Package ‘webmockr’

June 29, 2025
Title Stubbing and Setting Expectations on 'HTTP' Requests

Description Stubbing and setting expectations on 'HTTP' requests.
Includes tools for stubbing 'HTTP' requests, including expected
request conditions and response conditions. Match on
'HTTP' method, query parameters, request body, headers and
more. Can be used for unit tests or outside of a testing
context.

Version 2.1.0
License MIT + file LICENSE

URL https://github.com/ropensci/webmockr,
https://books.ropensci.org/http-testing/,

https://docs.ropensci.org/webmockr/

BugReports https://github.com/ropensci/webmockr/issues
Encoding UTF-8

Language en-US

Depends R(>=4.1.0)

Imports curl, jsonlite, magrittr (>= 1.5), R6 (>= 2.1.3), urltools (>=
1.6.0), fauxpas, rlang, cli

Suggests testthat, xml2, vcr, crul, httr, httr2, diffobj, withr
RoxygenNote 7.3.2

Config/testthat/edition 3
X-schema.org-applicationCategory Web

X-schema.org-keywords http, https, API, web-services, curl, mock,
mocking, fakeweb, http-mocking, testing, testing-tools, tdd

X-schema.org-isPartOf https://ropensci.org
NeedsCompilation no

Author Scott Chamberlain [aut, cre] (ORCID:
<https://orcid.org/0000-0003-1444-9135>),
Aaron Wolen [ctb] (ORCID: <https://orcid.org/0000-0003-2542-2202>),
rOpenSci [fnd] (ROR: <https://ror.org/@19jywm96>)

1

https://github.com/ropensci/webmockr
https://books.ropensci.org/http-testing/
https://docs.ropensci.org/webmockr/
https://github.com/ropensci/webmockr/issues
https://orcid.org/0000-0003-1444-9135
https://orcid.org/0000-0003-2542-2202
https://ror.org/019jywm96

2 enable

Maintainer Scott Chamberlain <myrmecocystus+r@gmail.com>

Repository CRAN

Date/Publication 2025-06-29 06:20:02 UTC

Contents
enable L e 2
httr2_mock e 3
httr_mock e 4
including 4
last_request e e e e e e 5
last_stubo e 6
mocking-disk-writing L. 7
mock_fileo e e 9
remove_request_stubl e 10
RequestPattern 10
TEQUESE_ICZISIIY« o o i e e e 12
stub_body_diff 13
Stub_registry L e 14
stub_registry_clear L e 15
StUb_TEqUESt e e e e e e e e e 16
TO_TAISE . . o o o e e s, 20
TO_TEUIN o o o o e e e e e e e e e e 21
TO_HIMEOUL o o o o e e e e e e 23
webmockr-defunct 24
webmockr_configure Lo 24
webmockr reset L L e e e 25
WI_th . e e e 26

Index 29

enable Enable or disable webmockr
Description

Enable or disable webmockr

Usage

enable(adapter = NULL, options = list(), quiet = FALSE)

enabled(adapter

"crul™)

disable(adapter = NULL, options = list(), quiet = FALSE)

httr2_mock 3

Arguments
adapter (character) the adapter name, “crul’, *httr’, or "httr2’. one or the other. if none
given, we attempt to enable both adapters
options list of options - ignored for now.
quiet (logical) suppress messages? default: FALSE
Details

* enable() enables webmockr for all adapters
* disable() disables webmockr for all adapters

* enabled() answers whether webmockr is enabled for a given adapter

Value

enable() and disable() invisibly returns booleans for each adapter, as a result of running enable
or disable, respectively, on each HttpLibAdapaterRegistry object. enabled returns a single boolean

httr2_mock Turn on httr2 mocking

Description

Sets a callback that routes httr2 requests through webmockr

Usage

httr2_mock(on = TRUE)

Arguments

on (logical) TRUE to turn on, FALSE to turn off. default: TRUE

Value

Silently returns TRUE when enabled and FALSE when disabled.

including

httr_mock Turn on httr mocking

Description

Sets a callback that routes httr requests through webmockr

Usage

httr_mock(on = TRUE)

Arguments

on (logical) set to TRUE to turn on, and FALSE to turn off. default: TRUE

Value

Silently returns TRUE when enabled and FALSE when disabled.

including Partially match request query parameters or request bodies

Description

For use inside wi_th()

Usage

including(x)

excluding(x)

Arguments

X (list) a list; may support other classes in the future

Value

same as x, but with two attributes added:

e partial_match: always TRUE

* partial_type: the type of match, one of include or exclude

last_request 5

Headers

Matching on headers already handles partial matching. That is, wi_th(headers = list(Fruit =
"pear”)) matches any request that has any request header that matches - the request can have other

request headers, but those don’t matter as long as there is a match. These helpers (including/excluding)

are needed for query parameters and bodies because by default matching must be exact for those.

Examples

including(list(foo = "bar"))
excluding(list(foo = "bar"))

get just keys by setting values as NULL
including(list(foo = NULL, bar = NULL))

in a stub
req <- stub_request("get”, "https://httpbin.org/get")
req

query

wi_th(req, query = list(foo = "bar"))

wi_th(req, query = including(list(foo = "bar")))
wi_th(req, query = excluding(list(foo = "bar")))

body
wi_th(req, body = list(foo = "bar"))
wi_th(req, body = including(list(foo = "bar")))
wi_th(req, body = excluding(list(foo = "bar")))
cleanup
stub_registry_clear()
last_request Get the last HTTP request made

Description

Get the last HTTP request made

Usage

last_request()

Value

NULL if no requests registered; otherwise the last registered request made as a RequestSignature
class

Examples

no requests
request_registry_clear()
last_request()

a request is found

enable()

stub_request(”"head”, "https://nytimes.com”)
library(crul)
crul::ok("https://nytimes.com”)
last_request()

cleanup
request_registry_clear()
stub_registry_clear()

last_stub

last_stub Get the last stub created

Description

Get the last stub created

Usage

last_stub()

Value

NULL if no stubs found; otherwise the last stub created as a StubbedRequest class

Examples

no requests
stub_registry_clear()
last_stub()

a stub is found
stub_request(”head”, "https://nytimes.com”)
last_stub()

stub_request("post”, "https://nytimes.com/stories"”)
last_stub()

cleanup
stub_registry_clear()

mocking-disk-writing

mocking-disk-writing Mocking writing to disk

Description

Mocking writing to disk

Examples

enable mocking
enable()

Write to a file before mocked request -------------

crul

library(crul)

make a temp file

f <- tempfile(fileext = ".json")

write something to the file

cat("{\"hello\":\"world\"}\n", file = f)

readLines(f)

make the stub

stub_request(”get”, "https://httpbin.org/get") %>%
to_return(body = file(f))

make a request

(out <- HttpClient$new("https://httpbin.org/get”)$get(disk = f))

out$content

readLines(out$content)

stub_registry_clear()

httr
library(httr)
make a temp file
f <- tempfile(fileext = ".json")
write something to the file
cat("{\"hello\":\"world\"}\n", file = f)
readLines(f)
make the stub
stub_request("get"”, "https://httpbin.org/get") %>%

to_return(

body = file(f),
headers = list("content-type"” = "application/json")

)
make a request
with httr, you must set overwrite=TRUE or you'll get an errror
out <- GET("https://httpbin.org/get"”, write_disk(f, overwrite = TRUE))
out
out$content
content(out, "text”, encoding = "UTF-8")
stub_registry_clear()

httr2
library(httr2)
make a temp file
f <- tempfile(fileext = ".json")
write something to the file
cat("{\"hello\":\"world\"}\n", file = f)
readLines(f)
make the stub
stub_request(”get”, "https://httpbin.org/get") %>%

to_return(

body = file(f),
headers = list("content-type"” = "application/json")

)
make a request
req <- request("https://httpbin.org/get")
out <- req_perform(req, path = f)
out
out$body
out$headers
readLines(out$body)
stub_registry_clear()

Use mock_file to have webmockr handle file and contents ---------

crul

library(crul)

f <- tempfile(fileext = ".json")

make the stub

stub_request("”get”, "https://httpbin.org/get") %>%
to_return(body = mock_file(f, "{\"hello\":\"mars\"}\n"))

make a request

mocking-disk-writing

(out <- crul::HttpClient$new("https://httpbin.org/get")$get(disk = f))

out$content
readLines(out$content)
stub_registry_clear()

httr
library(httr)
make a temp file
f <- tempfile(fileext = ".json")
make the stub
stub_request(”get"”, "https://httpbin.org/get") %>%
to_return(
body = mock_file(path = f, payload = "{\"foo\": \"bar\"}"),
headers = list("content-type” = "application/json")
)
make a request
out <- GET("https://httpbin.org/get"”, write_disk(f))
out
view stubbed file content
out$content
readLines(out$content)

mock_file

content(out, "text"”, encoding = "UTF-8")
stub_registry_clear()

httr2

library(httr2)

make a temp file

f <- tempfile(fileext = ".json")

make the stub

stub_request("get”, "https://httpbin.org/get") %>%

to_return(
body = mock_file(path = f, payload = "{\"foo\": \"bar\"}"),
headers = list("content-type” = "application/json")

)

make a request

req <- request("https://httpbin.org/get")
out <- req_perform(req, path = f)

out

view stubbed file content

out$body

readLines(out$body)

stub_registry_clear()

disable mocking
disable()

mock_file Mock file

Description

Mock file

Usage
mock_file(path, payload)

Arguments

path (character) a file path. required

payload (character) string to be written to the file given at path parameter. required
Value

a list with S3 class mock_file

Examples

mock_file(path = tempfile(), payload = "{\"foo\": \"bar\"3}")

10 RequestPattern

remove_request_stub Remove a request stub

Description

Remove a request stub

Usage

remove_request_stub(stub)

Arguments

stub a request stub, of class StubbedRequest

Value

logical, TRUE if removed, FALSE if not removed

See Also

Other stub-registry: StubRegistry, stub_registry(), stub_registry_clear()

Examples

(x <- stub_request("get"”, "https://httpbin.org/get"))
stub_registry()

remove_request_stub(x)

stub_registry()

RequestPattern RequestPattern class

Description

Class handling all request matchers

Public fields

method_pattern xxx
uri_pattern xxx
body_pattern xxx

headers_pattern xxx

RequestPattern 11

Methods

Public methods:
* RequestPattern$new()
¢ RequestPattern$matches()
* RequestPattern$to_s()
¢ RequestPattern$clone()

Method new(): Create a new RequestPattern object

Usage:
RequestPattern$new(
method,
uri = NULL,
uri_regex = NULL,
query = NULL,
body = NULL,

headers = NULL,
basic_auth = NULL
)
Arguments:
method the HTTP method (any, head, options, get, post, put, patch, trace, or delete). "any'
matches any HTTP method. required.
uri (character) request URL. required or uri_regex
uri_regex (character) request URI as regex. required or uri
query (list) query parameters, optional
body (list) body request, optional
headers (list) headers, optional
basic_auth (list) vector of length 2 (username, password), optional

"

Returns: A new RequestPattern object

Method matches(): does a request signature match the selected matchers?

Usage:
RequestPattern$matches(request_signature)

Arguments:
request_signature a RequestSignature object

Returns: aboolean

Method to_s(): Print pattern for easy human consumption
Usage:
RequestPattern$to_s()

Returns: a string

Method clone(): The objects of this class are cloneable with this method.
Usage:
RequestPattern$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

12 request_registry

See Also

pattern classes for HTTP method MethodPattern, headers HeadersPattern, body BodyPattern, and
URI/URL UriPattern

request_registry List or clear requests in the request registry

Description

List or clear requests in the request registry

Usage

request_registry()

request_registry_clear()

Details
request_registry() lists the requests that have been made that webmockr knows about; request_registry_clear()
resets the request registry (removes all recorded requests)
Value
an object of class RequestRegistry, print method gives the requests in the registry and the number
of times each one has been performed
See Also

Other request-registry: HashCounter, RequestRegistry

Examples

webmockr: :enable()
stub_request("get"”, "https://httpbin.org/get") %>%
to_return(body = "success!”, status = 200)

nothing in the request registry
request_registry()

make the request
z <- crul::HttpClient$new(url = "https://httpbin.org”)$get("get")

check the request registry - the request was made 1 time
request_registry()

do the request again
z <- crul::HttpClient$new(url = "https://httpbin.org"”)$get("get")

stub_body_diff 13

check the request registry - now it's been made 2 times, yay!
request_registry()

clear the request registry
request_registry_clear()
webmockr: :disable()

stub_body_diff Get a diff of a stub request body and a request body from an http re-
quest

Description

Requires the Suggested package diffobj

Usage

stub_body_diff(stub = last_stub(), request = last_request())

Arguments
stub object of class StubbedRequest. required. default is to call last_stub(),
which gets the last stub created
request object of class RequestSignature. required. defaultis to call last_request(),
which gets the last stub created
Details

Returns error message if either stub or request are NULL. Even though you may not intentionally
pass in a NULL, the return values of last_stub() and last_request() when there’s nothing found
is NULL.

Under the hood the Suggested package diffobj is used to do the comparison.

Value

object of class Diff from the diffobj package

See Also

webmockr_configure() to toggle webmockr showing request body diffs when there’s not a match.
stub_body_diff () is offered as a manual way to compare requests and stubs - whereas turning on
with webmockr_configure() will do the diff for you.

14 stub_registry

Examples

stops with error if no stub and request
request_registry_clear()
stub_registry_clear()

stub_body_diff()

Gives diff when there's a stub and request found - however, no request body
stub_request(”get”, "https://hb.opencpu.org/get"”)

enable()

library(crul)

HttpClient$new("https://hb.opencpu.org”)$get(path = "get")

stub_body_diff ()

Gives diff when there's a stub and request found - with request body
stub_request("post”, "https://hb.opencpu.org/post”) %>%
wi_th(body = list(apple = "green"))
enable()
library(crul)
HttpClient$new("https://hb.opencpu.org”)$post(
path = "post”, body = list(apple = "red")
)
stub_body_diff ()

Gives diff when there's a stub and request found - with request body
stub_request("post”, "https://hb.opencpu.org/post”) %>%

wi_th(body = "the quick brown fox")
HttpClient$new("https://hb.opencpu.org”)$post(

path = "post”, body = "the quick black fox"
)
stub_body_diff()

stub_registry List stubs in the stub registry

Description

List stubs in the stub registry

Usage

stub_registry()

Value

an object of class StubRegistry, print method gives the stubs in the registry

See Also

Other stub-registry: StubRegistry, remove_request_stub(), stub_registry_clear()

stub_registry_clear 15

Examples

make a stub
stub_request("”get”, "https://httpbin.org/get") %>%
to_return(body = "success!”, status = 200)

check the stub registry, there should be one in there
stub_registry()

make another stub
stub_request("get”, "https://httpbin.org/get") %>%
to_return(body = "woopsy”, status = 404)

check the stub registry, now there are two there
stub_registry()

to clear the stub registry
stub_registry_clear()

stub_registry_clear stub_registry_clear

Description

Clear all stubs in the stub registry

Usage

stub_registry_clear()

Value

an empty list invisibly

See Also

Other stub-registry: StubRegistry, remove_request_stub(), stub_registry()

Examples

(x <- stub_request("get"”, "https://httpbin.org/get"))
stub_registry()

stub_registry_clear()

stub_registry()

16 stub_request

stub_request Stub an http request

Description

Stub an http request

Usage

stub_request(method = "get", uri = NULL, uri_regex = NULL)

Arguments
method (character) HTTP method, one of "get", "post", "put", "patch", "head", "delete",
"options" - or the special "any" (for any method)
uri (character) The request uri. Can be a full or partial uri. webmockr can match
uri’s without the "http" scheme, but does not match if the scheme is "https".
required, unless uri_regex given. See UriPattern for more. See the "uri vs.
uri_regex" section
uri_regex (character) A URI represented as regex. required, if uri not given. See examples
and the "uri vs. uri_regex" section
Details

Internally, this calls StubbedRequest which handles the logic

See stub_registry() for listing stubs, stub_registry_clear () for removing all stubs and remove_request_stub()
for removing specific stubs

If multiple stubs match the same request, we use the first stub. So if you want to use a stub that was
created after an earlier one that matches, remove the earlier one(s).

Note on wi_th(): If you pass query, values are coerced to character class in the recorded stub. You
can pass numeric, integer, etc., but all will be coerced to character.

See wi_th() for details on request body/query/headers and to_return() for details on how re-
sponse status/body/headers are handled

Value

an object of class StubbedRequest, with print method describing the stub.

uri vs. uri_regex

When you use uri, we compare the URIs without query params AND also the query params them-
selves without the URIs.

When you use uri_regex we don’t compare URIs and query params; we just use your regex string
defined in uri_regex as the pattern for a call to grepl

stub_request 17

Mocking writing to disk

See mocking-disk-writing

Error handling

To construct stubs, one uses stub_request() first - which registers the stub in the stub registry.
Any additional calls to modify the stub with for example wi_th() or to_return() can error. In
those error cases we ideally want to remove (unregister) the stub because you certainly don’t want
a registered stub that is not exactly what you intended.

When you encounter an error creating a stub you should see a warning message that the stub has
been removed, for example:

stub_request(“get”, "https://httpbin.org/get") %>%
wi_th(query = mtcars)

#> Error in “wi_th()™:

#> | z$query must be of class list or partial

#> Run “rlang::last_trace()” to see where the error occurred.

#> Warning message:

#> Encountered an error constructing stub

#> - Removed stub

#> + To see a list of stubs run stub_registry()

Note

Trailing slashes are dropped from stub URIs before matching

See Also

wi_th(), to_return(), to_timeout(), to_raise(), mock_file()

Examples

basic stubbing
stub_request("get”, "https://httpbin.org/get”)
stub_request("post”, "https://httpbin.org/post")

any method, use "any”
stub_request(”any”, "https://httpbin.org/get")

list stubs
stub_registry()

request headers
stub_request(”get”, "https://httpbin.org/get") %>%
wi_th(headers = list("User-Agent” = "R"))

request body
stub_request("post”, "https://httpbin.org/post”) %>%
wi_th(body = list(foo = "bar"))

18

stub_request

stub_registry()

library(crul)

x <- crul::HttpClient$new(url = "https://httpbin.org")
crul::mock()

x$post("post”, body = list(foo = "bar"))

add expectation with to_return
stub_request(”get”, "https://httpbin.org/get") %>%

wi_th(
query = list(hello = "world"),
headers = list("User-Agent” = "R")
) %%

to_return(status = 200, body = "stuff”, headers = list(a = 5))

list stubs again
stub_registry()

regex
stub_request(”get"”, uri_regex = ".+ample\\..")

set stub an expectation to timeout

stub_request("get"”, "https://httpbin.org/get") %>% to_timeout()
x <= crul::HttpClient$new(url = "https://httpbin.org")
try(x$get(“get"))

raise exception
library(fauxpas)
stub_request(”get"”, "https://httpbin.org/get"”) %>% to_raise(HTTPAccepted)
stub_request("”get”, "https://httpbin.org/get") %>%
to_raise(HTTPAccepted, HTTPGone)

x <= crul::HttpClient$new(url = "https://httpbin.org")

stub_request(”get"”, "https://httpbin.org/get"”) %>% to_raise(HTTPBadGateway)
crul: :mock()

try(x$get("get"))

pass a list to .list
z <- stub_request(”get", "https://httpbin.org/get")
wi_th(z, .list = list(query = list(foo = "bar")))

just body
stub_request(”any”, uri_regex = ".+") %>%
wi_th(body = list(foo = "bar"))
with crul
library(crul)
x <= crul::HttpClient$new(url = "https://httpbin.org")
crul: :mock()
x$post("post”, body = list(foo = "bar"))
x$put ("put”, body = list(foo = "bar"))
with httr

stub_request 19

library(httr)

httr_mock()

POST("https://example.com”, body = list(foo = "bar"))
PUT("https://google.com”, body = list(foo = "bar"))

just headers
headers <- list(

"Accept-Encoding” = "gzip, deflate”,

"Accept” = "application/json, text/xml, application/xml, x/x"
)
stub_request(”any”, uri_regex = ".+") %>% wi_th(headers = headers)
library(crul)

x <- crul::HttpClient$new(url = "https://httpbin.org”, headers = headers)
crul: :mock()

x$post("post”)

x$put ("put”, body = list(foo = "bar"))

many responses
the first response matches the first to_return call, and so on
stub_request("get”, "https://httpbin.org/get") %>%
to_return(status = 200, body = "foobar”, headers = list(a = 5)) %>%
to_return(status = 200, body = "bears”, headers = list(b = 6))
con <- crul::HttpClient$new(url = "https://httpbin.org")
con$get("get")$parse("UTF-8")
con$get("get"”)$parse("UTF-8")

OR, use times with to_return() to repeat the same response many times
library(fauxpas)
stub_request("get"”, "https://httpbin.org/get") %>%
to_return(status = 200, body = "apple-pie”, times = 2) %>%
to_raise(HTTPUnauthorized)
con <- crul::HttpClient$new(url = "https://httpbin.org")
con$get("get"”)$parse("UTF-8")
con$get("get")$parse("UTF-8")
try(con$get("get")$parse("UTF-8"))

partial matching

query parameters

library(httr)

enable(adapter = "httr")

matches

stub_request("”get"”, "https://hb.opencpu.org/get"”) %>%
wi_th(query = including(list(fruit = "pear”))) %>%
to_return(body = "matched on partial query!")

resp <- GET("https://hb.opencpu.org/get”,
query = list(fruit = "pear”, bread = "scone")

)

rawToChar (content(resp))

doesn't match

stub_registry_clear()

20 to_raise
stub_request("get”, "https://hb.opencpu.org/get") %>%
wi_th(query = list(fruit = "pear")) %>%
to_return(body = "didn't match, ugh!")
try({
GET("https://hb.opencpu.org/get”,
query = list(fruit = "pear”, meat = "chicken"))
»
request body
matches - including
stub_request("post”, "https://hb.opencpu.org/post”) %>%
wi_th(body = including(list(fruit = "pear”))) %>%
to_return(body = "matched on partial body!")
resp <- POST("https://hb.opencpu.org/post”,
body = list(fruit = "pear”, meat = "chicken")
)
rawToChar (content(resp))
matches - excluding
stub_request("post”, "https://hb.opencpu.org/post”) %>%
wi_th(body = excluding(list(fruit = "pear"))) %>%
to_return(body = "matched on partial body!")
res <- POST("https://hb.opencpu.org/post”,
body = list(color = "blue”)
)
rawToChar (content(res))
POST("https://hb.opencpu.org/post”,
body = list(fruit = "pear”, meat = "chicken"))
clear all stubs
stub_registry()
stub_registry_clear()
to_raise Set raise error condition
Description
Set raise error condition
Usage
to_raise(.data, ...)
Arguments
.data input. Anything that can be coerced to a StubbedRequest class object

One or more HTTP exceptions from the fauxpas package. Run grep ("HTTP*",
getNamespaceExports("fauxpas”), value = TRUE) for a list of possible ex-

ceptions

to_return 21

Details

The behavior in the future will be:

When multiple exceptions are passed, the first is used on the first mock, the second on the second
mock, and so on. Subsequent mocks use the last exception

But for now, only the first exception is used until we get that fixed

Value

an object of class StubbedRequest, with print method describing the stub

Raise vs. Return

to_raise() always raises a stop condition, while to_return(status=xyz) only sets the sta-
tus code on the returned HTTP response object. So if you want to raise a stop condition then
to_raise() is what you want. But if you don’t want to raise a stop condition use to_return().
Use cases for each vary. For example, in a unit test you may have a test expecting a 503 error; in
this case to_raise() makes sense. In another case, if a unit test expects to test some aspect of an
HTTP response object that httr, httr2, or crul typically returns, then you’ll want to_return().

Note

see examples in stub_request()

to_return Expectation for what’s returned from a stubbed request

Description

Set response status code, response body, and/or response headers

Usage
to_return(.data, ..., .list = list(), times = 1)
Arguments
.data input. Anything that can be coerced to a StubbedRequest class object
Comma separated list of named variables. accepts the following: status, body,
headers. See Details for more.
.list named list, has to be one of ’status’, ’body’, and/or "headers’. An alternative to
passing in via Don’t pass the same thing to both, e.g. don’t pass ’status’ to
..., and also ’status’ to this parameter
times (integer) number of times the given response should be returned; default: 1.

value must be greater than or equal to 1. Very large values probably don’t make
sense, but there’s no maximum value. See Details.

22 to_return

Details
Values for status, body, and headers:

* status: (numeric/integer) three digit status code

* body: various: character, json, list, raw, numeric, NULL, FALSE, a file connection (other
connetion types not supported), or a mock_file function call (see mock_file())

¢ headers: (list) a named list, must be named

response headers are returned with all lowercase names and the values are all of type character.
if numeric/integer values are given (e.g., to_return(headers = list(a =10))), we’ll coerce any
numeric/integer values to character.

Value

an object of class StubbedRequest, with print method describing the stub

multiple to_return()

You can add more than one to_return() to a webmockr stub (including to_raise(), to_timeout()).
Each one is a HTTP response returned. That is, you’ll match to an HTTP request based on
stub_request() and wi_th(); the first time the request is made, the first response is returned;
the second time the request is made, the second response is returned; and so on.

Be aware that webmockr has to track number of requests (see request_registry()), and so if you
use multiple to_return() or the times parameter, you must clear the request registry in order to
go back to mocking responses from the start again. webmockr_reset() clears the stub registry and
the request registry, after which you can use multiple responses again (after creating your stub(s)
again of course)

Raise vs. Return

to_raise() always raises a stop condition, while to_return(status=xyz) only sets the sta-
tus code on the returned HTTP response object. So if you want to raise a stop condition then
to_raise() is what you want. But if you don’t want to raise a stop condition use to_return().
Use cases for each vary. For example, in a unit test you may have a test expecting a 503 error; in
this case to_raise() makes sense. In another case, if a unit test expects to test some aspect of an
HTTP response object that httr, httr2, or crul typically returns, then you’ll want to_return().

Note

see more examples in stub_request ()

Examples

first, make a stub object
foo <- function() {

stub_request("post”, "https://httpbin.org/post”)
}

add status, body and/or headers

to_timeout 23

foo() %>% to_return(status = 200)
foo() %>% to_return(body = "stuff")
foo() %>% to_return(body = list(a = list(b = "world")))
foo() %>% to_return(headers = list(a = 5))
foo() %>%
to_return(status = 200, body = "stuff”, headers = list(a = 5))

.list - pass in a named list instead
foo() %>% to_return(.list = list(body = list(foo = "bar")))

multiple responses using chained “to_return()"
foo() %>%

to_return(body = "stuff”) %>%

to_return(body = "things")

many of the same response using the times parameter
foo() %>% to_return(body = "stuff”, times = 3)

to_timeout Set timeout as an expected return on a match

Description

Set timeout as an expected return on a match

Usage

to_timeout(.data)

Arguments

.data input. Anything that can be coerced to a StubbedRequest class object

Value

an object of class StubbedRequest, with print method describing the stub

Note

see examples in stub_request()

24

webmockr_configure

webmockr-defunct Defunct functions in webmockr

Description

* webmockr_enable(): Function removed, see enable()
e webmockr_disable(): Function removed, see disable()
* to_return_: Only to_return() is available now

e wi_th_: Only wi_th() is available now

webmockr_configure webmockr configuration

Description

webmockr configuration

Usage

webmockr_configure(
allow_net_connect = FALSE,
allow_localhost = FALSE,
allow = NULL,
show_stubbing_instructions = TRUE,
show_body_diff = FALSE

)

webmockr_configure_reset()
webmockr_configuration()
webmockr_allow_net_connect()
webmockr_disable_net_connect(allow = NULL)

webmockr_net_connect_allowed(uri = NULL)

Arguments
allow_net_connect
(logical) Default: FALSE

allow_localhost
(logical) Default: FALSE

webmockr reset 25

allow (character) one or more URI/URL to allow (and by extension all others are not
allowed)

show_stubbing_instructions
(logical) Default: TRUE. If FALSE, stubbing instructions are not shown

show_body_diff (logical) Default: FALSE. If TRUE show’s a diff of the stub’s request body and the
http request body. See also stub_body_diff() for manually comparing request
and stub bodies. Under the hood the Suggested package diffobj is required to
do the comparison.

uri (character) a URI/URL as a character string - to determine whether or not it is
allowed

webmockr_allow_net_connect

If there are stubs found for a request, even if net connections are allowed (by running webmockr_allow_net_connect())
the stubbed response will be returned. If no stub is found, and net connections are allowed, then a
real HTTP request can be made.

Examples

webmockr_configure()

webmockr_configure(
allow_localhost = TRUE

)

webmockr_configuration()

webmockr_configure_reset()

webmockr_allow_net_connect()
webmockr_net_connect_allowed()

disable net connect for any URIs
webmockr_disable_net_connect()

gives NULL with no URI passed
webmockr_net_connect_allowed()

disable net connect EXCEPT FOR given URIs
webmockr_disable_net_connect(allow = "google.com")
is a specific URI allowed?
webmockr_net_connect_allowed("google.com")

show body diff
webmockr_configure(show_body_diff = TRUE)

cleanup
webmockr_configure_reset()

webmockr_reset webmockr_reset

26 wi_th

Description

Clear all stubs and the request counter

Usage

webmockr_reset ()

Details

this function runs stub_registry_clear() and request_registry_clear() - so you can run
those two yourself to achieve the same thing

Value

nothing

See Also

stub_registry_clear() request_registry_clear()

Examples

webmockr_reset()

wi_th Set additional parts of a stubbed request

Description

Set query params, request body, request headers and/or basic_auth

Usage
wi_th(.data, ..., .list = list())
Arguments
.data input. Anything that can be coerced to a StubbedRequest class object
Comma separated list of named variables. accepts the following: query, body,
headers, basic_auth. See Details.
.list named list, has to be one of query, body, headers and/or basic_auth. An

alternative to passing in via Don’t pass the same thing to both, e.g. don’t
pass ’query’ to .. ., and also ’query’ to this parameter

wi_th 27

Details

with is a function in the base package, so we went with wi_th
Values for query, body, headers, and basic_auth:
* query: (list) a named list. values are coerced to character class in the recorded stub. You can
pass numeric, integer, etc., but all will be coerced to character.

* body: various, including character string, list, raw, numeric, upload (crul: :upload(), httr: :upload_file(),
curl::form_file(),orcurl::form_data() they both create the same object in the end). for
the special case of an empty request body use NA instead of NULL because with NULL we can’t
determine if the user did not supply a body or they supplied NULL to indicate an empty body.

¢ headers: (list) a named list

* basic_auth: (character) a length two vector, username and password. We don’t do any check-
ing of the username/password except to detect edge cases where for example, the username/password
were probably not set by the user on purpose (e.g., a URL is picked up by an environment
variable). Only basic authentication supported https://en.wikipedia.org/wiki/Basic_
access_authentication.

Note that there is no regex matching on query, body, or headers. They are tested for matches in the
following ways:

e query: compare stubs and requests with identical (). this compares named lists, so both list
names and values are compared

* body: varies depending on the body format (list vs. character, etc.)

* headers: compare stub and request values with ==. list names are compared with %in%.
basic_auth is included in headers (with the name Authorization)

Value

an object of class StubbedRequest, with print method describing the stub

Note

see more examples in stub_request ()

See Also
including()

Examples

first, make a stub object
req <- stub_request("post”, "https://httpbin.org/post"”)

add body

list

wi_th(req, body = list(foo = "bar"))
string

wi_th(req, body = '{"foo": "bar"}")
raw

https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication

28

wi_th(req, body = charToRaw('{"foo": "bar"}'))

numeric

wi_th(req, body = 5)

an upload

wi_th(req, body = crul::upload(system.file("CITATION")))

wi_th(req, body = httr::upload_file(system.file("CITATION")))

add query - has to be a named list
wi_th(req, query = list(foo = "bar"))

add headers - has to be a named list
wi_th(req, headers = list(foo = "bar"))
wi_th(req, headers = list(“User-Agent™ = "webmockr/v1"”, hello = "world"))

.list - pass in a named list instead
wi_th(req, .list = list(body = list(foo = "bar")))

basic authentication
wi_th(req, basic_auth = c("user”, "pass"))
wi_th(req, basic_auth = c("user”, "pass”), headers = list(foo

"bar"))

partial matching, query params

including

wi_th(req, query = including(list(foo = "bar")))
excluding

wi_th(req, query = excluding(list(foo = "bar")))

partial matching, body

including

wi_th(req, body = including(list(foo = "bar")))
excluding

wi_th(req, body = excluding(list(foo = "bar")))

basic auth
including
wi_th(req, body = including(list(foo = "bar")))
excluding

wi_th(req, body

excluding(list(foo = "bar")))

wi_th

Index

* request-registry
request_registry, 12

* stub-registry
remove_request_stub, 10
stub_registry, 14
stub_registry_clear, 15

BodyPattern, 12

crul::upload(), 27
curl::form_data(), 27
curl::form_file(), 27

disable (enable), 2
disable(), 24

enable, 2

enable(), 24

enabled (enable), 2
excluding (including), 4

grepl, 16

HashCounter, 12
HeadersPattern, /2
HttpLibAdapaterRegistry, 3
httr2_mock, 3
httr::upload_file(), 27
httr_mock, 4

including, 4
including(), 27

last_request, 5
last_request(), 13
last_stub, 6
last_stub(), 13

MethodPattern, /2
mock_file, 9
mock_file(), 17,22

29

mocking-disk-writing, 7, 17
partial (including), 4

remove_request_stub, 10, /4, 15
remove_request_stub(), /6
request_registry, 12
request_registry(), 22
request_registry_clear
(request_registry), 12
request_registry_clear(), 26
RequestPattern, 10
RequestRegistry, 12
RequestSignature, 11

stub_body_diff, 13
stub_body_diff (), 25
stub_registry, 10, 14, 15
stub_registry(), 16
stub_registry_clear, 10, 14, 15
stub_registry_clear(), 16, 26
stub_request, 16
stub_request(), 17,21-23,27
StubbedRequest, 16
StubRegistry, 10, 14, 15

to_raise, 20
to_raise(), 17,22
to_return, 21
to_return(), 16, 17,24
to_return_, 24
to_timeout, 23
to_timeout(), 17, 22

UriPattern, 12, 16

webmockr-defunct, 24

webmockr_allow_net_connect
(webmockr_configure), 24

webmockr_configuration
(webmockr_configure), 24

30

webmockr_configure, 24

webmockr_configure(), 13

webmockr_configure_reset
(webmockr_configure), 24

webmockr_disable(), 24

webmockr_disable_net_connect
(webmockr_configure), 24

webmockr_enable(), 24

webmockr_net_connect_allowed
(webmockr_configure), 24

webmockr_reset, 25

webmockr_reset(), 22

wi_th, 26

wi_th(), 4, 16, 17,24

wi_th_, 24

INDEX

	enable
	httr2_mock
	httr_mock
	including
	last_request
	last_stub
	mocking-disk-writing
	mock_file
	remove_request_stub
	RequestPattern
	request_registry
	stub_body_diff
	stub_registry
	stub_registry_clear
	stub_request
	to_raise
	to_return
	to_timeout
	webmockr-defunct
	webmockr_configure
	webmockr_reset
	wi_th
	Index

