The square root of 2 ain't rational

A Casual Talk By

Pete Agoras

Some centuries B.C.

A simple assumption

$$
\begin{aligned}
& \frac{a}{b}=\sqrt{2} \\
& \left(\frac{a}{b}\right)^{2}=2 \\
& \frac{a^{2}}{b^{2}}=2 \\
& a^{2}=2 b^{2} \\
& (2 k)^{2}=2 b^{2} \\
& 4 k^{2}=2 b^{2} \\
& 2 k^{2}=b^{2} \\
& \frac{a}{b} \neq \sqrt{2}
\end{aligned}
$$

Its consequences

- So what?

$$
\begin{gathered}
\frac{a}{b}=\sqrt{2} \\
\left(\frac{a}{b}\right)^{2}=2 \\
\frac{a^{2}}{b^{2}}=2 \\
a^{2}=2 b^{2} \\
(2 k)^{2}=2 b^{2} \\
4 k^{2}=2 b^{2} \\
2 k^{2}=b^{2} \\
\frac{a}{b} \neq \sqrt{2}
\end{gathered}
$$

The problem

－And but so we said a and b have no common factor．

$$
\begin{aligned}
& \frac{a}{b}=\sqrt{2} \\
& \left(\frac{a}{b}\right)^{2}=2 \\
& \frac{a^{2}}{b^{2}}=2 \\
& a^{2}=2 b^{2} \\
& (2 k)^{2}=2 b^{2} \\
& 4 k^{2}=2 b^{2} \\
& 2 k^{2}=b^{2} \\
& \frac{a}{b} \neq \sqrt{2}
\end{aligned}
$$

All fractions are reducible

- Suppose $\frac{c}{d}$ is a rational number. If c and d have no common factor, then $a=b$ and $b=d$. If they have a common factor, divide both by their greatest common divisor. The result is $\frac{a}{b}$, with no common factor.
- Back

An even square has an even root

■ An even number, by definition, is expressible in the form $2 k$, where k is any integer. On the other hand, an odd number is expressible by

$$
2 k+1
$$

Thus the square of an odd number is

$$
(2 k+1)^{2}
$$

i.e.

$$
4 k^{2}+4 k+1
$$

i.e.

$$
2 \times 2\left(k^{2}+k\right)+1
$$

which is of the form $2 k+1$ with $2\left(k^{2}+k\right)$ as k. Hence, an odd number produces an odd square, and thus if a square is even its root is even too.

- Back

■ You might have noticed that this page is slightly scaled to accommodate its content to the slide's declared vsize parameter. Actually, it is scaled because I stretch this paragraph so as to have too much content. Which is kind of paradoxical. Or just opportunistic.

