Package ‘weed’

October 17, 2023

Title Wrangler for Emergency Events Database
Version 1.1.2
Maintainer Ram Kripa <ram.m.kripa@berkeley.edu>

Description Makes research involving EMDAT and related datasets easier. These Datasets are manu-
ally filled and have several formatting and compatibility issues. Weed aims to re-
solve these with its functions.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.1

Imports readxl, dplyr, magrittr, tidytext, stringr, tibble, geonames,
countrycode, purrr, tidyr, forcats, ggplot2, sf, here

URL https://github.com/rammkripa/weed

BugReports https://github.com/rammkripa/weed/issues
NeedsCompilation no

Author Ram Kripa [aut, cre]

Repository CRAN

Date/Publication 2023-10-16 22:20:02 UTC

R topics documented:

geocode oL L e e 2
geocode_batches 3
located_in_boX e 4
located_in_shapefile 5
nest_locations e e e e e e e e e e e e e e 6
percent_located_disasters L. e 7
percent_located_locations 8
read_emdat L e 9
split_locations e e e 9
Index 11

https://github.com/rammkripa/weed
https://github.com/rammkripa/weed/issues

2 geocode

geocode GeoCodes text locations using the GeoNames API

Description

Uses the location_word and Country columns of the data frame to make queries to the geonames
API and geocode the locations in the dataset.

Note:
1. The Geonames API (for free accounts) limits you to 1000 queries an hour

2. You need a geonames username to make queries. You can learn more about that here

Usage

geocode(., n_results = 1, unwrap = FALSE, geonames_username)

Arguments
a data frame which has been locationized (see weed: : split_locations)
n_results number of lat/longs to get
unwrap if true, returns latl, lat2, Ingl, Ing2 etc. as different columns, otherwise one lat

column and 1 Ing column
geonames_username
Username for geonames API. More about getting one is in the note above.

Value

the same data frame with a lat column/columns and Ing column/columns

Examples

df <- tibble::tribble(

~value, ~location_word, ~Country,
"mumbai region, district of seattle, sichuan province”, "mumbai”,"India",
"mumbai region, district of seattle, sichuan province”, "seattle”, "USA"

)

geocode(df, n_results = 1, unwrap = TRUE, geonames_username = "rammkripa")

https://www.geonames.org/manual.html

geocode_batches 3

geocode_batches Geocode in batches

Description

Geocode in batches

Usage

geocode_batches(
batch_size = 990,
wait_time = 4800,
n_results = 1,
unwrap = FALSE,
geonames_username

)
Arguments

data frame

batch_size size of each batch to geocode

wait_time in seconds between batches Note: default batch_size and wait_time were set
to accomplish the geocoding task optimally within the constraints of geonames
free access

n_results same as geocode

unwrap as in geocode

geonames_username
as in geocode

Value

df geocoded

Examples

df <- tibble::tribble(

~value, ~location_word, ~Country,

"mumbai region, district of seattle, sichuan province”, "mumbai”,"India"”,

"mumbai region, district of seattle, sichuan province”, "seattle”, "USA",

"mumbai region, district of seattle, sichuan province”, "sichuan”, "China, People's Republic”

)

geocode_batches(df, batch_size = 2, wait_time = 0.4, geonames_username = "rammkripa”)

4 located_in_box

located_in_box Locations In the Box

Description

Creates a new column (in_box) that tells whether the lat/long is in a certain box or not.

Usage

located_in_box(
lat_column = "lat”,
lng_column = "1lng",
top_left_lat,
top_left_Ilng,
bottom_right_lat,
bottom_right_lng

)
Arguments
Data Frame that has been locationized. see weed: :split_locations
lat_column Name of column containing Latitude data
lng_column Name of column containing Longitude data

top_left_lat Latitude at top left corner of box

top_left_lng Longitude at top left corner of box
bottom_right_lat

Latitude at bottom right corner of box
bottom_right_lng

Longitude at bottom right corner of box

Value

A dataframe that contains the latlong box data

Examples

d <- tibble::tribble(

~value, ~location_word, ~Country, ~lat, ~1lng,

"city of new york”, "new york", "USA", 40.71427, -74.00597,
"kerala, chennai municipality, and san francisco”, "kerala", "India", 10.41667, 76.5,
"kerala, chennai municipality, and san francisco”, "chennai”, "India"”, 13.08784, 80.27847)
located_in_box(d, lat_column = "lat”,

lng_column = "1ng",

top_left_lat = 45,
bottom_right_lat = 12,
top_left_lng = -80,
bottom_right_lng = 90)

located_in_shapefile

located_in_shapefile Locations In the Shapefile

Description

Creates a new column (in_shape) that tells whether the lat/long is in a certain shapefile.

Usage

located_in_shapefile(

A

lat_column = "lat"”,
Ing_column = "1ng",
shapefile = NA,
shapefile_name = NA
)
Arguments
Data Frame that has been locationized. see weed: :split_locations
lat_column Name of column containing Latitude data
Ing_column Name of column containing Longitude data
shapefile The shapefile itself (either shapefile or shapefile_name must be provided)

shapefile_name
vided)

Value

Data Frame with the shapefile data as well as the previous data

Examples

Not run:

d <- tibble::tribble(

~value, ~location_word,

"city of new york”, "new york",
"kerala, chennai municipality, and san francisco”,
"kerala, chennai municipality, and san francisco”,
located_in_shapefile(d,

~Country,

"chennai”,

lat_column = "lat",
Ing_column = "lng",
shapefile_name = "~/dummy_name")

End(Not run)

~lat,

FileName/Path to shapefile (either shapefile or shapefile_name must be pro-

~1lng,
"USA", 40.71427, -74.00597,
"kerala”, "India", 10.41667, 76.5,
"India”, 13.08784, 80.2847)

nest_locations

nest_locations Nest Location Data into a column of Tibbles

Description

Nest Location Data into a column of Tibbles

Usage

nest_locations(

*

key_column = "Dis No",
columns_to_nest = c("location_word”, "lat", "lng"),
keep_nested_cols = FALSE
)
Arguments
Locationized data frame (see weed: : split_locations)
key_column Column name for Column that uniquely IDs each observation

columns_to_nest

Column names for Columns to nest inside the mini-dataframes
keep_nested_cols

Boolean to Keep the nested columns externally or not.

Value

Data Frame with A column of data frames

Examples

d <- tibble::tribble(
~value, ~location_word, ~Country, ~lat, ~1lng,

"city of new york"”,"new york","USA", <c(40.71427, 40.6501), c(-74.00597, -73.94958),

"kerala"”, "kerala”, "India",c(10.41667, 8.4855), c(76.5, 76.94924),

"chennai municipality”,"chennai”,"India", c(13.08784, 12.98833),c(80.27847, 80.16578),
"san francisco”, "san francisco”,"USA", c(37.77493, 37.33939), c(-122.41942, -121.89496))

nest_locations(d, key_column = "value")

percent_located_disasters 7

percent_located_disasters
Percent of Disasters Successfully Geocoded

Description

Tells us how successful the geocoding is.

How many of the disasters in this data frame have non NA coordinates?

Usage

percent_located_disasters(
how = "any",
lat_column = "lat”,
lng_column = "lng",
plot_result = TRUE

)
Arguments
Data Frame that has been locationized. see weed: :split_locations
how takes in a function, "any", or "all" to determine how to count the disaster as
being geocoded if any, at least one location must be coded, if all, all locations
must have lat/Ing if a function, it must take in a logical vector and return a single
logical
lat_column Name of column containing Latitude data
1ng_column Name of column containing Longitude data
plot_result Determines output type (Plot or Summarized Data Frame)
Value

The percent and number of Locations that have been geocoded (see plot_result for type of output)

Examples
d <- tibble::tribble(
~*Dis No‘, ~value, ~location_word, ~Country, ~lat, ~lng,
1, "city of new york"”, "new york", "USA", 40.71427, -74.00597,
2, "kerala, chennai municipality, and san francisco”, "kerala”, "India"”, 10.41667, 76.5,
2, "kerala, chennai municipality, and san francisco”, "chennai”, "India", 13.08784, 80.27847)
percent_located_disasters(d,
how = "any",
lat_column = "lat",
lng_column = "1ng”,

plot_result = FALSE)

8 percent_located_locations

percent_located_locations
Percent of Locations Successfully Geocoded

Description

Tells us how successful the geocoding is.

How many of the locations in this data frame have non NA coordinates?

Usage

percent_located_locations(

L]

lat_column = "lat"”,
lng_column = "1lng",
plot_result = TRUE
)
Arguments
Data Frame that has been locationized. see weed: :split_locations
lat_column Name of column containing Latitude data
1ng_column Name of column containing Longitude data
plot_result Determines output type (Plot or Summarized Data Frame)
Value

The percent and number of Locations that have been geocoded (see plot_result for type of output)

Examples

d <- tibble::tribble(

~value, ~location_word, ~Country, ~lat, ~1ng,

"city of new york”, "new york"”, "USA", 40.71427, -74.00597,
"kerala, chennai municipality, and san francisco”, "kerala”, "India"”, 10.41667, 76.5,
"kerala, chennai municipality, and san francisco”, "chennai”, "India", 13.08784, 80.27847)
percent_located_locations(d,

lat_column = "lat",

lng_column = "1ng",

plot_result = FALSE)

read_emdat 9

read_emdat Reads Excel Files obtained from EM-DAT Database

Description

Reads Excel files downloaded from the EMDAT Database linked here

Usage

read_emdat(path_to_file, file_data = TRUE)

Arguments

path_to_file A String, the Path to the file downloaded.

file_data A Boolean, Do you want information about the file and how it was created?

Value

Returns a list containing one or two tibbles, one for the Disaster Data, and one for File Metadata.

Examples

Not run:
read_emdat(path_to_file = "~/dummy”, file_data = TRUE)

End(Not run)

split_locations Splits string of manually entered locations into one row for each loca-
tion

Description

Changes the unit of analysis from a disaster, to a disaster-location. This is useful as preprocessing
before geocoding each disaster-location pair.

Can be used in piped operations, making it tidy!

Usage

split_locations(
)
column_name = "locations”,
dummy_words = c("cities”, "states"”, "provinces”, "districts”, "municipalities”,
"regions”, "villages"”, "city", "state"”, "province”, "district"”, "municipality”,
"region”, "township”, "village"”, "near"”, "department"),
joiner_regex = ", [\\(|\\) |;|\\+]|(and)| (of)"

https://public.emdat.be/

10 split_locations

Arguments
data frame of disaster data
column_name name of the column containing the locations
dummy_words a vector of words that we don’t want in our final output.

joiner_regex aregex that tells us how to split the locations

Value

same data frame with the location_word column added as well as a column called uncertain_location_specificity
where the same location could be referred to in varying levels of specificity

Examples

locs <- c("city of new york"”, "kerala, chennai municipality, and san francisco”,
"mumbai region, district of seattle, sichuan province")

d <- tibble::as_tibble(locs)

split_locations(d, column_name = "value")

Index

geocode, 2
geocode_batches, 3

located_in_box, 4
located_in_shapefile, 5

nest_locations, 6

percent_located_disasters, 7
percent_located_locations, 8

read_emdat, 9

split_locations, 9

11

	geocode
	geocode_batches
	located_in_box
	located_in_shapefile
	nest_locations
	percent_located_disasters
	percent_located_locations
	read_emdat
	split_locations
	Index

