FALSE)
y <- plurality_method(vote, allow_dup=FALSE, min_valid = 3)

star_rating User Preference Aggregation

Description

The function uses a simple method to calculate the aggregation scores of user ratings, which is
described in Langville, A. and Meyer, C. (2012: 128). Input data can be stored in a sparse matrix.
Suppose there are 100 films and users are required to assign scores. However, each user only
watched several of them. Thus, when comparing two films A and B, the method only takes account
ratings from those who watched both A and B.

Usage

star_rating(x, show_name = FALSE, check_na = TRUE)

star_rating 27

Arguments

x a numeric matrix, or, dgCMatrix and dgeMatrix matrix created with the Matrix
package. 0 in the data means no score is given; and valid score values should all
be larger than 0. The function will do NOTHING to check the validity. Besides,
NA also means no score is given. If your data has NA, set check_na to TRUE
so as to convert NA to 0.

show_name the default is FALSE, that is to say, the function does not store and show can-
didate names in the result and you cannot see them. However, you can set it to
TRUE.

check_na if it is TRUE, the function will check NAs and convert them to 0s. If NAs do
exist and check_na is FALSE, error will be raised.

Value

a list object.

• (1) call the function call.

• (2) method the counting method.

• (3) candidate candidate names. If show_name is FALSE, this will be NULL.

• (4) candidate_num number of candidate.

• (5) ballot_num number of ballots in x.

• (6) valid_ballot_num number of ballots that are used to compute the result.

• (7) winner the winner. If show_name is FALSE, this only shows the number in 1: ncol(x).

• (8) winner_score the winner’s score, which is the highest score.

• (9) other_info scores of all the candidates.

References

• Langville, A. and Meyer, C. 2012. Who’s #1? The Science of Rating and Ranking. Princeton
University Press, p. 128.

Examples

Example from Langville and Meyer, 2012: 128.
4 films are rated by 10 users; 0 means no score.
raw <- c(4, 3, 1, 2, 0, 2, 0, 3, 0, 2, 2, 1, 0, 4, 3, 3, 4,

1, 3, 0, 2, 0, 2, 2, 2, 0, 1, 1, 2, 2, 0, 2, 0, 0, 5, 0, 3,
0, 5, 4

)
m <- matrix(raw, ncol = 4)
colnames(m) <- paste("film", 1: 4, sep = "")
y <- star_rating(m, show_name = TRUE) # winner is film4

Index

approval_method, 3
as_complete, 4

borda_method, 5

cdc_copeland, 7
cdc_dodgson, 8
cdc_kemenyyoung, 10
cdc_minmax, 11
cdc_rankedpairs, 13
cdc_schulze, 15
cdc_simple, 16
check_dup_wrong, 17
create_vote, 19

dowdall_method, 21

irv_method, 22

list2ballot, 24

plurality_method, 25

star_rating, 26

votesys (votesys-package), 2
votesys-package, 2

28

	votesys-package
	approval_method
	as_complete
	borda_method
	cdc_copeland
	cdc_dodgson
	cdc_kemenyyoung
	cdc_minmax
	cdc_rankedpairs
	cdc_schulze
	cdc_simple
	check_dup_wrong
	create_vote
	dowdall_method
	irv_method
	list2ballot
	plurality_method
	star_rating
	Index

