
RFC 8995
Bootstrapping Remote Secure Key Infrastructure
(BRSKI)

Abstract
This document specifies automated bootstrapping of an Autonomic Control Plane. To do this, a
Secure Key Infrastructure is bootstrapped. This is done using manufacturer-installed X.509
certificates, in combination with a manufacturer's authorizing service, both online and offline.
We call this process the Bootstrapping Remote Secure Key Infrastructure (BRSKI) protocol.
Bootstrapping a new device can occur when using a routable address and a cloud service, only
link-local connectivity, or limited/disconnected networks. Support for deployment models with
less stringent security requirements is included. Bootstrapping is complete when the
cryptographic identity of the new key infrastructure is successfully deployed to the device. The
established secure connection can be used to deploy a locally issued certificate to the device as
well.

Stream: Internet Engineering Task Force (IETF)
RFC: 8995
Category: Standards Track
Published: May 2021 
ISSN: 2070-1721
Authors:

     M. Pritikin
Cisco

M. Richardson
Sandelman Software Works

T. Eckert
Futurewei USA

M. Behringer K. Watsen
Watsen Networks

Status of This Memo 
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8995

Copyright Notice 
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

Pritikin, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8995
https://www.rfc-editor.org/info/rfc8995


This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents ( ) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Table of Contents 
1.  Introduction

1.1.  Prior Bootstrapping Approaches

1.2.  Terminology

1.3.  Scope of Solution

1.3.1.  Support Environment

1.3.2.  Constrained Environments

1.3.3.  Network Access Controls

1.3.4.  Bootstrapping is Not Booting

1.4.  Leveraging the New Key Infrastructure / Next Steps

1.5.  Requirements for Autonomic Networking Infrastructure (ANI) Devices

2.  Architectural Overview

2.1.  Behavior of a Pledge

2.2.  Secure Imprinting Using Vouchers

2.3.  Initial Device Identifier

2.3.1.  Identification of the Pledge

2.3.2.  MASA URI Extension

2.4.  Protocol Flow

2.5.  Architectural Components

2.5.1.  Pledge

2.5.2.  Join Proxy

2.5.3.  Domain Registrar

2.5.4.  Manufacturer Service

2.5.5.  Public Key Infrastructure (PKI)

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 2

https://trustee.ietf.org/license-info


2.6.  Certificate Time Validation

2.6.1.  Lack of Real-Time Clock

2.6.2.  Infinite Lifetime of IDevID

2.7.  Cloud Registrar

2.8.  Determining the MASA to Contact

3.  Voucher-Request Artifact

3.1.  Nonceless Voucher-Requests

3.2.  Tree Diagram

3.3.  Examples

3.4.  YANG Module

4.  Proxying Details (Pledge -- Proxy -- Registrar)

4.1.  Pledge Discovery of Proxy

4.1.1.  Proxy GRASP Announcements

4.2.  CoAP Connection to Registrar

4.3.  Proxy Discovery and Communication of Registrar

5.  Protocol Details (Pledge -- Registrar -- MASA)

5.1.  BRSKI-EST TLS Establishment Details

5.2.  Pledge Requests Voucher from the Registrar

5.3.  Registrar Authorization of Pledge

5.4.  BRSKI-MASA TLS Establishment Details

5.4.1.  MASA Authentication of Customer Registrar

5.5.  Registrar Requests Voucher from MASA

5.5.1.  MASA Renewal of Expired Vouchers

5.5.2.  MASA Pinning of Registrar

5.5.3.  MASA Check of the Voucher-Request Signature

5.5.4.  MASA Verification of the Domain Registrar

5.5.5.  MASA Verification of the Pledge 'prior-signed-voucher-request'

5.5.6.  MASA Nonce Handling

5.6.  MASA and Registrar Voucher Response

5.6.1.  Pledge Voucher Verification

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 3



5.6.2.  Pledge Authentication of Provisional TLS Connection

5.7.  Pledge BRSKI Status Telemetry

5.8.  Registrar Audit-Log Request

5.8.1.  MASA Audit-Log Response

5.8.2.  Calculation of domainID

5.8.3.  Registrar Audit-Log Verification

5.9.  EST Integration for PKI Bootstrapping

5.9.1.  EST Distribution of CA Certificates

5.9.2.  EST CSR Attributes

5.9.3.  EST Client Certificate Request

5.9.4.  Enrollment Status Telemetry

5.9.5.  Multiple Certificates

5.9.6.  EST over CoAP

6.  Clarification of Transfer-Encoding

7.  Reduced Security Operational Modes

7.1.  Trust Model

7.2.  Pledge Security Reductions

7.3.  Registrar Security Reductions

7.4.  MASA Security Reductions

7.4.1.  Issuing Nonceless Vouchers

7.4.2.  Trusting Owners on First Use

7.4.3.  Updating or Extending Voucher Trust Anchors

8.  IANA Considerations

8.1.  The IETF XML Registry

8.2.  YANG Module Names Registry

8.3.  BRSKI Well-Known Considerations

8.3.1.  BRSKI .well-known Registration

8.3.2.  BRSKI .well-known Registry

8.4.  PKIX Registry

8.5.  Pledge BRSKI Status Telemetry

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 4



8.6.  DNS Service Names

8.7.  GRASP Objective Names

9.  Applicability to the Autonomic Control Plane (ACP)

9.1.  Operational Requirements

9.1.1.  MASA Operational Requirements

9.1.2.  Domain Owner Operational Requirements

9.1.3.  Device Operational Requirements

10. Privacy Considerations

10.1.  MASA Audit-Log

10.2.  What BRSKI-EST Reveals

10.3.  What BRSKI-MASA Reveals to the Manufacturer

10.4.  Manufacturers and Used or Stolen Equipment

10.5.  Manufacturers and Grey Market Equipment

10.6.  Some Mitigations for Meddling by Manufacturers

10.7.  Death of a Manufacturer

11. Security Considerations

11.1.  Denial of Service (DoS) against MASA

11.2.  DomainID Must Be Resistant to Second-Preimage Attacks

11.3.  Availability of Good Random Numbers

11.4.  Freshness in Voucher-Requests

11.5.  Trusting Manufacturers

11.6.  Manufacturer Maintenance of Trust Anchors

11.6.1.  Compromise of Manufacturer IDevID Signing Keys

11.6.2.  Compromise of MASA Signing Keys

11.6.3.  Compromise of MASA Web Service

11.7.  YANG Module Security Considerations

12. References

12.1.  Normative References

12.2.  Informative References

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 5



1. Introduction 
The Bootstrapping Remote Secure Key Infrastructure (BRSKI) protocol provides a solution for
secure zero-touch (automated) bootstrap of new (unconfigured) devices that are called "pledges"
in this document. Pledges have an Initial Device Identifier (IDevID) installed in them at the
factory.

"BRSKI", pronounced like "brewski", is a colloquial term for beer in Canada and parts of the
Midwestern United States .

This document primarily provides for the needs of the ISP and enterprise-focused Autonomic
Networking Integrated Model and Approach (ANIMA) Autonomic Control Plane (ACP) .
This bootstrap process satisfies the requirement of making all operations secure by default per 

. Other users of the BRSKI protocol will need to provide separate
applicability statements that include privacy and security considerations appropriate to that
deployment. Section 9 explains the detailed applicability for this ACP usage.

Appendix A.  IPv4 and Non-ANI Operations

A.1.  IPv4 Link-Local Addresses

A.2.  Use of DHCPv4

Appendix B.  mDNS / DNS-SD Proxy Discovery Options

Appendix C.  Example Vouchers

C.1.  Keys Involved

C.1.1.  Manufacturer Certification Authority for IDevID Signatures

C.1.2.  MASA Key Pair for Voucher Signatures

C.1.3.  Registrar Certification Authority

C.1.4.  Registrar Key Pair

C.1.5.  Pledge Key Pair

C.2.  Example Process

C.2.1.  Pledge to Registrar

C.2.2.  Registrar to MASA

C.2.3.  MASA to Registrar

Acknowledgements

Authors' Addresses

[brewski]

[RFC8994]

Section 3.3 of [RFC7575]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc7575#section-3.3


The BRSKI protocol requires a significant amount of communication between manufacturer and
owner: in its default modes, it provides a cryptographic transfer of control to the initial owner. In
its strongest modes, it leverages sales channel information to identify the owner in advance.
Resale of devices is possible, provided that the manufacturer is willing to authorize the transfer.
Mechanisms to enable transfers of ownership without manufacturer authorization are not
included in this version of the protocol, but it could be designed into future versions.

This document describes how a pledge discovers (or are discovered by) an element of the
network domain that it will belong to and that will perform its bootstrap. This element (device) is
called the "registrar". Before any other operation, the pledge and registrar need to establish
mutual trust:

Registrar authenticating the pledge: "Who is this device? What is its identity?" 
Registrar authorizing the pledge: "Is it mine? Do I want it? What are the chances it has been
compromised?" 
Pledge authenticating the registrar: "What is this registrar's identity?" 
Pledge authorizing the registrar: "Should I join this network?" 

This document details protocols and messages to answer the above questions. It uses a TLS
connection and a PKIX-shaped (X.509v3) certificate (an IEEE 802.1AR IDevID ) of the
pledge to answer points 1 and 2. It uses a new artifact called a "voucher" that the registrar
receives from a Manufacturer Authorized Signing Authority (MASA) and passes it to the pledge to
answer points 3 and 4.

A proxy provides very limited connectivity between the pledge and the registrar.

The syntactic details of vouchers are described in detail in . This document details
automated protocol mechanisms to obtain vouchers, including the definition of a "voucher-
request" message that is a minor extension to the voucher format (see Section 3) as defined by 

.

BRSKI results in the pledge storing an X.509 root certificate sufficient for verifying the registrar
identity. In the process, a TLS connection is established that can be directly used for Enrollment
over Secure Transport (EST). In effect, BRSKI provides an automated mechanism for "Bootstrap
Distribution of CA Certificates" described in , wherein the pledge "
[...] engage a human user to authorize the CA certificate using out-of-band data". With BRSKI, the
pledge now can automate this process using the voucher. Integration with a complete EST
enrollment is optional but trivial.

BRSKI is agile enough to support bootstrapping alternative key infrastructures, such as a
symmetric key solution, but no such system is described in this document.

1.1. Prior Bootstrapping Approaches 
To literally "pull yourself up by the bootstraps" is an impossible action. Similarly, the secure
establishment of a key infrastructure without external help is also an impossibility. Today, it is
commonly accepted that the initial connections between nodes are insecure, until key

1. 
2. 

3. 
4. 

[IDevID]

[RFC8366]

[RFC8366]

[RFC7030], Section 4.1.1 MUST

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc7030#section-4.1.1


ANI:

distribution is complete, or that domain-specific keying material (often pre-shared keys,
including mechanisms like Subscriber Identification Module (SIM) cards) is pre-provisioned on
each new device in a costly and non-scalable manner. Existing automated mechanisms are
known as non-secured "Trust on First Use (TOFU)" , "resurrecting duckling" 

, or "pre-staging".

Another prior approach has been to try and minimize user actions during bootstrapping, but not
eliminate all user actions. The original EST protocol  does reduce user actions during
bootstrapping but does not provide solutions for how the following protocol steps can be made
autonomic (not involving user actions):

using the Implicit Trust Anchor (TA)  database to authenticate an owner-specific
service (not an autonomic solution because the URL must be securely distributed), 
engaging a human user to authorize the CA certificate using out-of-band data (not an
autonomic solution because the human user is involved), 
using a configured Explicit TA database (not an autonomic solution because the distribution
of an explicit TA database is not autonomic), and 
using a certificate-less TLS mutual authentication method (not an autonomic solution
because the distribution of symmetric key material is not autonomic). 

These "touch" methods do not meet the requirements for zero-touch.

There are "call home" technologies where the pledge first establishes a connection to a well-
known manufacturer service using a common client-server authentication model. After mutual
authentication, appropriate credentials to authenticate the target domain are transferred to the
pledge. This creates several problems and limitations:

the pledge requires real-time connectivity to the manufacturer service, 
the domain identity is exposed to the manufacturer service (this is a privacy concern), and 
the manufacturer is responsible for making the authorization decisions (this is a liability
concern). 

BRSKI addresses these issues by defining extensions to the EST protocol for the automated
distribution of vouchers.

1.2. Terminology 
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14   when, and only when, they appear in
all capitals, as shown here.

The following terms are defined for clarity:

The Autonomic Networking Infrastructure as defined by . Section 9 details
specific requirements for pledges, proxies, and registrars when they are part of an ANI. 

[RFC7435]
[Stajano99theresurrecting]

[RFC7030]

• [RFC7030]

• 

• 

• 

• 
• 
• 

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC8993]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 8



Circuit Proxy:

drop-ship:

Domain:

Domain CA:

domainID:

enrollment:

IDevID:

imprint:

IPIP Proxy:

Join Proxy:

Join Registrar (and Coordinator):

LDevID:

A stateful implementation of the Join Proxy. This is the assumed type of proxy. 

The physical distribution of equipment containing the "factory default"
configuration to a final destination. In zero-touch scenarios, there is no staging or
preconfiguration during drop-ship. 

The set of entities that share a common local trust anchor. This includes the proxy,
registrar, domain CA, management components, and any existing entity that is already a
member of the domain. 

The domain Certification Authority (CA) provides certification functionalities to the
domain. At a minimum, it provides certification functionalities to a registrar and manages the
private key that defines the domain. Optionally, it certifies all elements. 

The domain IDentity is a unique value based upon the registrar's CA certificate. 
Section 5.8.2 specifies how it is calculated. 

The process where a device presents key material to a network and acquires a
network-specific identity. For example, when a certificate signing request is presented to a CA,
and a certificate is obtained in response. 

An Initial Device Identifier X.509 certificate installed by the vendor on new equipment.
This is a term from 802.1AR . 

The process where a device obtains the cryptographic key material to identify and
trust future interactions with a network. This term is taken from Konrad Lorenz's work in
biology with new ducklings: during a critical period, the duckling would assume that anything
that looks like a mother duck is in fact their mother. An equivalent for a device is to obtain
the fingerprint of the network's root CA certificate. A device that imprints on an attacker
suffers a similar fate to a duckling that imprints on a hungry wolf. Securely imprinting is a
primary focus of this document . The analogy to Lorenz's work was first noted in 

. 

A stateless proxy alternative. 

A domain entity that helps the pledge join the domain. A Join Proxy facilitates
communication for devices that find themselves in an environment where they are not
provided connectivity until after they are validated as members of the domain. For simplicity,
this document sometimes uses the term of "proxy" to indicate the Join Proxy. The pledge is
unaware that they are communicating with a proxy rather than directly with a registrar. 

A representative of the domain that is configured, perhaps
autonomically, to decide whether a new device is allowed to join the domain. The
administrator of the domain interfaces with a "Join Registrar (and Coordinator)" to control
this process. Typically, a Join Registrar is "inside" its domain. For simplicity, this document
often refers to this as just "registrar". Within , it is referred to as the "Join Registrar
Autonomic Service Agent (ASA)". Other communities use the abbreviation "JRC". 

A Local Device Identifier X.509 certificate installed by the owner of the equipment.
This is a term from 802.1AR . 

[IDevID]

[imprinting]
[Stajano99theresurrecting]

[RFC8993]

[IDevID]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 9



manufacturer:

MASA Audit-Log:

MASA Service:

nonced:

nonceless:

offline:

Ownership Tracker:

Pledge:

(Public) Key Infrastructure:

TOFU:

Voucher:

The term manufacturer is used throughout this document as the entity that
created the device. This is typically the original equipment manufacturer (OEM), but in more
complex situations, it could be a value added retailer (VAR), or possibly even a systems
integrator. In general, a goal of BRSKI is to eliminate small distinctions between different
sales channels. The reason for this is that it permits a single device, with a uniform firmware
load, to be shipped directly to all customers. This eliminates costs for the manufacturer. This
also reduces the number of products supported in the field, increasing the chance that
firmware will be more up to date. 

An anonymized list of previous owners maintained by the MASA on a per-
device (per-pledge) basis, as described in Section 5.8.1. 

A third-party MASA service on the global Internet. The MASA signs vouchers. It
also provides a repository for audit-log information of privacy-protected bootstrapping
events. It does not track ownership. 

A voucher (or request) that contains a nonce (the normal case). 

A voucher (or request) that does not contain a nonce and either relies upon accurate
clocks for expiration or does not expire. 

When an architectural component cannot perform real-time communications with a
peer, due to either network connectivity or the peer being turned off, the operation is said to
be occurring offline. 

An Ownership Tracker service on the global Internet. The Ownership
Tracker uses business processes to accurately track ownership of all devices shipped against
domains that have purchased them. Although optional, this component allows vendors to
provide additional value in cases where their sales and distribution channels allow for
accurate tracking of such ownership. Tracking information about ownership is indicated in
vouchers, as described in . 

The prospective (unconfigured) device, which has an identity installed at the factory. 

The collection of systems and processes that sustains the activities
of a public key system. The registrar acts as a "Registration Authority"; see  and 

. 

Trust on First Use. Used similarly to how it is described in . This is where a
pledge device makes no security decisions but rather simply trusts the first registrar it is
contacted by. This is also known as the "resurrecting duckling" model. 

A signed artifact from the MASA that indicates the cryptographic identity of the
registrar it should trust to a pledge. There are different types of vouchers depending on how
that trust is asserted. Multiple voucher types are defined in . 

[RFC8366]

[RFC5280]
Section 7 of [RFC5272]

[RFC7435]

[RFC8366]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc5272#section-7


1.3. Scope of Solution 
1.3.1. Support Environment 

This solution (BRSKI) can support large router platforms with multi-gigabit inter-connections,
mounted in controlled access data centers. But this solution is not exclusive to large equipment:
it is intended to scale to thousands of devices located in hostile environments, such as ISP-
provided Customer Premises Equipment (CPE) devices that are drop-shipped to the end user. The
situation where an order is fulfilled from a distributed warehouse from a common stock and
shipped directly to the target location at the request of a domain owner is explicitly supported.
That stock ("SKU") could be provided to a number of potential domain owners, and the eventual
domain owner will not know a priori which device will go to which location.

The bootstrapping process can take minutes to complete depending on the network
infrastructure and device processing speed. The network communication itself is not optimized
for speed; for privacy reasons, the discovery process allows for the pledge to avoid announcing
its presence through broadcasting.

Nomadic or mobile devices often need to acquire credentials to access the network at the new
location. An example of this is mobile phone roaming among network operators, or even
between cell towers. This is usually called "handoff". BRSKI does not provide a low-latency
handoff, which is usually a requirement in such situations. For these solutions, BRSKI can be
used to create a relationship (an LDevID) with the "home" domain owner. The resulting
credentials are then used to provide credentials more appropriate for a low-latency handoff.

1.3.2. Constrained Environments 

Questions have been posed as to whether this solution is suitable in general for Internet of
Things (IoT) networks. This depends on the capabilities of the devices in question. The
terminology of  is best used to describe the boundaries.

The solution described in this document is aimed in general at non-constrained (i.e., Class 2+ 
) devices operating on a non-challenged network. The entire solution as described here

is not intended to be usable as is by constrained devices operating on challenged networks (such
as 802.15.4 Low-Power and Lossy Networks (LLNs)).

Specifically, there are protocol aspects described here that might result in congestion collapse or
energy exhaustion of intermediate battery-powered routers in an LLN. Those types of networks
should not use this solution. These limitations are predominately related to the large credential
and key sizes required for device authentication. Defining symmetric key techniques that meet
the operational requirements is out of scope, but the underlying protocol operations (TLS
handshake and signing structures) have sufficient algorithm agility to support such techniques
when defined.

The imprint protocol described here could, however, be used by non-energy constrained devices
joining a non-constrained network (for instance, smart light bulbs are usually mains powered
and use 802.11 wireless technology). It could also be used by non-constrained devices across a

[RFC7228]

[RFC7228]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 11



non-energy constrained, but challenged, network (such as 802.15.4). The certificate contents, and
the process by which the four questions above are resolved, do apply to constrained devices. It is
simply the actual on-the-wire imprint protocol that could be inappropriate.

1.3.3. Network Access Controls 

This document presumes that network access control has already occurred, is not required, or is
integrated by the proxy and registrar in such a way that the device itself does not need to be
aware of the details. Although the use of an X.509 IDevID is consistent with IEEE 802.1AR 

, and allows for alignment with 802.1X network access control methods, its use here is
for pledge authentication rather than network access control. Integrating this protocol with
network access control, perhaps as an Extensible Authentication Protocol (EAP) method (see 

), is out of scope for this document.

1.3.4. Bootstrapping is Not Booting 

This document describes "bootstrapping" as the protocol used to obtain a local trust anchor. It is
expected that this trust anchor, along with any additional configuration information
subsequently installed, is persisted on the device across system restarts ("booting").
Bootstrapping occurs only infrequently such as when a device is transferred to a new owner or
has been reset to factory default settings.

[IDevID]

[RFC3748]

1.4. Leveraging the New Key Infrastructure / Next Steps 
As a result of the protocol described herein, bootstrapped devices have the domain CA trust
anchor in common. An end-entity (EE) certificate has optionally been issued from the domain CA.
This makes it possible to securely deploy functionalities across the domain; for example:

Device management 
Routing authentication 
Service discovery 

The major intended benefit is the ability to use the credentials deployed by this protocol to
secure the Autonomic Control Plane (ACP) .

• 
• 
• 

[RFC8994]

1.5. Requirements for Autonomic Networking Infrastructure (ANI) Devices 
The BRSKI protocol can be used in a number of environments. Some of the options in this
document are the result of requirements that are out of the ANI scope. This section defines the
base requirements for ANI devices.

For devices that intend to become part of an ANI  that includes an Autonomic Control
Plane , the BRSKI protocol  be implemented.

The pledge must perform discovery of the proxy as described in Section 4.1 using the Discovery
Unsolicited Link-Local (DULL)  M_FLOOD announcements of the GeneRic Autonomic
Signaling Protocol (GRASP).

[RFC8993]
[RFC8994] MUST

[RFC8990]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 12



2. Architectural Overview 
The logical elements of the bootstrapping framework are described in this section. Figure 1
provides a simplified overview of the components.

Upon successfully validating a voucher artifact, a status telemetry  be returned; see Section
5.7.

An ANIMA ANI pledge  implement the EST automation extensions described in Section 5.9.
They supplement the EST  to better support automated devices that do not have an end
user.

The ANI Join Registrar ASA  support all the BRSKI and above-listed EST operations.

All ANI devices  support the BRSKI proxy function, using Circuit Proxies over the
Autonomic Control Plane (ACP) (see Section 4.3).

MUST

MUST
[RFC7030]

MUST

SHOULD

Figure 1: Architecture Overview 

                                           +------------------------+
   +--------------Drop-Ship----------------| Vendor Service         |
   |                                       +------------------------+
   |                                       | M anufacturer|         |
   |                                       | A uthorized  |Ownership|
   |                                       | S igning     |Tracker  |
   |                                       | A uthority   |         |
   |                                       +--------------+---------+
   |                                                      ^
   |                                                      |  BRSKI-
   V                                                      |   MASA
+-------+     ............................................|...
|       |     .                                           |  .
|       |     .  +------------+       +-----------+       |  .
|       |     .  |            |       |           |       |  .
|Pledge |     .  |   Join     |       | Domain    <-------+  .
|       |     .  |   Proxy    |       | Registrar |          .
|       <-------->............<-------> (PKI RA)  |          .
|       |        |        BRSKI-EST   |           |          .
|       |     .  |            |       +-----+-----+          .
|IDevID |     .  +------------+             | e.g., RFC 7030 .
|       |     .           +-----------------+----------+     .
|       |     .           | Key Infrastructure         |     .
|       |     .           | (e.g., PKI CA)             |     .
+-------+     .           |                            |     .
              .           +----------------------------+     .
              .                                              .
              ................................................
                            "Domain" Components

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 13



We assume a multivendor network. In such an environment, there could be a manufacturer
service for each manufacturer that supports devices following this document's specification, or
an integrator could provide a generic service authorized by multiple manufacturers. It is
unlikely that an integrator could provide ownership tracking services for multiple
manufacturers due to the required sales channel integrations necessary to track ownership.

The domain is the managed network infrastructure with a key infrastructure that the pledge is
joining. The domain provides initial device connectivity sufficient for bootstrapping through a
proxy. The domain registrar authenticates the pledge, makes authorization decisions, and
distributes vouchers obtained from the manufacturer service. Optionally, the registrar also acts
as a PKI CA.

2.1. Behavior of a Pledge 
The pledge goes through a series of steps, which are outlined here at a high level.

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 14



State descriptions for the pledge are as follows:

Discover a communication channel to a registrar. 
Identify itself. This is done by presenting an X.509 IDevID credential to the discovered
registrar (via the proxy) in a TLS handshake. (The registrar credentials are only provisionally
accepted at this time.) 
Request to join the discovered registrar. A unique nonce is included, ensuring that any
responses can be associated with this particular bootstrapping attempt. 
Imprint on the registrar. This requires verification of the manufacturer-service-provided
voucher. A voucher contains sufficient information for the pledge to complete authentication
of a registrar. This document details this step in depth. 
Enroll. After imprint, an authenticated TLS (HTTPS) connection exists between the pledge
and registrar. EST  can then be used to obtain a domain certificate from a registrar.

Figure 2: Pledge State Diagram 

               ------------
              /  Factory   \
              \  default   /
               -----+------
                    |
             +------v-------+
             | (1) Discover |
+------------>              |
|            +------+-------+
|                   |
|            +------v-------+
|            | (2) Identify |
^------------+              |
| rejected   +------+-------+
|                   |
|            +------v-------+
|            | (3) Request  |
|            |     Join     |
|            +------+-------+
|                   |
|            +------v-------+
|            | (4) Imprint  |
^------------+              |
| Bad MASA   +------+-------+
| response          |  send Voucher Status Telemetry
|            +------v-------+
|            | (5) Enroll   |<---+ (non-error HTTP codes)
^------------+              |\___/ (e.g., 202 "Retry-After")
| Enroll     +------+-------+
| failure           |
|              -----v------
|             /  Enrolled  \
^------------+             |
 Factory      \------------/
 reset

1. 
2. 

3. 

4. 

5. 
[RFC7030]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 15



The pledge is now a member of, and can be managed by, the domain and will only repeat the
discovery aspects of bootstrapping if it is returned to factory default settings.

This specification details integration with EST enrollment so that pledges can optionally obtain a
locally issued certificate, although any Representational State Transfer (REST) (see )
interface could be integrated in future work.

2.2. Secure Imprinting Using Vouchers 
A voucher is a cryptographically protected artifact (using a digital signature) to the pledge device
authorizing a zero-touch imprint on the registrar domain.

The format and cryptographic mechanism of vouchers is described in detail in .

Vouchers provide a flexible mechanism to secure imprinting: the pledge device only imprints
when a voucher can be validated. At the lowest security levels, the MASA can indiscriminately
issue vouchers and log claims of ownership by domains. At the highest security levels, issuance
of vouchers can be integrated with complex sales channel integrations that are beyond the scope
of this document. The sales channel integration would verify actual (legal) ownership of the
pledge by the domain. This provides the flexibility for a number of use cases via a single common
protocol mechanism on the pledge and registrar devices that are to be widely deployed in the
field. The MASA services have the flexibility to either leverage the currently defined claim
mechanisms or experiment with higher or lower security levels.

Vouchers provide a signed but non-encrypted communication channel among the pledge, the
MASA, and the registrar. The registrar maintains control over the transport and policy decisions,
allowing the local security policy of the domain network to be enforced.

[REST]

[RFC8366]

2.3. Initial Device Identifier 
Pledge authentication and pledge voucher-request signing is via a PKIX-shaped certificate
installed during the manufacturing process. This is the 802.1AR IDevID, and it provides a basis
for authenticating the pledge during the protocol exchanges described here. There is no
requirement for a common root PKI hierarchy. Each device manufacturer can generate its own
root certificate. Specifically, the IDevID enables:

Uniquely identifying the pledge by the Distinguished Name (DN) and subjectAltName (SAN)
parameters in the IDevID. The unique identification of a pledge in the voucher objects are
derived from those parameters as described below. Section 10.3 discusses privacy
implications of the identifier. 
Providing a cryptographic authentication of the pledge to the registrar (see Section 5.3). 
Securing auto-discovery of the pledge's MASA by the registrar (see Section 2.8). 
Signing of a voucher-request by the pledge's IDevID (see Section 3). 
Providing a cryptographic authentication of the pledge to the MASA (see Section 5.5.5). 

• 

• 
• 
• 
• 

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 16



Sections 7.2.13 (2009 edition) and 8.10.3 (2018 edition) of  discuss keyUsage and
extendedKeyUsage extensions in the IDevID certificate.  acknowledges that adding
restrictions in the certificate limits applicability of these long-lived certificates. This specification
emphasizes this point and therefore RECOMMENDS that no key usage restrictions be included.
This is consistent with , which does not require key usage restrictions
for end-entity certificates.

[IDevID]
[IDevID]

[RFC5280], Section 4.2.1.3

2.3.1. Identification of the Pledge 

In the context of BRSKI, pledges have a 1:1 relationship with a "serial-number". This serial-
number is used both in the serial-number field of a voucher or voucher-requests (see Section 3)
and in local policies on the registrar or MASA (see Section 5).

There is a (certificate) serialNumber field defined in . In ASN.1, this is
referred to as the CertificateSerialNumber. This field is NOT relevant to this specification. Do not
confuse this field with the serial-number defined by this document, or by  and 

.

The device serial number is defined in  as the X520SerialNumber, with
the OID tag id-at-serialNumber.

The device serialNumber field (X520SerialNumber) is used as follows by the pledge to build the 
serial-number that is placed in the voucher-request. In order to build it, the fields need to be
converted into a serial-number of "type string".

An example of a printable form of the serialNumber field is provided in 
("WI-3005"). That section further provides equality and syntax attributes.

Due to the reality of existing device identity provisioning processes, some manufacturers have
stored serial-numbers in other fields. Registrars  be configurable, on a per-manufacturer
basis, to look for serial-number equivalents in other fields.

As explained in Section 5.5, the registrar  again extract the serialNumber itself from the
pledge's TLS certificate. It can consult the serial-number in the pledge request if there is any
possible confusion about the source of the serial-number.

[RFC5280], Section 4.1.2.2

[IDevID]
[RFC4519], Section 2.31

Appendix A.1 of [RFC5280]

[RFC4519], Section 2.31

SHOULD

MUST

2.3.2. MASA URI Extension 

This document defines a new PKIX non-critical certificate extension to carry the MASA URI. This
extension is intended to be used in the IDevID certificate. The URI is represented as described in 

.

The URI provides the authority information. The BRSKI "/.well-known" tree  is
described in Section 5.

Section 7.4 of [RFC5280]

[RFC8615]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 17

https://www.rfc-editor.org/rfc/rfc5280#section-4.2.1.3
https://www.rfc-editor.org/rfc/rfc5280#section-4.1.2.2
https://www.rfc-editor.org/rfc/rfc4519#section-2.31
https://www.rfc-editor.org/rfc/rfc5280#appendix-A.1
https://www.rfc-editor.org/rfc/rfc4519#section-2.31
https://www.rfc-editor.org/rfc/rfc5280#section-7.4


A complete URI  be in this extension, including the "scheme", "authority", and "path". The
complete URI will typically be used in diagnostic or experimental situations. Typically (and in
consideration to constrained systems), this  be reduced to only the "authority", in which
case a scheme of "https://" (see ) and a "path" of "/.well-known/brski" is to
be assumed.

The registrar can assume that only the "authority" is present in the extension, if there are no
slash ("/") characters in the extension.

 calls out various schemes that  be supported, including the
Lightweight Directory Access Protocol (LDAP), HTTP, and FTP. However, the registrar  use
HTTPS for the BRSKI-MASA connection.

The new extension is identified as follows:

MAY

SHOULD
[RFC7230], Section 2.7.3

Section 7.4 of [RFC5280] MUST
MUST

Figure 3: MASAURL ASN.1 Module 

<CODE BEGINS>
MASAURLExtnModule-2016 { iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7)
id-mod(0) id-mod-MASAURLExtn2016(96) }

DEFINITIONS IMPLICIT TAGS ::= BEGIN

-- EXPORTS ALL --

IMPORTS
EXTENSION
FROM PKIX-CommonTypes-2009
  { iso(1) identified-organization(3) dod(6) internet(1)
    security(5) mechanisms(5) pkix(7) id-mod(0)
    id-mod-pkixCommon-02(57) }

id-pe FROM PKIX1Explicit-2009
  { iso(1) identified-organization(3) dod(6) internet(1)
     security(5) mechanisms(5) pkix(7) id-mod(0)
     id-mod-pkix1-explicit-02(51) } ;

MASACertExtensions EXTENSION ::= { ext-MASAURL, ... }
ext-MASAURL EXTENSION ::= { SYNTAX MASAURLSyntax
IDENTIFIED BY id-pe-masa-url }

id-pe-masa-url OBJECT IDENTIFIER ::= { id-pe 32 }

MASAURLSyntax ::= IA5String

END

<CODE ENDS>

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 18

https://www.rfc-editor.org/rfc/rfc7230#section-2.7.3
https://www.rfc-editor.org/rfc/rfc5280#section-7.4


The choice of id-pe is based on guidance found in : "These extensions
may be used to direct applications to on-line information about the issuer or the subject". The
MASA URL is precisely that: online information about the particular subject.

Section 4.2.2 of [RFC5280]

2.4. Protocol Flow 
A representative flow is shown in Figure 4.

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 19

https://www.rfc-editor.org/rfc/rfc5280#section-4.2.2


On initial bootstrap, a new device (the pledge) uses a local service auto-discovery (the GeneRic
Autonomic Signaling Protocol (GRASP) or Multicast DNS (mDNS)) to locate a Join Proxy. The Join
Proxy connects the pledge to a local registrar (the JRC).

Having found a candidate registrar, the fledgling pledge sends some information about itself to
the registrar, including its serial number in the form of a voucher-request and its IDevID
certificate as part of the TLS session.

Figure 4: Protocol Time Sequence Diagram 

+--------+         +---------+    +------------+     +------------+
| Pledge |         | Circuit |    | Domain     |     | Vendor     |
|        |         | Join    |    | Registrar  |     | Service    |
|        |         | Proxy   |    |  (JRC)     |     | (MASA)     |
+--------+         +---------+    +------------+     +------------+
  |                     |                   |           Internet |
[discover]              |                   |                    |
  |<-RFC 4862 IPv6 addr |                   |                    |
  |<-RFC 3927 IPv4 addr | Appendix A        |  Legend            |
  |-++++++++++++++++++->|                   | C - Circuit        |
  | optional: mDNS query| Appendix B        |     Join Proxy     |
  | RFCs 6763/6762 (+)  |                   | P - Provisional TLS|
  |<-++++++++++++++++++-|                   |     Connection     |
  | GRASP M_FLOOD       |                   |                    |
  |   periodic broadcast|                   |                    |
[identity]              |                   |                    |
  |<------------------->C<----------------->|                    |
  |         TLS via the Join Proxy          |                    |
  |<--Registrar TLS server authentication---|                    |
[PROVISIONAL accept of server cert]         |                    |
  P---X.509 client authentication---------->|                    |
[request join]                              |                    |
  P---Voucher-Request(w/nonce for voucher)->|                    |
  P                  /-------------------   |                    |
  P                  |                 [accept device?]          |
  P                  |                 [contact vendor]          |
  P                  |                      |--Pledge ID-------->|
  P                  |                      |--Domain ID-------->|
  P                  |                      |--optional:nonce--->|
  P              optional:                  |     [extract DomainID]
  P        can occur in advance             |     [update audit-log]
  P            if nonceless                 |                    |
  P                  |                      |<- voucher ---------|
  P                  \-------------------   | w/nonce if provided|
  P<------voucher---------------------------|                    |
[imprint]                                   |                    |
  |-------voucher status telemetry--------->|                    |
  |                                         |<-device audit-log--|
  |                             [verify audit-log and voucher]   |
  |<--------------------------------------->|                    |
[enroll]                                    |                    |
  | Continue with enrollment using now      |                    |
  | bidirectionally authenticated TLS       |                    |
  | session per RFC 7030.                   |                    |
[enrolled]                                  |                    |

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 20



2.5. Architectural Components 

The registrar can determine whether it expected such a device to appear and locates a MASA.
The location of the MASA is usually found in an extension in the IDevID. Having determined that
the MASA is suitable, the entire information from the initial voucher-request (including the
device's serial number) is transmitted over the Internet in a TLS-protected channel to the
manufacturer, along with information about the registrar/owner.

The manufacturer can then apply policy based on the provided information, as well as other
sources of information (such as sales records), to decide whether to approve the claim by the
registrar to own the device; if the claim is accepted, a voucher is issued that directs the device to
accept its new owner.

The voucher is returned to the registrar, but not immediately to the device -- the registrar has an
opportunity to examine the voucher, the MASA's audit-logs, and other sources of information to
determine whether the device has been tampered with and whether the bootstrap should be
accepted.

No filtering of information is possible in the signed voucher, so this is a binary yes-or-no
decision. After the registrar has applied any local policy to the voucher, if it accepts the voucher,
then the voucher is returned to the pledge for imprinting.

The voucher also includes a trust anchor that the pledge uses to represent the owner. This is used
to successfully bootstrap from an environment where only the manufacturer has built-in trust by
the device to an environment where the owner now has a PKI footprint on the device.

When BRSKI is followed with EST, this single footprint is further leveraged into the full owner's
PKI and an LDevID for the device. Subsequent reporting steps provide flows of information to
indicate success/failure of the process.

2.5.1. Pledge 

The pledge is the device that is attempting to join. It is assumed that the pledge talks to the Join
Proxy using link-local network connectivity. In most cases, the pledge has no other connectivity
until the pledge completes the enrollment process and receives some kind of network credential.

2.5.2. Join Proxy 

The Join Proxy provides HTTPS connectivity between the pledge and the registrar. A Circuit
Proxy mechanism is described in Section 4. Additional mechanisms, including a Constrained
Application Protocol (CoAP) mechanism and a stateless IP in IP (IPIP) mechanism, are the subject
of future work.

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 21



2.5.3. Domain Registrar 

The domain's registrar operates as the BRSKI-MASA client when requesting vouchers from the
MASA (see Section 5.4). The registrar operates as the BRSKI-EST server when pledges request
vouchers (see Section 5.1). The registrar operates as the BRSKI-EST server "Registration
Authority" if the pledge requests an end-entity certificate over the BRSKI-EST connection (see 
Section 5.9).

The registrar uses an Implicit Trust Anchor database for authenticating the BRSKI-MASA
connection's MASA TLS server certificate. Configuration or distribution of trust anchors is out of
scope for this specification.

The registrar uses a different Implicit Trust Anchor database for authenticating the BRSKI-EST
connection's pledge TLS Client Certificate. Configuration or distribution of the BRSKI-EST client
trust anchors is out of scope of this specification. Note that the trust anchors in / excluded from
the database will affect which manufacturers' devices are acceptable to the registrar as pledges,
and they can also be used to limit the set of MASAs that are trusted for enrollment.

2.5.4. Manufacturer Service 

The manufacturer service provides two logically separate functions: the MASA as described in
Sections 5.5 and 5.6 and an ownership tracking/auditing function as described in Sections 5.7 and
5.8.

2.5.5. Public Key Infrastructure (PKI) 

The Public Key Infrastructure (PKI) administers certificates for the domain of concern, providing
the trust anchor(s) for it and allowing enrollment of pledges with domain certificates.

The voucher provides a method for the distribution of a single PKI trust anchor (as the "pinned-
domain-cert"). A distribution of the full set of current trust anchors is possible using the optional
EST integration.

The domain's registrar acts as a Registration Authority , requesting certificates for
pledges from the PKI.

The expectations of the PKI are unchanged from EST . This document does not place
any additional architectural requirements on the PKI.

[RFC5272]

[RFC7030]

2.6. Certificate Time Validation 
2.6.1. Lack of Real-Time Clock 

When bootstrapping, many devices do not have knowledge of the current time. Mechanisms such
as Network Time Protocols cannot be secured until bootstrapping is complete. Therefore,
bootstrapping is defined with a framework that does not require knowledge of the current time.
A pledge  ignore all time stamps in the voucher and in the certificate validity periods if it
does not know the current time.

MAY

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 22



The pledge is exposed to dates in the following five places: registrar certificate notBefore,
registrar certificate notAfter, voucher created-on, and voucher expires-on. Additionally,
Cryptographic Message Syntax (CMS) signatures contain a signingTime.

A pledge with a real-time clock in which it has confidence  check the above time fields in all
certificates and signatures that it processes.

If the voucher contains a nonce, then the pledge  confirm the nonce matches the original
pledge voucher-request. This ensures the voucher is fresh. See Section 5.2.

MUST

MUST

2.6.2. Infinite Lifetime of IDevID 

Long-lived pledge certificates "  be assigned the GeneralizedTime value of
99991231235959Z" for the notAfter field as explained in .

Some deployed IDevID management systems are not compliant with the 802.1AR requirement
for infinite lifetimes and are put in typical <= 3 year certificate lifetimes. Registrars  be
configurable on a per-manufacturer basis to ignore pledge lifetimes when the pledge does not
follow the recommendations in .

SHOULD
[RFC5280]

SHOULD

[RFC5280]

2.7. Cloud Registrar 
There exist operationally open networks wherein devices gain unauthenticated access to the
Internet at large. In these use cases, the management domain for the device needs to be
discovered within the larger Internet. The case where a device can boot and get access to a larger
Internet is less likely within the ANIMA ACP scope but may be more important in the future. In
the ANIMA ACP scope, new devices will be quarantined behind a Join Proxy.

Additionally, there are some greenfield situations involving an entirely new installation where a
device may have some kind of management uplink that it can use (such as via a 3G network, for
instance). In such a future situation, the device might use this management interface to learn
that it should configure itself to become the local registrar.

In order to support these scenarios, the pledge  contact a well-known URI of a cloud registrar
if a local registrar cannot be discovered or if the pledge's target use cases do not include a local
registrar.

If the pledge uses a well-known URI for contacting a cloud registrar, a manufacturer-assigned
Implicit Trust Anchor database (see )  be used to authenticate that service as
described in . The use of a DNS-ID for validation is appropriate, and it may include
wildcard components on the left-mode side. This is consistent with the human-user configuration
of an EST server URI in , which also depends on .

MAY

[RFC7030] MUST
[RFC6125]

[RFC7030] [RFC6125]

2.8. Determining the MASA to Contact 
The registrar needs to be able to contact a MASA that is trusted by the pledge in order to obtain
vouchers.

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 23



The device's IDevID will normally contain the MASA URL as detailed in Section 2.3. This is the 
 mechanism.

In some cases, it can be operationally difficult to ensure the necessary X.509 extensions are in the
pledge's IDevID due to the difficulty of aligning current pledge manufacturing with software
releases and development; thus, as a final fallback, the registrar  be manually configured or
distributed with a MASA URL for each manufacturer. Note that the registrar can only select the
configured MASA URL based on the trust anchor -- so manufacturers can only leverage this
approach if they ensure a single MASA URL works for all pledges associated with each trust
anchor.

RECOMMENDED

MAY

3. Voucher-Request Artifact 
Voucher-requests are how vouchers are requested. The semantics of the voucher-request are
described below, in the YANG module.

A pledge forms the "pledge voucher-request", signs it with its IDevID, and submits it to the
registrar.

In turn, the registrar forms the "registrar voucher-request", signs it with its registrar key pair,
and submits it to the MASA.

The "proximity-registrar-cert" leaf is used in the pledge voucher-requests. This provides a
method for the pledge to assert the registrar's proximity.

This network proximity results from the following properties in the ACP context: the pledge is
connected to the Join Proxy (Section 4) using a link-local IPv6 connection. While the Join Proxy
does not participate in any meaningful sense in the cryptography of the TLS connection (such as
via a Channel Binding), the registrar can observe that the connection is via the private ACP (ULA)
address of the Join Proxy, and it cannot come from outside the ACP. The pledge must therefore be
at most one IPv6 link-local hop away from an existing node on the ACP.

Other users of BRSKI will need to define other kinds of assertions if the network proximity
described above does not match their needs.

The "prior-signed-voucher-request" leaf is used in registrar voucher-requests. If present, it is the
signed pledge voucher-request artifact. This provides a method for the registrar to forward the
pledge's signed request to the MASA. This completes transmission of the signed proximity-
registrar-cert leaf.

Unless otherwise signaled (outside the voucher-request artifact), the signing structure is as
defined for vouchers; see .[RFC8366]

3.1. Nonceless Voucher-Requests 
A registrar  also retrieve nonceless vouchers by sending nonceless voucher-requests to the
MASA in order to obtain vouchers for use when the registrar does not have connectivity to the
MASA. No prior-signed-voucher-request leaf would be included. The registrar will also need to

MAY

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 24



know the serial number of the pledge. This document does not provide a mechanism for the
registrar to learn that in an automated fashion. Typically, this will be done via the scanning of a
bar code or QR code on packaging, or via some sales channel integration.

3.2. Tree Diagram 
The following tree diagram illustrates a high-level view of a voucher-request document. The
voucher-request builds upon the voucher artifact described in . The tree diagram is
described in . Each node in the diagram is fully described by the YANG module in 
Section 3.4. Please review the YANG module for a detailed description of the voucher-request
format.

[RFC8366]
[RFC8340]

Figure 5: YANG Tree Diagram for a Voucher-Request 

module: ietf-voucher-request

 grouping voucher-request-grouping
  +-- voucher
     +-- created-on?                      yang:date-and-time
     +-- expires-on?                      yang:date-and-time
     +-- assertion?                       enumeration
     +-- serial-number                    string
     +-- idevid-issuer?                   binary
     +-- pinned-domain-cert?              binary
     +-- domain-cert-revocation-checks?   boolean
     +-- nonce?                           binary
     +-- last-renewal-date?               yang:date-and-time
     +-- prior-signed-voucher-request?    binary
     +-- proximity-registrar-cert?        binary

Example (1):

3.3. Examples 
This section provides voucher-request examples for illustration purposes. These examples show
JSON prior to CMS wrapping. JSON encoding rules specify that any binary content be base64
encoded ( ). The contents of the (base64) encoded certificates have been
elided to save space. For detailed examples, see Appendix C.2. These examples conform to the
encoding rules defined in .

The following example illustrates a pledge voucher-request. The assertion leaf is
indicated as "proximity", and the registrar's TLS server certificate is included in the
proximity-registrar-cert leaf. See Section 5.2. 

[RFC4648], Section 4

[RFC7951]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 25

https://www.rfc-editor.org/rfc/rfc4648#section-4


Example (2):

Example (3):

The following example illustrates a registrar voucher-request. The prior-signed-
voucher-request leaf is populated with the pledge's voucher-request (such as the prior
example). The pledge's voucher-request is a binary CMS-signed object. In the JSON
encoding used here, it must be base64 encoded. The nonce and assertion have been
carried forward from the pledge request to the registrar request. The serial-number is
extracted from the pledge's Client Certificate from the TLS connection. See Section 5.5. 

The following example illustrates a registrar voucher-request. The prior-signed-
voucher-request leaf is not populated with the pledge's voucher-request nor is the nonce
leaf. This form might be used by a registrar requesting a voucher when the pledge cannot
communicate with the registrar (such as when it is powered down or still in packaging)
and therefore cannot submit a nonce. This scenario is most useful when the registrar is
aware that it will not be able to reach the MASA during deployment. See Section 5.5. 

Figure 6: JSON Representation of an Example Voucher-Request 

{
    "ietf-voucher-request:voucher": {
        "assertion": "proximity",
        "nonce": "62a2e7693d82fcda2624de58fb6722e5",
        "serial-number" : "JADA123456789",
        "created-on": "2017-01-01T00:00:00.000Z",
        "proximity-registrar-cert": "base64encodedvalue=="
    }
}

Figure 7: JSON Representation of an Example Prior-Signed Voucher-Request 

{
    "ietf-voucher-request:voucher": {
        "assertion" : "proximity",
        "nonce": "62a2e7693d82fcda2624de58fb6722e5",
        "created-on": "2017-01-01T00:00:02.000Z",
        "idevid-issuer": "base64encodedvalue==",
        "serial-number": "JADA123456789",
        "prior-signed-voucher-request": "base64encodedvalue=="
    }
}

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 26



Figure 8: JSON Representation of an O�ine Voucher-Request 

{
    "ietf-voucher-request:voucher": {
        "created-on":    "2017-01-01T00:00:02.000Z",
        "idevid-issuer": "base64encodedvalue==",
        "serial-number": "JADA123456789"
    }
}

3.4. YANG Module 
Following is a YANG module  that formally extends a voucher  into a
voucher-request. This YANG module references .

[RFC7950] [RFC8366]
[ITU.X690]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 27



RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 28



<CODE BEGINS> file "ietf-voucher-request@2021-04-10.yang"

module ietf-voucher-request {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-voucher-request";
  prefix vcr;

  import ietf-restconf {
    prefix rc;
    description
      "This import statement is only present to access
       the yang-data extension defined in RFC 8040.";
    reference
      "RFC 8040: RESTCONF Protocol";
  }
  import ietf-voucher {
    prefix vch;
    description
      "This module defines the format for a voucher,
       which is produced by a pledge's manufacturer or
       delegate (MASA) to securely assign a pledge to
       an 'owner', so that the pledge may establish a secure
       connection to the owner's network infrastructure.";
    reference
      "RFC 8366: A Voucher Artifact for
       Bootstrapping Protocols";
  }

  organization
    "IETF ANIMA Working Group";
  contact
    "WG Web:   <https://datatracker.ietf.org/wg/anima/>
     WG List:  <mailto:anima@ietf.org>
     Author:   Kent Watsen
               <mailto:kent+ietf@watsen.net>
     Author:   Michael H. Behringer
               <mailto:Michael.H.Behringer@gmail.com>
     Author:   Toerless Eckert
               <mailto:tte+ietf@cs.fau.de>
     Author:   Max Pritikin
               <mailto:pritikin@cisco.com>
     Author:   Michael Richardson
               <mailto:mcr+ietf@sandelman.ca>";
  description
    "This module defines the format for a voucher-request.
     It is a superset of the voucher itself.
     It provides content to the MASA for consideration
     during a voucher-request.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
     NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
     'MAY', and 'OPTIONAL' in this document are to be interpreted as
     described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
     they appear in all capitals, as shown here.

     Copyright (c) 2021 IETF Trust and the persons identified as
     authors of the code. All rights reserved.

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 29



     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject
     to the license terms contained in, the Simplified BSD License
     set forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (https://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC 8995; see the
     RFC itself for full legal notices.";

  revision 2021-04-10 {
    description
      "Initial version";
    reference
      "RFC 8995: Bootstrapping Remote Secure Key Infrastructure
       (BRSKI)";
  }

  // Top-level statement
  rc:yang-data voucher-request-artifact {
    uses voucher-request-grouping;
  }

  // Grouping defined for future usage

  grouping voucher-request-grouping {
    description
      "Grouping to allow reuse/extensions in future work.";
    uses vch:voucher-artifact-grouping {
      refine "voucher/created-on" {
        mandatory false;
      }
      refine "voucher/pinned-domain-cert" {
        mandatory false;
        description
          "A pinned-domain-cert field is not valid in a
           voucher-request, and any occurrence MUST be ignored.";
      }
      refine "voucher/last-renewal-date" {
        description
          "A last-renewal-date field is not valid in a
           voucher-request, and any occurrence MUST be ignored.";
      }
      refine "voucher/domain-cert-revocation-checks" {
        description
          "The domain-cert-revocation-checks field is not valid in a
           voucher-request, and any occurrence MUST be ignored.";
      }
      refine "voucher/assertion" {
        mandatory false;
        description
          "Any assertion included in registrar voucher-requests
           SHOULD be ignored by the MASA.";
      }
      augment "voucher" {
        description
          "Adds leaf nodes appropriate for requesting vouchers.";

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 30



        leaf prior-signed-voucher-request {
          type binary;
          description
            "If it is necessary to change a voucher, or re-sign and
             forward a voucher that was previously provided along a
             protocol path, then the previously signed voucher SHOULD
             be included in this field.

             For example, a pledge might sign a voucher-request
             with a proximity-registrar-cert, and the registrar
             then includes it as the prior-signed-voucher-request
             field.  This is a simple mechanism for a chain of
             trusted parties to change a voucher-request, while
             maintaining the prior signature information.

             The registrar and MASA MAY examine the prior-signed
             voucher information for the
             purposes of policy decisions.  For example, this
             information could be useful to a MASA to determine
             that both the pledge and registrar agree on proximity
             assertions.  The MASA SHOULD remove all
             prior-signed-voucher-request information when
             signing a voucher for imprinting so as to minimize
             the final voucher size.";
        }
        leaf proximity-registrar-cert {
          type binary;
          description
            "An X.509 v3 certificate structure, as specified by
             RFC 5280, Section 4, encoded using the ASN.1
             distinguished encoding rules (DER), as specified
             in ITU X.690.

             The first certificate in the registrar TLS server
             certificate_list sequence (the end-entity TLS
             certificate; see RFC 8446) presented by the registrar
             to the pledge.  This MUST be populated in a pledge's
             voucher-request when a proximity assertion is
             requested.";
          reference
            "ITU X.690: Information Technology - ASN.1 encoding
             rules: Specification of Basic Encoding Rules (BER),
             Canonical Encoding Rules (CER) and Distinguished
             Encoding Rules (DER)
             RFC 5280: Internet X.509 Public Key Infrastructure
             Certificate and Certificate Revocation List (CRL)
             Profile
             RFC 8446: The Transport Layer Security (TLS)
             Protocol Version 1.3";
        }
      }
    }
  }
}

<CODE ENDS>

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 31



Figure 9: YANG Module for Voucher-Request 

4. Proxying Details (Pledge -- Proxy -- Registrar) 
This section is normative for uses with an ANIMA ACP. The use of the GRASP mechanism is part
of the ACP. Other users of BRSKI will need to define an equivalent proxy mechanism and an
equivalent mechanism to configure the proxy.

The role of the proxy is to facilitate communications. The proxy forwards packets between the
pledge and a registrar that has been provisioned to the proxy via full GRASP ACP discovery.

This section defines a stateful proxy mechanism that is referred to as a "circuit" proxy. This is a
form of Application Level Gateway (see ).

The proxy does not terminate the TLS handshake: it passes streams of bytes onward without
examination. A proxy  assume any specific TLS version. Please see 

 for details on TLS invariants.

A registrar can directly provide the proxy announcements described below, in which case the
announced port can point directly to the registrar itself. In this scenario, the pledge is unaware
that there is no proxying occurring. This is useful for registrars that are servicing pledges on
directly connected networks.

As a result of the proxy discovery process in Section 4.1.1, the port number exposed by the proxy
does not need to be well known or require an IANA allocation.

During the discovery of the registrar by the Join Proxy, the Join Proxy will also learn which kinds
of proxy mechanisms are available. This will allow the Join Proxy to use the lowest impact
mechanism that the Join Proxy and registrar have in common.

In order to permit the proxy functionality to be implemented on the maximum variety of
devices, the chosen mechanism should use the minimum amount of state on the proxy device.
While many devices in the ANIMA target space will be rather large routers, the proxy function is
likely to be implemented in the control-plane CPU of such a device, with available capabilities for
the proxy function similar to many class 2 IoT devices.

The document  provides a more extensive analysis and background of the
alternative proxy methods.

[RFC2663], Section 2.9

MUST NOT [RFC8446], Section
9.3

[ANIMA-STATE]

4.1. Pledge Discovery of Proxy 
The result of discovery is a logical communication with a registrar, through a proxy. The proxy is
transparent to the pledge. The communication between the pledge and Join Proxy is over IPv6
link-local addresses.

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 32

https://www.rfc-editor.org/rfc/rfc2663#section-2.9
https://www.rfc-editor.org/rfc/rfc8446#section-9.3
https://www.rfc-editor.org/rfc/rfc8446#section-9.3


To discover the proxy, the pledge performs the following actions:

: Obtain a local address using IPv6 methods as described in "IPv6 Stateless Address
Autoconfiguration" . Use of temporary addresses  is encouraged. To limit
pervasive monitoring , a new temporary address  use a short lifetime (that is,
set TEMP_PREFERRED_LIFETIME to be short). Pledges will generally prefer use of IPv6 link-
local addresses, and discovery of the proxy will be by link-local mechanisms. IPv4 methods
are described in Appendix A. 

: Listen for GRASP M_FLOOD  announcements of the objective: "AN_Proxy".
See Section 4.1.1 for the details of the objective. The pledge  listen concurrently for other
sources of information; see Appendix B. 

Once a proxy is discovered, the pledge communicates with a registrar through the proxy using
the bootstrapping protocol defined in Section 5.

While the GRASP M_FLOOD mechanism is passive for the pledge, the non-normative other
methods (mDNS and IPv4 methods) described in Appendix B are active. The pledge  run
those methods in parallel with listening for the M_FLOOD. The active methods  back off
by doubling to a maximum of one hour to avoid overloading the network with discovery
attempts. Detection of physical link status change (Ethernet carrier, for instance)  reset
the back-off timers.

The pledge could discover more than one proxy on a given physical interface. The pledge can
have a multitude of physical interfaces as well: a Layer 2/3 Ethernet switch may have hundreds
of physical ports.

Each possible proxy offer  be attempted up to the point where a valid voucher is
received: while there are many ways in which the attempt may fail, it does not succeed until the
voucher has been validated.

The connection attempts via a single proxy  exponentially back off to a maximum of one
hour to avoid overloading the network infrastructure. The back-off timer for each  be
independent of other connection attempts.

Connection attempts  be run in parallel to avoid head-of-queue problems wherein an
attacker running a fake proxy or registrar could intentionally perform protocol actions slowly.
Connection attempts to different proxies  be sent with an interval of 3 to 5s. The pledge 

 continue to listen for additional GRASP M_FLOOD messages during the connection
attempts.

Each connection attempt through a distinct Join Proxy  have a unique nonce in the
voucher-request.

Once a connection to a registrar is established (e.g., establishment of a TLS session key), there are
expectations of more timely responses; see Section 5.2.

1. MUST
[RFC4862] [RFC8981]

[RFC7258] MAY

2. MUST [RFC8990]
MAY

SHOULD
SHOULD

SHOULD

SHOULD

SHOULD
MUST

SHOULD

SHOULD
SHOULD

MUST

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 33



Once all discovered services are attempted (assuming that none succeeded), the device 
return to listening for GRASP M_FLOOD. It  periodically retry any manufacturer-specific
mechanisms. The pledge  prioritize selection order as appropriate for the anticipated
environment.

MUST
SHOULD

MAY

4.1.1. Proxy GRASP Announcements 

A proxy uses the DULL GRASP M_FLOOD mechanism to announce itself. This announcement can
be within the same message as the ACP announcement detailed in .

The formal Concise Data Definition Language (CDDL)  definition is:

Here is an example M_FLOOD announcing a proxy at fe80::1, on TCP port 4443.

On a small network, the registrar  include the GRASP M_FLOOD announcements to locally
connected networks.

[RFC8994]

[RFC8610]

Figure 10: CDDL Definition of Proxy Discovery Message 

<CODE BEGINS> file "proxygrasp.cddl"

flood-message = [M_FLOOD, session-id, initiator, ttl,
                 +[objective, (locator-option / [])]]

objective = ["AN_Proxy", objective-flags, loop-count,
                                       objective-value]

ttl             = 180000     ; 180,000 ms (3 minutes)
initiator = ACP address to contact registrar
objective-flags   = sync-only  ; as in the GRASP spec
sync-only         =  4         ; M_FLOOD only requires
                               ; synchronization
loop-count        =  1         ; one hop only
objective-value   =  any       ; none

locator-option    = [ O_IPv6_LOCATOR, ipv6-address,
                    transport-proto, port-number ]
ipv6-address      = the v6 LL of the Proxy
$transport-proto /= IPPROTO_TCP   ; note that this can be any value
                                 ; from the IANA protocol registry,
                                 ; as per RFC 8990, Section 2.9.5.1,
                                 ; Note 3.
port-number      = selected by Proxy

<CODE ENDS>

Figure 11: Example of Proxy Discovery Message 

[M_FLOOD, 12340815, h'fe800000000000000000000000000001', 180000,
            [["AN_Proxy", 4, 1, ""],
             [O_IPv6_LOCATOR,
              h'fe800000000000000000000000000001', IPPROTO_TCP, 4443]]]

MAY

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 34



The $transport-proto above indicates the method that the pledge-proxy-registrar will use. The
TCP method described here is mandatory, and other proxy methods, such as CoAP methods not
defined in this document, are optional. Other methods  be enabled unless the Join
Registrar ASA indicates support for them in its own announcement.

MUST NOT

4.2. CoAP Connection to Registrar 
The use of CoAP to connect from pledge to registrar is out of scope for this document and is
described in future work. See .[ANIMA-CONSTRAINED-VOUCHER]

4.3. Proxy Discovery and Communication of Registrar 
The registrar  announce itself so that proxies can find it and determine what kind of
connections can be terminated.

The registrar announces itself using GRASP M_FLOOD messages, with the "AN_join_registrar"
objective, within the ACP instance. A registrar may announce any convenient port number,
including use of stock port 443. ANI proxies  support GRASP discovery of registrars.

The M_FLOOD is formatted as follows:

The formal CDDL definition is:

SHOULD

MUST

Figure 12: An Example of a Registrar Announcement Message 

[M_FLOOD, 51804321, h'fda379a6f6ee00000200000064000001', 180000,
            [["AN_join_registrar", 4, 255, "EST-TLS"],
             [O_IPv6_LOCATOR,
              h'fda379a6f6ee00000200000064000001', IPPROTO_TCP, 8443]]]

Figure 13: CDDL Definition for Registrar Announcement Message 

<CODE BEGINS> file "jrcgrasp.cddl"

flood-message = [M_FLOOD, session-id, initiator, ttl,
                 +[objective, (locator-option / [])]]

objective = ["AN_join_registrar", objective-flags, loop-count,
                                       objective-value]

initiator = ACP address to contact registrar
objective-flags = sync-only  ; as in the GRASP spec
sync-only =  4               ; M_FLOOD only requires
                             ; synchronization
loop-count      = 255        ; mandatory maximum
objective-value = text       ; name of the (list of) supported
                             ; protocols: "EST-TLS" for RFC 7030.

<CODE ENDS>

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 35



The M_FLOOD message  be sent periodically. The default period  be 60 seconds, and
the value  be operator configurable but  be smaller than 60 seconds. The
frequency of sending  be such that the aggregate amount of periodic M_FLOODs from all
flooding sources causes only negligible traffic across the ACP.

Here are some examples of locators for illustrative purposes. Only the first one ($transport-
protocol = 6, TCP) is defined in this document and is mandatory to implement.

A protocol of 6 indicates that TCP proxying on the indicated port is desired.

Registrars  announce the set of protocols that they support, and they  support TCP
traffic.

Registrars  accept HTTPS/EST traffic on the TCP ports indicated.

Registrars  support the ANI TLS Circuit Proxy and therefore BRSKI across HTTPS/TLS native
across the ACP.

In the ANI, the ACP-secured instance of GRASP   be used for discovery of ANI
registrar ACP addresses and ports by ANI proxies. Therefore, the TCP leg of the proxy connection
between the ANI proxy and ANI registrar also runs across the ACP.

MUST SHOULD
SHOULD SHOULD NOT

MUST

locator1  = [O_IPv6_LOCATOR, fd45:1345::6789, 6,  443]
locator2  = [O_IPv6_LOCATOR, fd45:1345::6789, 17, 5683]
locator3  = [O_IPv6_LOCATOR, fe80::1234, 41, nil]

MUST MUST

MUST

MUST

[RFC8990] MUST

5. Protocol Details (Pledge -- Registrar -- MASA) 
The pledge  initiate BRSKI after boot if it is unconfigured. The pledge 
automatically initiate BRSKI if it has been configured or is in the process of being configured.

BRSKI is described as extensions to EST . The goal of these extensions is to reduce the
number of TLS connections and crypto operations required on the pledge. The registrar
implements the BRSKI REST interface within the "/.well-known/brski" URI tree and implements
the existing EST URIs as described in EST . The communication channel
between the pledge and the registrar is referred to as "BRSKI-EST" (see Figure 1).

The communication channel between the registrar and MASA is a new communication channel,
similar to EST, within the newly registered "/.well-known/brski" tree. For clarity, this channel is
referred to as "BRSKI-MASA" (see Figure 1).

The MASA URI is "https://" authority "/.well-known/brski".

BRSKI uses existing CMS message formats for existing EST operations. BRSKI uses JSON 
 for all new operations defined here and for voucher formats. In all places where a

binary value must be carried in a JSON string, a base64 format ( ) is to be
used, as per .

MUST MUST NOT

[RFC7030]

[RFC7030], Section 3.2.2

[RFC8259]
[RFC4648], Section 4

[RFC7951], Section 6.6

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 36

https://www.rfc-editor.org/rfc/rfc7030#section-3.2.2
https://www.rfc-editor.org/rfc/rfc4648#section-4
https://www.rfc-editor.org/rfc/rfc7951#section-6.6


While EST ( ) does not insist upon use of HTTP persistent connections
( ), BRSKI-EST connections  use persistent connections. The
intention of this guidance is to ensure the provisional TLS state occurs only once, and that the
subsequent resolution of the provision state is not subject to a Man-in-the-Middle (MITM) attack
during a critical phase.

If non-persistent connections are used, then both the pledge and the registrar  remember
the certificates that have been seen and also sent for the first connection. They  check each
subsequent connection for the same certificates, and each end  use the same certificates as
well. This places a difficult restriction on rolling certificates on the registrar.

Summarized automation extensions for the BRSKI-EST flow are:

The pledge either attempts concurrent connections via each discovered proxy or times out
quickly and tries connections in series, as explained at the end of Section 5.1. 
The pledge provisionally accepts the registrar certificate during the TLS handshake as
detailed in Section 5.1. 
The pledge requests a voucher using the new REST calls described below. This voucher is
then validated. 
The pledge completes authentication of the server certificate as detailed in Section 5.6.1. This
moves the BRSKI-EST TLS connection out of the provisional state. 
Mandatory bootstrap steps conclude with voucher status telemetry (see Section 5.7). 

The BRSKI-EST TLS connection can now be used for EST enrollment.

The extensions for a registrar (equivalent to an EST server) are:

Client authentication is automated using IDevID as per the EST certificate-based client
authentication. The subject field's DN encoding  include the "serialNumber" attribute
with the device's unique serial number as explained in Section 2.3.1. 
The registrar requests and validates the voucher from the MASA. 
The registrar forwards the voucher to the pledge when requested. 
The registrar performs log verifications (described in Section 5.8.3) in addition to local
authorization checks before accepting optional pledge device enrollment requests. 

[RFC7030], Section 3.2
[RFC7230], Section 6.3 SHOULD

MUST
MUST

MUST

• 

• 

• 

• 

• 

• 
MUST

• 
• 
• 

5.1. BRSKI-EST TLS Establishment Details 
The pledge establishes the TLS connection with the registrar through the Circuit Proxy (see 
Section 4), but the TLS handshake is with the registrar. The BRSKI-EST pledge is the TLS client,
and the BRSKI-EST registrar is the TLS server. All security associations established are between
the pledge and the registrar regardless of proxy operations.

Use of TLS 1.3 (or newer) is encouraged. TLS 1.2 or newer is  on the pledge side. TLS 1.3
(or newer)  be available on the registrar server interface, and the registrar client
interface, but TLS 1.2  be used. TLS 1.3 (or newer)  be available on the MASA server
interface, but TLS 1.2  be used.

REQUIRED
SHOULD

MAY SHOULD
MAY

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 37

https://www.rfc-editor.org/rfc/rfc7030#section-3.2
https://www.rfc-editor.org/rfc/rfc7230#section-6.3


Establishment of the BRSKI-EST TLS connection is as specified in "Bootstrap Distribution of CA
Certificates" (Section 4.1.1) of , wherein the client is authenticated with the IDevID
certificate, and the EST server (the registrar) is provisionally authenticated with an unverified
server certificate. Configuration or distribution of the trust anchor database used for validating
the IDevID certificate is out of scope of this specification. Note that the trust anchors in / excluded
from the database will affect which manufacturers' devices are acceptable to the registrar as
pledges and can also be used to limit the set of MASAs that are trusted for enrollment.

The signature in the certificate  be validated even if a signing key cannot (yet) be validated.
The certificate (or chain)  be retained for later validation.

A self-signed certificate for the registrar is acceptable as the voucher can validate it upon
successful enrollment.

The pledge performs input validation of all data received until a voucher is verified as specified
in Section 5.6.1 and the TLS connection leaves the provisional state. Until these operations are
complete, the pledge could be communicating with an attacker.

The pledge code needs to be written with the assumption that all data is being transmitted at this
point to an unauthenticated peer, and that received data, while inside a TLS connection,  be
considered untrusted. This particularly applies to HTTP headers and CMS structures that make
up the voucher.

A pledge that can connect to multiple registrars concurrently  do so. Some devices may
be unable to do so for lack of threading, or resource issues. Concurrent connections defeat
attempts by a malicious proxy from causing a TCP Slowloris-like attack (see ).

A pledge that cannot maintain as many connections as there are eligible proxies will need to
rotate among the various choices, terminating connections that do not appear to be making
progress. If no connection is making progress after 5 seconds, then the pledge  drop the
oldest connection and go on to a different proxy: the proxy that has been communicated with
least recently. If there were no other proxies discovered, the pledge  continue to wait, as long
as it is concurrently listening for new proxy announcements.

[RFC7030]

MUST
MUST

MUST

SHOULD

[slowloris]

SHOULD

MAY

application/voucher-cms+json:

5.2. Pledge Requests Voucher from the Registrar 
When the pledge bootstraps, it makes a request for a voucher from a registrar.

This is done with an HTTPS POST using the operation path value of "/.well-known/brski/
requestvoucher".

The pledge voucher-request Content-Type is as follows.

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 38

https://www.rfc-editor.org/rfc/rfc7030#section-4.1.1


created-on:

nonce:

assertion:

proximity-registrar-cert:

serial-number:

 defines a "YANG-defined JSON document that has been signed using a
Cryptographic Message Syntax (CMS) structure", and the voucher-request described in Section
3 is created in the same way. The media type is the same as defined in . This is also
used for the pledge voucher-request. The pledge  sign the request using the credentials
in Section 2.3. 

Registrar implementations  anticipate future media types but, of course, will simply fail
the request if those types are not yet known.

The pledge  include an "Accept" header field (see ) indicating the
acceptable media type for the voucher response. The "application/voucher-cms+json" media type
is defined in , but constrained voucher formats are expected in the future. Registrars
and MASA are expected to be flexible in what they accept.

The pledge populates the voucher-request fields as follows:

Pledges that have a real-time clock are  to populate this field with
the current date and time in yang:date-and-time format. This provides additional information
to the MASA. Pledges that have no real-time clocks  omit this field. 

The pledge voucher-request  contain a cryptographically strong random or
pseudo-random number nonce (see ). As the nonce is usually generated
very early in the boot sequence, there is a concern that the same nonce might be generated
across multiple boots, or after a factory reset. Different nonces  be generated for each
bootstrapping attempt, whether in series or concurrently. The freshness of this nonce
mitigates against the lack of a real-time clock as explained in Section 2.6.1. 

The pledge indicates support for the mechanism described in this document, by
putting the value "proximity" in the voucher-request, and  include the proximity-
registrar-cert field (below). 

In a pledge voucher-request, this is the first certificate in the TLS
server "certificate_list" sequence (see ) presented by the registrar to
the pledge. That is, it is the end-entity certificate. This  be populated in a pledge voucher-
request. 

The serial number of the pledge is included in the voucher-request from the
pledge. This value is included as a sanity check only, but it is not to be forwarded by the
registrar as described in Section 5.5. 

All other fields  be omitted in the pledge voucher-request.

See an example JSON payload of a pledge voucher-request in Section 3.3, Example 1.

The registrar confirms that the assertion is "proximity" and that pinned proximity-registrar-cert
is the registrar's certificate. If this validation fails, then there is an on-path attacker (MITM), and
the connection  be closed after the returning of an HTTP 401 error code.

[RFC8366]

[RFC8366]
MUST

SHOULD

SHOULD [RFC7231], Section 5.3.2

[RFC8366]

RECOMMENDED

MAY

MUST
[RFC4086], Section 6.2

MUST

MUST

[RFC8446], Section 4.4.2
MUST

MAY

MUST

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 39

https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2
https://www.rfc-editor.org/rfc/rfc4086#section-6.2
https://www.rfc-editor.org/rfc/rfc8446#section-4.4.2


5.3. Registrar Authorization of Pledge 
In a fully automated network, all devices must be securely identified and authorized to join the
domain.

A registrar accepts or declines a request to join the domain, based on the authenticated identity
presented. For different networks, examples of automated acceptance may include the allowance
of:

any device of a specific type (as determined by the X.509 IDevID), 
any device from a specific vendor (as determined by the X.509 IDevID), 
a specific device from a vendor (as determined by the X.509 IDevID) against a domain
acceptlist. (The mechanism for checking a shared acceptlist potentially used by multiple
registrars is out of scope.) 

If validation fails, the registrar  respond with the HTTP 404 error code. If the voucher-
request is in an unknown format, then an HTTP 406 error code is more appropriate. A situation
that could be resolved with administrative action (such as adding a vendor to an acceptlist) 
be responded to with a 403 HTTP error code.

If authorization is successful, the registrar obtains a voucher from the MASA service (see Section
5.5) and returns that MASA-signed voucher to the pledge as described in Section 5.6.

• 
• 
• 

SHOULD

MAY

5.4. BRSKI-MASA TLS Establishment Details 
The BRSKI-MASA TLS connection is a "normal" TLS connection appropriate for HTTPS REST
interfaces. The registrar initiates the connection and uses the MASA URL that is obtained as
described in Section 2.8. The mechanisms in   be used in authentication of the
MASA using a DNS-ID that matches that which is found in the IDevID. Registrars  include a
mechanism to override the MASA URL on a manufacturer-by-manufacturer basis, and within
that override, it is appropriate to provide alternate anchors. This will typically be used by some
vendors to establish explicit (or private) trust anchors for validating their MASA that is part of a
sales channel integration.

Use of TLS 1.3 (or newer) is encouraged. TLS 1.2 or newer is . TLS 1.3 (or newer) 
 be available.

As described in , the MASA and the registrars  be prepared to support TLS
Client Certificate authentication and/or HTTP Basic, Digest, or Salted Challenge Response
Authentication Mechanism (SCRAM) authentication. This connection  also have no client
authentication at all.

Registrars  permit trust anchors to be preconfigured on a per-vendor (MASA) basis.
Registrars  include the ability to configure a TLS Client Certificate on a per-MASA basis,
or to use no Client Certificate. Registrars  also permit HTTP Basic and Digest
authentication to be configured.

[RFC6125] SHOULD
MAY

REQUIRED
SHOULD

[RFC7030] SHOULD

MAY

SHOULD
SHOULD

SHOULD

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 40



The authentication of the BRSKI-MASA connection does not change the voucher-request process,
as voucher-requests are already signed by the registrar. Instead, this authentication provides
access control to the audit-log as described in Section 5.8.

Implementers are advised that contacting the MASA establishes a secured API connection with a
web service, and that there are a number of authentication models being explored within the
industry. Registrars are  to fail gracefully and generate useful administrative
notifications or logs in the advent of unexpected HTTP 401 (Unauthorized) responses from the
MASA.

RECOMMENDED

5.4.1. MASA Authentication of Customer Registrar 

Providing per-customer options requires the customer's registrar to be uniquely identified. This
can be done by any stateless method that HTTPS supports such as HTTP Basic or Digest
authentication (that is using a password), but the use of TLS Client Certificate authentication is 

.

Stateful methods involving API tokens, or HTTP Cookies, are not recommended.

It is expected that the setup and configuration of per-customer Client Certificates is done as part
of a sales ordering process.

The use of public PKI (i.e., WebPKI) end-entity certificates to identify the registrar is reasonable,
and if done universally, this would permit a MASA to identify a customer's registrar simply by a
Fully Qualified Domain Name (FQDN).

The use of DANE records in DNSSEC-signed zones would also permit use of a FQDN to identify
customer registrars.

A third (and simplest, but least flexible) mechanism would be for the MASA to simply store the
registrar's certificate pinned in a database.

A MASA without any supply-chain integration can simply accept registrars without any
authentication or on a blind TOFU basis as described in Section 7.4.2.

This document does not make a specific recommendation on how the MASA authenticates the
registrar as there are likely different tradeoffs in different environments and product values.
Even within the ANIMA ACP applicability, there is a significant difference between supply-chain
logistics for $100 CPE devices and $100,000 core routers.

RECOMMENDED

5.5. Registrar Requests Voucher from MASA 
When a registrar receives a pledge voucher-request, it in turn submits a registrar voucher-
request to the MASA service via an HTTPS interface .

This is done with an HTTP POST using the operation path value of "/.well-known/brski/
requestvoucher".

[RFC7231]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 41



created-on:

nonce:

serial-number:

The voucher media type "application/voucher-cms+json" is defined in  and is also used
for the registrar voucher-request. It is a JSON document that has been signed using a CMS
structure. The registrar  sign the registrar voucher-request.

MASA implementations  anticipate future media ntypes but, of course, will simply fail
the request if those types are not yet known.

The voucher-request CMS object includes some number of certificates that are input to the MASA
as it populates the pinned-domain-cert. As  is quite flexible in what may be put into the
pinned-domain-cert, the MASA needs some signal as to what certificate would be effective to
populate the field with: it may range from the end-entity certificate that the registrar uses to the
entire private Enterprise CA certificate. More-specific certificates result in a tighter binding of the
voucher to the domain, while less-specific certificates result in more flexibility in how the
domain is represented by certificates.

A registrar that is seeking a nonceless voucher for later offline use benefits from a less-specific
certificate, as it permits the actual key pair used by a future registrar to be determined by the
pinned CA.

In some cases, a less-specific certificate, such as a public WebPKI CA, could be too open and could
permit any entity issued a certificate by that authority to assume ownership of a device that has
a voucher pinned. Future work may provide a solution to pin both a certificate and a name that
would reduce such risk of malicious ownership assertions.

The registrar  request a voucher with the most specificity consistent with the mode that
it is operating in. In order to do this, when the registrar prepares the CMS structure for the
signed voucher-request, it  include only certificates that are a part of the chain that it
wishes the MASA to pin. This  be as small as only the end-entity certificate (with id-kp-cmcRA
set) that it uses as its TLS server certificate, or it  be the entire chain, including the domain
CA.

The registrar  include an "Accept" header field (see ) indicating
the response media types that are acceptable. This list  be the entire list presented to the
registrar in the pledge's original request (see Section 5.2), but it  be a subset. The MASA is
expected to be flexible in what it accepts.

The registrar populates the voucher-request fields as follows:

The registrar  populate this field with the current date and time when the
voucher-request is formed. This field provides additional information to the MASA. 

This value, if present, is copied from the pledge voucher-request. The registrar voucher-
request  omit the nonce as per Section 3.1. 

The serial number of the pledge the registrar would like a voucher for. The
registrar determines this value by parsing the authenticated pledge IDevID certificate; see 
Section 2.3. The registrar  verify that the serial-number field it parsed matches the

[RFC8366]

MUST

SHOULD

[RFC8366]

SHOULD

SHOULD
MAY

MAY

SHOULD [RFC7231], Section 5.3.2
SHOULD

MAY

SHOULD

MAY

MUST

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 42

https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2


idevid-issuer:

prior-signed-voucher-request:

serial-number field the pledge provided in its voucher-request. This provides a sanity check
useful for detecting error conditions and logging. The registrar  simply copy the
serial-number field from a pledge voucher-request as that field is claimed but not certified. 

The Issuer value from the pledge IDevID certificate is included to ensure unique
interpretation of the serial-number. In the case of a nonceless (offline) voucher-request, an
appropriate value needs to be configured from the same out-of-band source as the serial-
number. 

The signed pledge voucher-request  be included in the
registrar voucher-request. The entire CMS-signed structure is to be included and base64
encoded for transport in the JSON structure. 

A nonceless registrar voucher-request  be submitted to the MASA. Doing so allows the
registrar to request a voucher when the pledge is offline, or when the registrar anticipates not
being able to connect to the MASA while the pledge is being deployed. Some use cases require the
registrar to learn the appropriate IDevID serialNumber field and appropriate "Accept" header
field values from the physical device labeling or from the sales channel (which is out of scope for
this document).

All other fields  be omitted in the registrar voucher-request.

The proximity-registrar-cert field  be present in the registrar voucher-request.

See example JSON payloads of registrar voucher-requests in Section 3.3, Examples 2 through 4.

The MASA verifies that the registrar voucher-request is internally consistent but does not
necessarily authenticate the registrar certificate since the registrar  be unknown to the
MASA in advance. The MASA performs the actions and validation checks described in the
following subsections before issuing a voucher.

5.5.1. MASA Renewal of Expired Vouchers 

As described in , vouchers are normally short lived to avoid revocation issues. If the
request is for a previous (expired) voucher using the same registrar (that is, a registrar with the
same domain CA), then the request for a renewed voucher  be automatically authorized.
The MASA has sufficient information to determine this by examining the request, the registrar
authentication, and the existing audit-log. The issuance of a renewed voucher is logged as
detailed in Section 5.6.

To inform the MASA that existing vouchers are not to be renewed, one can update or revoke the
registrar credentials used to authorize the request (see Sections 5.5.4 and 5.5.3). More flexible
methods will likely involve sales channel integration and authorizations (details are out of scope
of this document).

MUST NOT

SHOULD

MAY

MAY

MUST NOT

MAY

[RFC8366]

SHOULD

5.5.2. MASA Pinning of Registrar 

A certificate chain is extracted from the registrar's signed CMS container. This chain may be as
short as a single end-entity certificate, up to the entire registrar certificate chain, including the
domain CA certificate, as specified in Section 5.5.

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 43



If the domain's CA is unknown to the MASA, then it is considered a temporary trust anchor for
the rest of the steps in this section. The intention is not to authenticate the message as having
come from a fully validated origin but to establish the consistency of the domain PKI.

The MASA  use the certificate in the chain that is farthest from the end-entity certificate of
the registrar, as determined by MASA policy. A MASA  have a local policy in which it only
pins the end-entity certificate. This is consistent with . Details of the policy will
typically depend upon the degree of supply-chain integration and the mechanism used by the
registrar to authenticate. Such a policy would also determine how the MASA will respond to a
request for a nonceless voucher.

MAY
MAY
[RFC8366]

5.5.3. MASA Check of the Voucher-Request Signature 

As described in Section 5.5.2, the MASA has extracted the registrar's domain CA. This is used to
validate the CMS signature  on the voucher-request.

Normal PKIX revocation checking is assumed during voucher-request signature validation. This
CA certificate  have Certificate Revocation List (CRL) distribution points or Online Certificate
Status Protocol (OCSP) information . If they are present, the MASA  be able to
reach the relevant servers belonging to the registrar's domain CA to perform the revocation
checks.

The use of OCSP Stapling is preferred.

[RFC5652]

MAY
[RFC6960] MUST

5.5.4. MASA Verification of the Domain Registrar 

The MASA  verify that the registrar voucher-request is signed by a registrar. This is
confirmed by verifying that the id-kp-cmcRA extended key usage extension field (as detailed in
EST ) exists in the certificate of the entity that signed the registrar
voucher-request. This verification is only a consistency check to ensure that the unauthenticated
domain CA intended the voucher-request signer to be a registrar. Performing this check provides
value to the domain PKI by assuring the domain administrator that the MASA service will only
respect claims from authorized registration authorities of the domain.

Even when a domain CA is authenticated to the MASA, and there is strong sales channel
integration to understand who the legitimate owner is, the above id-kp-cmcRA check prevents
arbitrary end-entity certificates (such as an LDevID certificate) from having vouchers issued
against them.

Other cases of inappropriate voucher issuance are detected by examination of the audit-log.

If a nonceless voucher-request is submitted, the MASA  authenticate the registrar either as
described in EST (see Sections 3.2.3 and 3.3.2 of ) or by validating the registrar's
certificate used to sign the registrar voucher-request using a configured trust anchor. Any of
these methods reduce the risk of DDoS attacks and provide an authenticated identity as an input
to sales channel integration and authorizations (details are out of scope of this document).

MUST

[RFC7030], Section 3.6.1

MUST
[RFC7030]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 44

https://www.rfc-editor.org/rfc/rfc7030#section-3.6.1
https://www.rfc-editor.org/rfc/rfc7030#section-3.2.3
https://www.rfc-editor.org/rfc/rfc7030#section-3.3.2


In the nonced case, validation of the registrar's identity (via TLS Client Certificate or HTTP
authentication)  be omitted if the MASA knows that the device policy is to accept audit-only
vouchers.

MAY

5.5.5. MASA Verification of the Pledge 'prior-signed-voucher-request' 

The MASA  verify that the registrar voucher-request includes the prior-signed-voucher-
request field. If so, the prior-signed-voucher-request  include a proximity-registrar-cert that
is consistent with the certificate used to sign the registrar voucher-request. Additionally, the
voucher-request serial-number leaf  match the pledge serial-number that the MASA
extracts from the signing certificate of the prior-signed-voucher-request. The consistency check
described above entails checking that the proximity-registrar-cert Subject Public Key Info (SPKI)
Fingerprint exists within the registrar voucher-request CMS signature's certificate chain. This is
substantially the same as the pin validation described in .

If these checks succeed, the MASA updates the voucher and audit-log assertion leafs with the
"proximity" assertion, as defined by .

MAY
MUST

MUST

[RFC7469], Section 2.6

[RFC8366], Section 5.3

5.5.6. MASA Nonce Handling 

The MASA does not verify the nonce itself. If the registrar voucher-request contains a nonce, and
the prior-signed-voucher-request exists, then the MASA  verify that the nonce is consistent.
(Recall from above that the voucher-request might not contain a nonce; see Sections 5.5 and 
5.5.4.)

The MASA populates the audit-log with the nonce that was verified. If a nonceless voucher is
issued, then the audit-log is to be populated with the JSON value "null".

MUST

5.6. MASA and Registrar Voucher Response 
The MASA voucher response to the registrar is forwarded without changes to the pledge;
therefore, this section applies to both the MASA and the registrar. The HTTP signaling described
applies to both the MASA and registrar responses.

When a voucher-request arrives at the registrar, if it has a cached response from the MASA for
the corresponding registrar voucher-request, that cached response can be used according to local
policy; otherwise, the registrar constructs a new registrar voucher-request and sends it to the
MASA.

Registrar evaluation of the voucher itself is purely for transparency and audit purposes to
further inform log verification (see Section 5.8.3); therefore, a registrar could accept future
voucher formats that are opaque to the registrar.

If the voucher-request is successful, the server (a MASA responding to a registrar or a registrar
responding to a pledge) response  contain an HTTP 200 response code. The server 
answer with a suitable 4xx or 5xx HTTP  error code when a problem occurs. In this
case, the response data from the MASA  be a plain text human-readable (UTF-8) error
message containing explanatory information describing why the request was rejected.

MUST MUST
[RFC7230]

MUST

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 45

https://www.rfc-editor.org/rfc/rfc7469#section-2.6
https://www.rfc-editor.org/rfc/rfc8366#section-5.3


The registrar  respond with an HTTP 202 ("the request has been accepted for processing, but
the processing has not been completed") as described in EST , wherein
the client "  wait at least the specified "retry-after" time before repeating the same request"
(also see ). The pledge is  to provide local feedback
(blinked LED, etc.) during this wait cycle if mechanisms for this are available. To prevent an
attacker registrar from significantly delaying bootstrapping, the pledge  limit the Retry-
After time to 60 seconds. Ideally, the pledge would keep track of the appropriate Retry-After
header field values for any number of outstanding registrars, but this would involve a state table
on the pledge. Instead, the pledge  ignore the exact Retry-After value in favor of a single
hard-coded value (a registrar that is unable to complete the transaction after the first 60 seconds
has another chance a minute later). A pledge  be willing to maintain a 202 retry-state for
up to 4 days, which is longer than a long weekend, after which time the enrollment attempt fails,
and the pledge returns to Discovery state. This allows time for an alert to get from the registrar to
a human operator who can make a decision as to whether or not to proceed with the enrollment.

A pledge that retries a request after receiving a 202 message  resend the same voucher-
request. It  sign a new voucher-request each time, and in particular, it 
change the nonce value.

In order to avoid infinite redirect loops, which a malicious registrar might do in order to keep the
pledge from discovering the correct registrar, the pledge  follow more than one
redirection (3xx code) to another web origin. EST supports redirection but requires user input;
this change allows the pledge to follow a single redirection without a user interaction.

A 403 (Forbidden) response is appropriate if the voucher-request is not signed correctly or is
stale or if the pledge has another outstanding voucher that cannot be overridden.

A 404 (Not Found) response is appropriate when the request is for a device that is not known to
the MASA.

A 406 (Not Acceptable) response is appropriate if a voucher of the desired type or that uses the
desired algorithms (as indicated by the "Accept" header fields and algorithms used in the
signature) cannot be issued as such because the MASA knows the pledge cannot process that
type. The registrar  use this response if it determines the pledge is unacceptable due to
inventory control, MASA audit-logs, or any other reason.

A 415 (Unsupported Media Type) response is appropriate for a request that has a voucher-
request or "Accept" value that is not understood.

The voucher response format is as indicated in the submitted "Accept" header fields or based on
the MASA's prior understanding of proper format for this pledge. Only the "application/voucher-
cms+json" media type  is defined at this time. The syntactic details of vouchers are
described in detail in . Figure 14 shows a sample of the contents of a voucher.

MAY
[RFC7030], Section 4.2.3

MUST
[RFC7231], Section 6.6.4 RECOMMENDED

MUST

MAY

SHOULD

MUST
MUST NOT MUST NOT

MUST NOT

SHOULD

[RFC8366]
[RFC8366]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 46

https://www.rfc-editor.org/rfc/rfc7030#section-4.2.3
https://www.rfc-editor.org/rfc/rfc7231#section-6.6.4


nonce:

assertion:

pinned-domain-cert:

serial-number:

domain-cert-revocation-checks:

expires-on:

The MASA populates the voucher fields as follows:

The nonce from the pledge if available. See Section 5.5.6. 

The method used to verify the relationship between the pledge and registrar. See 
Section 5.5.5. 

A certificate; see Section 5.5.2. This figure is illustrative; for an example,
see Appendix C.2 where an end-entity certificate is used. 

The serial-number as provided in the voucher-request. Also see Section 5.5.5. 

Set as appropriate for the pledge's capabilities and as
documented in . The MASA  set this field to "false" since setting it to "true"
would require that revocation information be available to the pledge, and this document does
not make normative requirements for , , or equivalent
integrations. 

This is set for nonceless vouchers. The MASA ensures the voucher lifetime is
consistent with any revocation or pinned-domain-cert consistency checks the pledge might
perform. See Section 2.6.1. There are three times to consider: (a) a configured voucher lifetime
in the MASA, (b) the expiry time for the registrar's certificate, and (c) any CRL lifetime. The
expires-on field  be before the earliest of these three values. Typically, (b) will be
some significant time in the future, but (c) will typically be short (on the order of a week or
less). The  period for (a) is on the order of 20 minutes, so it will typically
determine the life span of the resulting voucher. 20 minutes is sufficient time to reach the
post-provisional state in the pledge, at which point there is an established trust relationship
between the pledge and registrar. The subsequent operations can take as long as required
from that point onwards. The lifetime of the voucher has no impact on the life span of the
ownership relationship. 

Whenever a voucher is issued, the MASA  update the audit-log sufficiently to generate the
response as described in Section 5.8.1. The internal state requirements to maintain the audit-log
are out of scope.

Figure 14: An Example Voucher 

{
  "ietf-voucher:voucher": {
    "nonce": "62a2e7693d82fcda2624de58fb6722e5",
    "assertion": "logged",
    "pinned-domain-cert": "base64encodedvalue==",
    "serial-number": "JADA123456789"
  }
}

[RFC8366] MAY

[RFC6961] Section 4.4.2.1 of [RFC8446]

SHOULD

RECOMMENDED

MUST

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 47

https://www.rfc-editor.org/rfc/rfc8446#section-4.4.2.1


5.6.1. Pledge Voucher Verification 

The pledge  verify the voucher signature using the manufacturer-installed trust anchor(s)
associated with the manufacturer's MASA (this is likely included in the pledge's firmware).
Management of the manufacturer-installed trust anchor(s) is out of scope of this document; this
protocol does not update this trust anchor(s).

The pledge  verify that the serial-number field of the signed voucher matches the pledge's
own serial-number.

The pledge  verify the nonce information in the voucher. If present, the nonce in the
voucher must match the nonce the pledge submitted to the registrar; vouchers with no nonce can
also be accepted (according to local policy; see Section 7.2).

The pledge  be prepared to parse and fail gracefully from a voucher response that does not
contain a pinned-domain-cert field. Such a thing indicates a failure to enroll in this domain, and
the pledge  attempt joining with other available Join Proxies.

The pledge  be prepared to ignore additional fields that it does not recognize.

MUST

MUST

MUST

MUST

MUST

MUST

5.6.2. Pledge Authentication of Provisional TLS Connection 

Following the process described in , the pledge should consider the public key from the
pinned-domain-cert as the sole temporary trust anchor.

The pledge then evaluates the TLS server certificate chain that it received when the TLS
connection was formed using this trust anchor. It is possible that the public key in the pinned-
domain-cert directly matches the public key in the end-entity certificate provided by the TLS
server.

If a registrar's credentials cannot be verified using the pinned-domain-cert trust anchor from the
voucher, then the TLS connection is discarded, and the pledge abandons attempts to bootstrap
with this discovered registrar. The pledge  send voucher status telemetry (described
below) before closing the TLS connection. The pledge  attempt to enroll using any other
proxies it has found. It  return to the same proxy again after unsuccessful attempts with
other proxies. Attempts should be made at repeated intervals according to the back-off timer
described earlier. Attempts  be repeated as failure may be the result of a temporary
inconsistency (an inconsistently rolled registrar key, or some other misconfiguration). The
inconsistency could also be the result of an active MITM attack on the EST connection.

The registrar  use a certificate that chains to the pinned-domain-cert as its TLS server
certificate.

The pledge's PKIX path validation of a registrar certificate's validity period information is as
described in Section 2.6.1. Once the PKIX path validation is successful, the TLS connection is no
longer provisional.

[RFC8366]

SHOULD
MUST

SHOULD

SHOULD

MUST

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 48



The pinned-domain-cert  be installed as a trust anchor for future operations such as
enrollment (e.g., as recommended per ) or trust anchor management or raw protocols
that do not need full PKI-based key management. It can be used to authenticate any dynamically
discovered EST server that contains the id-kp-cmcRA extended key usage extension as detailed in
EST (see ); but to reduce system complexity, the pledge  avoid
additional discovery operations. Instead, the pledge  communicate directly with the
registrar as the EST server. The pinned-domain-cert is not a complete distribution of the CA
certificate response, as described in , which is an additional justification
for the recommendation to proceed with EST key management operations. Once a full CA
certificate response is obtained, it is more authoritative for the domain than the limited pinned-
domain-cert response.

MAY
[RFC7030]

[RFC7030], Section 3.6.1 SHOULD
SHOULD

[RFC7030], Section 4.1.3

5.7. Pledge BRSKI Status Telemetry 
The domain is expected to provide indications to the system administrators concerning device
life-cycle status. To facilitate this, it needs telemetry information concerning the device's status.

The pledge  indicate its pledge status regarding the voucher. It does this by sending a status
message to the registrar.

The posted data media type: application/json

The client sends an HTTP POST to the server at the URI ".well-known/brski/voucher_status".

The format and semantics described below are for version 1. A version field is included to permit
significant changes to this feedback in the future. A registrar that receives a status message with
a version larger than it knows about  log the contents and alert a human.

The status field indicates if the voucher was acceptable. Boolean values are acceptable, where
"true" indicates the voucher was acceptable.

If the voucher was not acceptable, the Reason string indicates why. In a failure case, this message
may be sent to an unauthenticated, potentially malicious registrar; therefore, the Reason string 

 provide information beneficial to an attacker. The operational benefit of this
telemetry information is balanced against the operational costs of not recording that a voucher
was ignored by a client that the registrar expected was going to continue joining the domain.

The reason-context attribute is an arbitrary JSON object (literal value or hash of values) that
provides additional information specific to this pledge. The contents of this field are not subject
to standardization.

The version and status fields  be present. The Reason field  be present whenever
the status field is false. The Reason-Context field is optional. In the case of a SUCCESS, the Reason
string  be omitted.

The keys to this JSON object are case sensitive and  be lowercase. Figure 16 shows an
example JSON.

MUST

SHOULD

SHOULD NOT

MUST SHOULD

MAY

MUST

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 49

https://www.rfc-editor.org/rfc/rfc7030#section-3.6.1
https://www.rfc-editor.org/rfc/rfc7030#section-4.1.3


The server  respond with an HTTP 200 but  simply fail with an HTTP 404 error. The
client ignores any response. The server  capture this telemetry information within the
server logs.

Additional standard JSON fields in this POST  be added; see Section 8.5. A server that sees
unknown fields should log them, but otherwise ignore them.

Figure 15: CDDL for Voucher Status POST 

<CODE BEGINS> file "voucherstatus.cddl"

voucherstatus-post = {
    "version": uint,
    "status": bool,
    ? "reason": text,
    ? "reason-context" : { $$arbitrary-map }
  }
}

<CODE ENDS>

Figure 16: Example Status Telemetry 

{
    "version": 1,
    "status":false,
    "reason":"Informative human-readable message",
    "reason-context": { "additional" : "JSON" }
}

SHOULD MAY
SHOULD

MAY

5.8. Registrar Audit-Log Request 
After receiving the pledge status telemetry (see Section 5.7), the registrar  request the
MASA audit-log from the MASA service.

This is done with an HTTP POST using the operation path value of "/.well-known/brski/
requestauditlog".

The registrar  HTTP POST the same registrar voucher-request as it did when requesting a
voucher (using the same Content-Type). It is posted to the /requestauditlog URI instead. The
idevid-issuer and serial-number informs the MASA which log is requested, so the appropriate log
can be prepared for the response. Using the same media type and message minimizes
cryptographic and message operations, although it results in additional network traffic. The
relying MASA implementation  leverage internal state to associate this request with the
original, and by now already validated, voucher-request so as to avoid an extra crypto validation.

A registrar  request logs at future times. If the registrar generates a new request, then the
MASA is forced to perform the additional cryptographic operations to verify the new request.

SHOULD

SHOULD

MAY

MAY

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 50



A MASA that receives a request for a device that does not exist, or for which the requesting
owner was never an owner, returns an HTTP 404 ("Not found") code.

It is reasonable for a registrar, that the MASA does not believe to be the current owner, to
request the audit-log. There are probably reasons for this, which are hard to predict in advance.
For instance, such a registrar may not be aware that the device has been resold; it may be that
the device has been resold inappropriately, and this is how the original owner will learn of the
occurrence. It is also possible that the device legitimately spends time in two different networks.

Rather than returning the audit-log as a response to the POST (with a return code 200), the MASA 
 instead return a 201 ("Created") response ( , Sections 6.3.2 and 7.1), with the URL to

the prepared (and idempotent, therefore cachable) audit response in the "Location" header field.

In order to avoid enumeration of device audit-logs, a MASA that returns URLs  take care
to make the returned URL unguessable.  provides very good additional
guidance. For instance, rather than returning URLs containing a database number such as https://
example.com/auditlog/1234 or the Extended Unique Identifier (EUI) of the device such https://
example.com/auditlog/10-00-00-11-22-33, the MASA  return a randomly generated value
(a "slug" in web parlance). The value is used to find the relevant database entry.

A MASA that returns a code 200  also include a "Location" header for future reference by the
registrar.

MAY [RFC7231]

SHOULD
[W3C.capability-urls]

SHOULD

MAY

5.8.1. MASA Audit-Log Response 

A log data file is returned consisting of all log entries associated with the device selected by the
IDevID presented in the request. The audit-log may be abridged by removal of old or repeated
values as explained below. The returned data is in JSON format , and the Content-Type 

 be "application/json".

The following CDDL  explains the structure of the JSON format audit-log response:

[RFC8259]
SHOULD

[RFC8610]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 51

https://www.rfc-editor.org/rfc/rfc7231#section-6.3.2
https://www.rfc-editor.org/rfc/rfc7231#section-7.1


An example:

Figure 17: CDDL for Audit-Log Response 

<CODE BEGINS> file "auditlog.cddl"

audit-log-response = {
  "version": uint,
  "events": [ + event ]
  "truncation": {
    ? "nonced duplicates": uint,
    ? "nonceless duplicates": uint,
    ? "arbitrary": uint,
  }
}

event = {
  "date": text,
  "domainID": text,
  "nonce": text / null,
  "assertion": "verified" / "logged" / "proximity",
  ? "truncated": uint,
}

<CODE ENDS>

Figure 18: Example of an Audit-Log Response 

{
  "version":"1",
  "events":[
    {
        "date":"2019-05-15T17:25:55.644-04:00",
        "domainID":"BduJhdHPpfhQLyponf48JzXSGZ8=",
        "nonce":"VOUFT-WwrEv0NuAQEHoV7Q",
        "assertion":"proximity",
        "truncated":"0"
    },
    {
        "date":"2017-05-15T17:25:55.644-04:00",
        "domainID":"BduJhdHPpfhQLyponf48JzXSGZ8=",
        "nonce":"f4G6Vi1t8nKo/FieCVgpBg==",
        "assertion":"proximity"
    }
  ],
    "truncation": {
        "nonced duplicates": "0",
        "nonceless duplicates": "1",
        "arbitrary": "2"
     }
}

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 52



The domainID is a binary SubjectKeyIdentifier value calculated according to Section 5.8.2. It is
encoded once in base64 in order to be transported in this JSON container.

The date is formatted per , which is consistent with typical JavaScript usage of JSON.

The truncation structure  be omitted if all values are zero. Any counter missing from the
truncation structure is assumed to be zero.

The nonce is a string, as provided in the voucher-request, and is used in the voucher. If no nonce
was placed in the resulting voucher, then a value of null  be used in preference to
omitting the entry. While the nonce is often created as a base64-encoded random series of bytes,
this should not be assumed.

Distribution of a large log is less than ideal. This structure can be optimized as follows: nonced or
nonceless entries for the same domainID  be abridged from the log leaving only the single
most recent nonced or nonceless entry for that domainID. In the case of truncation, the "event"
truncation value  contain a count of the number of events for this domainID that were
omitted. The log  be further reduced, but an operational situation could exist where
maintaining the full log is not possible. In such situations, the log  be arbitrarily abridged for
length, with the number of removed entries indicated as "arbitrary".

If the truncation count exceeds 1024, then the MASA  use this value without further
incrementing it.

A log where duplicate entries for the same domain have been omitted ("nonced duplicates" and/
or "nonceless duplicates") could still be acceptable for informed decisions. A log that has had
"arbitrary" truncations is less acceptable, but manufacturer transparency is better than hidden
truncations.

A registrar that sees a version value greater than 1 indicates an audit-log format that has been
enhanced with additional information. No information will be removed in future versions;
should an incompatible change be desired in the future, then a new HTTP endpoint will be used.

This document specifies a simple log format as provided by the MASA service to the registrar.
This format could be improved by distributed consensus technologies that integrate vouchers
with technologies such as block-chain or hash trees or optimized logging approaches. Doing so is
out of the scope of this document but is an anticipated improvement for future work. As such,
the registrar  anticipate new kinds of responses and  provide operator controls
to indicate how to process unknown responses.

[RFC3339]

MAY

SHOULD

MAY

SHOULD
SHOULD NOT

MAY

MAY

SHOULD SHOULD

5.8.2. Calculation of domainID 

The domainID is a binary value (a BIT STRING) that uniquely identifies a registrar by the pinned-
domain-cert.

If the pinned-domain-cert certificate includes the SubjectKeyIdentifier (
), then it is used as the domainID. If not, the SPKI Fingerprint as described in 

 is used. This value needs to be calculated by both the MASA (to populate the audit-log)
and the registrar (to recognize itself in the audit-log).

[RFC5280], Section
4.2.1.2 [RFC7469], 
Section 2.4

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 53

https://www.rfc-editor.org/rfc/rfc5280#section-4.2.1.2
https://www.rfc-editor.org/rfc/rfc5280#section-4.2.1.2
https://www.rfc-editor.org/rfc/rfc7469#section-2.4


 does not mandate that the SubjectKeyIdentifier extension be present in
non-CA certificates. It is  that registrar certificates (even if self-signed) always
include the SubjectKeyIdentifier to be used as a domainID.

The domainID is determined from the certificate chain associated with the pinned-domain-cert
and is used to update the audit-log.

[RFC5280], Section 4.2.1.2
RECOMMENDED

date:

domainID:

nonce:

assertion:

5.8.3. Registrar Audit-Log Verification 

Each time the MASA issues a voucher, it appends details of the assignment to an internal audit-
log for that device. The internal audit-log is processed when responding to requests for details as
described in Section 5.8. The contents of the audit-log can express a variety of trust levels, and
this section explains what kind of trust a registrar can derive from the entries.

While the audit-log provides a list of vouchers that were issued by the MASA, the vouchers are
issued in response to voucher-requests, and it is the content of the voucher-requests that
determines how meaningful the audit-log entries are.

A registrar  use the log information to make an informed decision regarding the
continued bootstrapping of the pledge. The exact policy is out of scope of this document as it
depends on the security requirements within the registrar domain. Equipment that is purchased
preowned can be expected to have an extensive history. The following discussion is provided to
help explain the value of each log element:

The date field provides the registrar an opportunity to divide the log around known
events such as the purchase date. Depending on the context known to the registrar or
administrator, events before/after certain dates can have different levels of importance. For
example, for equipment that is expected to be new, and thus has no history, it would be a
surprise to find prior entries. 

If the log includes an unexpected domainID, then the pledge could have imprinted
on an unexpected domain. The registrar can be expected to use a variety of techniques to
define "unexpected" ranging from acceptlists of prior domains to anomaly detection (e.g., "this
device was previously bound to a different domain than any other device deployed"). Log
entries can also be compared against local history logs in search of discrepancies (e.g., "this
device was re-deployed some number of times internally, but the external audit-log shows
additional re-deployments our internal logs are unaware of"). 

Nonceless entries mean the logged domainID could theoretically trigger a reset of the
pledge and then take over management by using the existing nonceless voucher. 

The assertion leaf in the voucher and audit-log indicates why the MASA issued the
voucher. A "verified" entry means that the MASA issued the associated voucher as a result of
positive verification of ownership. However, this entry does not indicate whether or not the
pledge was actually deployed in the prior domain. A "logged" assertion informs the registrar
that the prior vouchers were issued with minimal verification. A "proximity" assertion
assures the registrar that the pledge was truly communicating with the prior domain and thus
provides assurance that the prior domain really has deployed the pledge. 

SHOULD

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 54

https://www.rfc-editor.org/rfc/rfc5280#section-4.2.1.2


A relatively simple policy is to acceptlist known (internal or external) domainIDs and require all
vouchers to have a nonce. An alternative is to require that all nonceless vouchers be from a
subset (e.g., only internal) of domainIDs. If the policy is violated, a simple action is to revoke any
locally issued credentials for the pledge in question or to refuse to forward the voucher. The
registrar  then refuse any EST actions and  inform a human via a log. A registrar 

 be configured to ignore (i.e., override the above policy) the history of the device, but it is 
 that this only be configured if hardware-assisted (i.e., Transport Performance

Metrics (TPM) anchored) Network Endpoint Assessment (NEA)  is supported.

MUST SHOULD
MAY
RECOMMENDED

[RFC5209]

5.9. EST Integration for PKI Bootstrapping 
The pledge  follow the BRSKI operations with EST enrollment operations including "CA
Certificates Request", "CSR Attributes Request", and "Client Certificate Request" or "Server-Side
Key Generation", etc. This is a relatively seamless integration since BRSKI API calls provide an
automated alternative to the manual bootstrapping method described in . As noted
above, use of HTTP-persistent connections simplifies the pledge state machine.

Although EST allows clients to obtain multiple certificates by sending multiple Certificate Signing
Requests (CSRs), BRSKI does not support this mechanism directly. This is because BRSKI pledges 

 use the CSR Attributes request ( ). The registrar  validate the CSR
against the expected attributes. This implies that client requests will "look the same" and
therefore result in a single logical certificate being issued even if the client were to make
multiple requests. Registrars  contain more complex logic, but doing so is out of scope of this
specification. BRSKI does not signal any enhancement or restriction to this capability.

5.9.1. EST Distribution of CA Certificates 

The pledge  request the full EST Distribution of CA certificate messages; see 
.

This ensures that the pledge has the complete set of current CA certificates beyond the pinned-
domain-cert (see Section 5.6.2 for a discussion of the limitations inherent in having a single
certificate instead of a full CA certificate response). Although these limitations are acceptable
during initial bootstrapping, they are not appropriate for ongoing PKIX end-entity certificate
validation.

SHOULD

[RFC7030]

MUST [RFC7030], Section 4.5 MUST

MAY

SHOULD [RFC7030], 
Section 4.1

5.9.2. EST CSR Attributes 

Automated bootstrapping occurs without local administrative configuration of the pledge. In
some deployments, it is plausible that the pledge generates a certificate request containing only
identity information known to the pledge (essentially the X.509 IDevID information) and
ultimately receives a certificate containing domain-specific identity information. Conceptually,
the CA has complete control over all fields issued in the end-entity certificate. Realistically, this is
operationally difficult with the current status of PKI CA deployments, where the CSR is submitted
to the CA via a number of non-standard protocols. Even with all standardized protocols used, it
could operationally be problematic to expect that service-specific certificate fields can be created
by a CA that is likely operated by a group that has no insight into different network services/
protocols used. For example, the CA could even be outsourced.

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 55

https://www.rfc-editor.org/rfc/rfc7030#section-4.5
https://www.rfc-editor.org/rfc/rfc7030#section-4.1


5.9.3. EST Client Certificate Request 

The pledge  request a new Client Certificate; see .

5.9.4. Enrollment Status Telemetry 

For automated bootstrapping of devices, the administrative elements that provide bootstrapping
also provide indications to the system administrators concerning device life-cycle status. This
might include information concerning attempted bootstrapping messages seen by the client. The
MASA provides logs and the status of credential enrollment. Since an end user is assumed per 

, a final success indication back to the server is not included. This is insufficient for
automated use cases.

The client  send an indicator to the registrar about its enrollment status. It does this by
using an HTTP POST of a JSON dictionary with the attributes described below to the new EST
endpoint at "/.well-known/brski/enrollstatus".

When indicating a successful enrollment, the client  first re-establish the EST TLS session
using the newly obtained credentials. TLS 1.3 supports doing this in-band, but TLS 1.2 does not.
The client  therefore always close the existing TLS connection and start a new one, using
the same Join Proxy.

In the case of a failed enrollment, the client  send the telemetry information over the same
TLS connection that was used for the enrollment attempt, with a Reason string indicating why
the most recent enrollment failed. (For failed attempts, the TLS connection is the most reliable
way to correlate server-side information with what the client provides.)

The version and status fields  be present. The Reason field  be present whenever
the status field is false. In the case of a SUCCESS, the Reason string  be omitted.

To alleviate these operational difficulties, the pledge  request the EST "CSR Attributes" from
the EST server, and the EST server needs to be able to reply with the attributes necessary for use
of the certificate in its intended protocols/services. This approach allows for minimal CA
integrations, and instead, the local infrastructure (EST server) informs the pledge of the proper
fields to include in the generated CSR (such as rfc822Name). This approach is beneficial to
automated bootstrapping in the widest number of environments.

In networks using the BRSKI enrolled certificate to authenticate the ACP, the EST CSR Attributes 
 include the ACP domain information fields defined in .

The registrar  also confirm that the resulting CSR is formatted as indicated before
forwarding the request to a CA. If the registrar is communicating with the CA using a protocol
such as full Certificate Management over CMS (CMC), which provides mechanisms to override
the CSR Attributes, then these mechanisms  be used even if the client ignores the guidance
for the CSR Attributes.

MUST

MUST [RFC8994], Section 6.2.2

MUST

MAY

MUST [RFC7030], Section 4.2

[RFC7030]

MUST

SHOULD

SHOULD

MUST

MUST SHOULD
MAY

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 56

https://www.rfc-editor.org/rfc/rfc8994#section-6.2.2
https://www.rfc-editor.org/rfc/rfc7030#section-4.2


The reason-context attribute is an arbitrary JSON object (literal value or hash of values) that
provides additional information specific to the failure to unroll from this pledge. The contents of
this field are not subject to standardization. This is represented by the group-socket "$$arbitrary-
map" in the CDDL.

An example status report can be seen below. It is sent with the media type: application/json

The server  respond with an HTTP 200 but  simply fail with an HTTP 404 error.

Within the server logs, the server  capture if this message was received over a TLS session
with a matching Client Certificate.

5.9.5. Multiple Certificates 

Pledges that require multiple certificates could establish direct EST connections to the registrar.

5.9.6. EST over CoAP 

This document describes extensions to EST for the purpose of bootstrapping remote key
infrastructures. Bootstrapping is relevant for CoAP enrollment discussions as well. The definition
of EST and BRSKI over CoAP is not discussed within this document beyond ensuring proxy
support for CoAP operations. Instead, it is anticipated that a definition of CoAP mappings will
occur in subsequent documents such as  and that CoAP mappings for BRSKI will
be discussed either there or in future work.

Figure 19: CDDL for Enrollment Status POST 

<CODE BEGINS> file "enrollstatus.cddl"

enrollstatus-post = {
    "version": uint,
    "status": bool,
    ? "reason": text,
    ? "reason-context" : { $$arbitrary-map }
  }
}

<CODE ENDS>

Figure 20: Example of Enrollment Status POST 

{
    "version": 1,
    "status":true,
    "reason":"Informative human readable message",
    "reason-context": { "additional" : "JSON" }
}

SHOULD MAY

MUST

[ACE-COAP-EST]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 57



6. Clarification of Transfer-Encoding 
 defines endpoints to include a "Content-Transfer-Encoding" heading and payloads to

be base64-encoded DER .

When used within BRSKI, the original EST endpoints remain base64 encoded  (as
clarified by ), but the new BRSKI endpoints that send and receive binary artifacts
(specifically, "/.well-known/brski/requestvoucher") are binary. That is, no encoding is used.

In the BRSKI context, the EST "Content-Transfer-Encoding" header field  be ignored if
present. This header field does not need to be included.

[RFC7030]
[RFC4648]

[RFC7030]
[RFC8951]

SHOULD

Pledge:

Join Proxy:

7. Reduced Security Operational Modes 
A common requirement of bootstrapping is to support less secure operational modes for support-
specific use cases. This section suggests a range of mechanisms that would alter the security
assurance of BRSKI to accommodate alternative deployment architectures and mitigate life-cycle
management issues identified in Section 10. They are presented here as informative (non-
normative) design guidance for future standardization activities. Section 9 provides
standardization applicability statements for the ANIMA ACP. Other users would expect that
subsets of these mechanisms could be profiled with accompanying applicability statements
similar to the one described in Section 9.

This section is considered non-normative in the generality of the protocol. Use of the suggested
mechanisms here  be detailed in specific profiles of BRSKI, such as in Section 9.

7.1. Trust Model 
This section explains the trust relationships detailed in Section 2.4:

The pledge could be compromised and provide an attack vector for malware. The entity
is trusted to only imprint using secure methods described in this document. Additional
endpoint assessment techniques are  but are out of scope of this document. 

Provides proxy functionalities but is not involved in security considerations. 

MUST

Figure 21: Elements of BRSKI Trust Model 

+--------+         +---------+    +------------+     +------------+
| Pledge |         | Join    |    | Domain     |     |Manufacturer|
|        |         | Proxy   |    | Registrar  |     | Service    |
|        |         |         |    |            |     | (Internet) |
+--------+         +---------+    +------------+     +------------+

RECOMMENDED

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 58



Registrar:

Vendor Service, MASA:

Vendor Service, Ownership Validation:

When interacting with a MASA, a registrar makes all decisions. For Ownership Audit
Vouchers (see ), the registrar is provided an opportunity to accept MASA decisions. 

This form of manufacturer service is trusted to accurately log all claim
attempts and to provide authoritative log information to registrars. The MASA does not know
which devices are associated with which domains. These claims could be strengthened by
using cryptographic log techniques to provide append only, cryptographic assured, publicly
auditable logs. 

This form of manufacturer service is trusted to
accurately know which device is owned by which domain. 

[RFC8366]

7.2. Pledge Security Reductions 
The following is a list of alternative behaviors that the pledge can be programmed to implement.
These behaviors are not mutually exclusive, nor are they dependent upon each other. Some of
these methods enable offline and emergency (touch-based) deployment use cases. Normative
language is used as these behaviors are referenced in later sections in a normative fashion.

The pledge  accept nonceless vouchers. This allows for a use case where the registrar
cannot connect to the MASA at the deployment time. Logging and validity periods address
the security considerations of supporting these use cases. 
Many devices already support "trust on first use" for physical interfaces such as console
ports. This document does not change that reality. Devices supporting this protocol 

 support "trust on first use" on network interfaces. This is because "trust on first use"
over network interfaces would undermine the logging based security protections provided
by this specification. 
The pledge  have an operational mode where it skips voucher validation one time, for
example, if a physical button is depressed during the bootstrapping operation. This can be
useful if the manufacturer service is unavailable. This behavior  be available via
local configuration or physical presence methods (such as use of a serial/craft console) to
ensure new entities can always be deployed even when autonomic methods fail. This allows
for unsecured imprint. 
A craft/serial console could include a command such as "est-enroll [2001:db8:0:1]:443" that
begins the EST process from the point after the voucher is validated. This process 
include server certificate verification using an on-screen fingerprint. 

It is  that "trust on first use" or any method of skipping voucher validation
(including use of a craft serial console) only be available if hardware-assisted Network Endpoint
Assessment (NEA)  is supported. This recommendation ensures that domain network
monitoring can detect inappropriate use of offline or emergency deployment procedures when
voucher-based bootstrapping is not used.

1. MUST

2. 
MUST

NOT

3. MAY

SHOULD

4. 
SHOULD

RECOMMENDED

[RFC5209]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 59



7.3. Registrar Security Reductions 
A registrar can choose to accept devices using less secure methods. They  be the default
behavior. These methods may be acceptable in situations where threat models indicate that low
security is adequate. This includes situations where security decisions are being made by the
local administrator:

A registrar  choose to accept all devices, or all devices of a particular type. The
administrator could make this choice in cases where it is operationally difficult to configure
the registrar with the unique identifier of each new device expected. 
A registrar  choose to accept devices that claim a unique identity without the benefit of
authenticating that claimed identity. This could occur when the pledge does not include an
X.509 IDevID factory-installed credential. New entities without an X.509 IDevID credential 

 form the request per Section 5.2 using the format per Section 5.5 to ensure the pledge's
serial number information is provided to the registrar (this includes the IDevID
AuthorityKeyIdentifier value, which would be statically configured on the pledge). The
pledge  refuse to provide a TLS Client Certificate (as one is not available). The pledge 

 support HTTP-based or certificate-less TLS authentication as described in EST 
. A registrar  accept unauthenticated new entities unless it

has been configured to do so by an administrator that has verified that only expected new
entities can communicate with a registrar (presumably via a physically secured perimeter.) 
A registrar  submit a nonceless voucher-request to the MASA service (by not including a
nonce in the voucher-request). The resulting vouchers can then be stored by the registrar
until they are needed during bootstrapping operations. This is for use cases where the target
network is protected by an air gap and therefore cannot contact the MASA service during
pledge deployment. 
A registrar  ignore unrecognized nonceless log entries. This could occur when used
equipment is purchased with a valid history of being deployed in air gap networks that
required offline vouchers. 
A registrar  accept voucher formats of future types that cannot be parsed by the
registrar. This reduces the registrar's visibility into the exact voucher contents but does not
change the protocol operations. 

MUST NOT

1. MAY

2. MAY

MAY

MAY
SHOULD
[RFC7030], Section 3.3.2 MUST NOT

3. MAY

4. MAY

5. MAY

7.4. MASA Security Reductions 
Lower security modes chosen by the MASA service affect all device deployments unless the lower
security behavior is tied to specific device identities. The modes described below can be applied
to specific devices via knowledge of what devices were sold. They can also be bound to specific
customers (independent of the device identity) by authenticating the customer's registrar.

7.4.1. Issuing Nonceless Vouchers 

A MASA has the option of not including a nonce in the voucher and/or not requiring one to be
present in the voucher-request. This results in distribution of a voucher that may never expire
and, in effect, makes the specified domain an always trusted entity to the pledge during any

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 60

https://www.rfc-editor.org/rfc/rfc7030#section-3.3.2


subsequent bootstrapping attempts. The log information captures when a nonceless voucher is
issued so that the registrar can make appropriate security decisions when a pledge joins the
domain. Nonceless vouchers are useful to support use cases where registrars might not be online
during actual device deployment.

While a nonceless voucher may include an expiry date, a typical use for a nonceless voucher is
for it to be long lived. If the device can be trusted to have an accurate clock (the MASA will
know), then a nonceless voucher CAN be issued with a limited lifetime.

A more typical case for a nonceless voucher is for use with offline onboarding scenarios where it
is not possible to pass a fresh voucher-request to the MASA. The use of a long-lived voucher also
eliminates concern about the availability of the MASA many years in the future. Thus, many
nonceless vouchers will have no expiry dates.

Thus, the long-lived nonceless voucher does not require proof that the device is online. Issuing
such a thing is only accepted when the registrar is authenticated by the MASA and the MASA is
authorized to provide this functionality to this customer. The MASA is  to use this
functionality only in concert with an enhanced level of ownership tracking, the details of which
are out of scope for this document.

If the pledge device is known to have a real-time clock that is set from the factory, use of a
voucher validity period is .

RECOMMENDED

RECOMMENDED

7.4.2. Trusting Owners on First Use 

A MASA has the option of not verifying ownership before responding with a voucher. This is
expected to be a common operational model because doing so relieves the manufacturer
providing MASA services from having to track ownership during shipping and throughout the
supply chain, and it allows for a very low overhead MASA service. A registrar uses the audit-log
information as an in-depth defense strategy to ensure that this does not occur unexpectedly (for
example, when purchasing new equipment, the registrar would throw an error if any audit-log
information is reported). The MASA  verify the prior-signed-voucher-request
information for pledges that support that functionality. This provides a proof-of-proximity check
that reduces the need for ownership verification. The proof-of-proximity comes from the
assumption that the pledge and Join Proxy are on the same link-local connection.

A MASA that practices TOFU for registrar identity may wish to annotate the origin of the
connection by IP address or netblock and restrict future use of that identity from other locations.
A MASA that does this  take care to not create nuisance situations for itself when a
customer has multiple registrars or uses outgoing IPv4-to-IPv4 NAT (NAT44) connections that
change frequently.

SHOULD

SHOULD

7.4.3. Updating or Extending Voucher Trust Anchors 

This section deals with two problems: A MASA that is no longer available due to a failed business
and a MASA that is uncooperative to a secondary sale.

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 61



URI:
Registrant Contact:

8. IANA Considerations 
Per this document, IANA has completed the following actions.

8.1. The IETF XML Registry 
This document registers a URI in the "IETF XML Registry" . IANA has registered the
following:

urn:ietf:params:xml:ns:yang:ietf-voucher-request 
The ANIMA WG of the IETF. 

A manufacturer could offer a management mechanism that allows the list of voucher
verification trust anchors to be extended.  describes one such interface that
could be implemented using YANG. Pretty much any configuration mechanism used today could
be extended to provide the needed additional update. A manufacturer could even decide to
install the domain CA trust anchors received during the EST "cacerts" step as voucher verification
anchors. Some additional signals will be needed to clearly identify which keys have voucher
validation authority from among those signed by the domain CA. This is future work.

With the above change to the list of anchors, vouchers can be issued by an alternate MASA. This
could be the previous owner (the seller) or some other trusted third party who is mediating the
sale. If it is a third party, the seller would need to take steps to introduce the third-party
configuration to the device prior to disconnection. The third party (e.g., a wholesaler of used
equipment) could, however, use a mechanism described in Section 7.2 to take control of the
device after receiving it physically. This would permit the third party to act as the MASA for
future onboarding actions. As the IDevID certificate probably cannot be replaced, the new
owner's registrar would have to support an override of the MASA URL.

To be useful for resale or other transfers of ownership, one of two situations will need to occur.
The simplest is that the device is not put through any kind of factory default/reset before going
through onboarding again. Some other secure, physical signal would be needed to initiate it. This
is most suitable for redeploying a device within the same enterprise. This would entail having
previous configuration in the system until entirely replaced by the new owner, and it represents
some level of risk.

For the second scenario, there would need to be two levels of factory reset. One would take the
system back entirely to manufacturer state, including removing any added trust anchors, and the
other (more commonly used) one would just restore the configuration back to a known default
without erasing trust anchors. This weaker factory reset might leave valuable credentials on the
device, and this may be unacceptable to some owners.

As a third option, the manufacturer's trust anchors could be entirely overwritten with local trust
anchors. A factory default would never restore those anchors. This option comes with a lot of
power but is also a lot of responsibility: if access to the private part of the new anchors are lost,
the manufacturer may be unable to help.

[YANG-KEYSTORE]

[RFC3688]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 62



XML:

Name:
Namespace:
Prefix:
Reference:

URI Suffix:
Change Controller:

N/A; the requested URI is an XML namespace. 

8.2. YANG Module Names Registry 
This document registers a YANG module in the "YANG Module Names" registry . IANA
has registered the following:

ietf-voucher-request 
urn:ietf:params:xml:ns:yang:ietf-voucher-request 

vch 
RFC 8995 

8.3. BRSKI Well-Known Considerations 
8.3.1. BRSKI .well-known Registration 

To the "Well-Known URIs" registry at , this
document registers the well-known name "brski" with the following filled-in template from 

:

brski 
IETF 

IANA has changed the registration of "est" to now only include  and no longer this
document. Earlier draft versions of this document used "/.well-known/est" rather than "/.well-
known/brski".

8.3.2. BRSKI .well-known Registry 

IANA has created a new registry entitled: "BRSKI Well-Known URIs". The registry has three
columns: URI, Description, and Reference. New items can be added using the Specification
Required  process. The initial contents of this registry are:

8.4. PKIX Registry 
IANA has registered the following:

[RFC6020]

https://www.iana.org/assignments/well-known-uris/

[RFC8615]

[RFC7030]

[RFC8126]

URI Description Reference

requestvoucher pledge to registrar, and from registrar to MASA RFC 8995

voucher_status pledge to registrar RFC 8995

requestauditlog registrar to MASA RFC 8995

enrollstatus pledge to registrar RFC 8995

Table 1: BRSKI Well-Known URIs 

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 63

https://www.iana.org/assignments/well-known-uris/


Service Name:
Transport Protocol(s):
Assignee:
Contact:
Description:
Reference:

Service Name:
Transport Protocol(s):
Assignee:
Contact:
Description:
Reference:

a number for id-mod-MASAURLExtn2016(96) from the pkix(7) id-mod(0) Registry.

IANA has assigned a number from the id-pe registry (Structure of Management Information
(SMI) Security for PKIX Certificate Extension) for id-pe-masa-url with the value 32, resulting in an
OID of 1.3.6.1.5.5.7.1.32.

8.6. DNS Service Names 
IANA has registered the following service names:

brski-proxy 
tcp 

IESG <iesg@ietf.org> 
IESG <iesg@ietf.org> 

The Bootstrapping Remote Secure Key Infrastructure Proxy 
RFC 8995 

brski-registrar 
tcp 

IESG <iesg@ietf.org> 
IESG <iesg@ietf.org> 

The Bootstrapping Remote Secure Key Infrastructure Registrar 
RFC 8995 

8.7. GRASP Objective Names 
IANA has registered the following GRASP Objective Names:

IANA has registered the value "AN_Proxy" (without quotes) to the "GRASP Objective Names" table
in the GRASP Parameter registry. The specification for this value is Section 4.1.1 of this document.

The IANA has registered the value "AN_join_registrar" (without quotes) to the "GRASP Objective
Names" table in the GRASP Parameter registry. The specification for this value is Section 4.3 of
this document.

8.5. Pledge BRSKI Status Telemetry 
IANA has created a new registry entitled "BRSKI Parameters" and has created, within that
registry, a table called: "Pledge BRSKI Status Telemetry Attributes". New items can be added using
the Specification Required process. The following items are in the initial registration, with this
document (see Section 5.7) as the reference:

version 
Status 
Reason 
reason-context 

• 
• 
• 
• 

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 64



9. Applicability to the Autonomic Control Plane (ACP) 
This document provides a solution to the requirements for secure bootstrapping as defined in
"Using an Autonomic Control Plane for Stable Connectivity of Network Operations,
Administration, and Maintenance (OAM)" , "A Reference Model for Autonomic
Networking" , and specifically "An Autonomic Control Plane (ACP)" ; see
Sections 3.2 ("Secure Bootstrap over an Unconfigured Network") and 6.2 ("ACP Domain,
Certificate, and Network").

The protocol described in this document has appeal in a number of other non-ANIMA use cases.
Such uses of the protocol will be deployed into other environments with different tradeoffs of
privacy, security, reliability, and autonomy from manufacturers. As such, those use cases will
need to provide their own applicability statements and will need to address unique privacy and
security considerations for the environments in which they are used.

The ACP that is bootstrapped by the BRSKI protocol is typically used in medium to large Internet
service provider organizations. Equivalent enterprises that have significant Layer 3 router
connectivity also will find significant benefit, particularly if the enterprise has many sites. (A
network consisting of primarily Layer 2 is not excluded, but the adjacencies that the ACP will
create and maintain will not reflect the topology until all devices participate in the ACP.)

In the ACP, the Join Proxy is found to be proximal because communication between the pledge
and the Join Proxy is exclusively on IPv6 link-local addresses. The proximity of the Join Proxy to
the registrar is validated by the registrar using ANI ACP IPv6 ULAs. ULAs are not routable over
the Internet, so as long as the Join Proxy is operating correctly, the proximity assertion is
satisfied. Other uses of BRSKI will need similar analysis if they use proximity assertions.

As specified in the ANIMA charter, this work "focuses on professionally-managed networks."
Such a network has an operator and can do things like install, configure, and operate the
registrar function. The operator makes purchasing decisions and is aware of what
manufacturers it expects to see on its network.

Such an operator is also capable of performing bootstrapping of a device using a serial console
(craft console). The zero-touch mechanism presented in this and the ACP document 
represents a significant efficiency: in particular, it reduces the need to put senior experts on
airplanes to configure devices in person.

As the technology evolves, there is recognition that not every situation may work out, and
occasionally a human may still have to visit. Given this, some mechanisms are presented in 
Section 7.2. The manufacturer  provide at least one of the one-touch mechanisms described
that permit enrollment to proceed without the availability of any manufacturer server (such as
the MASA).

[RFC8368]
[RFC8993] [RFC8994]

[RFC8994]

MUST

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 65

https://www.rfc-editor.org/rfc/rfc8994#section-3.2
https://www.rfc-editor.org/rfc/rfc8994#section-6.2


The BRSKI protocol is going into environments where there have already been quite a number of
vendor proprietary management systems. Those are not expected to go away quickly but rather
to leverage the secure credentials that are provisioned by BRSKI. The connectivity requirements
of the said management systems are provided by the ACP.

9.1. Operational Requirements 
This section collects operational requirements based upon the three roles involved in BRSKI: the
MASA, the (domain) owner, and the device. It should be recognized that the manufacturer may
be involved in two roles, as it creates the software/firmware for the device and may also be the
operator of the MASA.

The requirements in this section are presented using BCP 14 language  .
These do not represent new normative statements, just a review of a few such things in one place
by role. They also apply specifically to the ANIMA ACP use case. Other use cases likely have
similar, but  have different, requirements.

[RFC2119] [RFC8174]

MAY

9.1.1. MASA Operational Requirements 

The manufacturer  arrange for an online service called the MASA to be available. It 
be available at the URL that is encoded in the IDevID certificate extensions described in Section
2.3.2.

The online service  have access to a private key with which to sign voucher artifacts 
. The public key, certificate, or certificate chain  be built into the device as part of

the firmware.

It is  that the manufacturer arrange for this signing key (or keys) to be escrowed
according to typical software source code escrow practices .

The MASA accepts voucher-requests from domain owners according to an operational practice
appropriate for the device. This can range from any domain owner (first-come first-served, on a
TOFU-like basis), to full sales channel integration where domain owners need to be positively
identified by TLS pinned Client Certificates or an HTTP authentication process. The MASA creates
signed voucher artifacts according to its internally defined policies.

The MASA  operate an audit-log for devices that is accessible. The audit-log is designed to be
easily cacheable, and the MASA  find it useful to put this content on a Content Delivery
Network (CDN).

MUST MUST

MUST
[RFC8366] MUST

RECOMMENDED
[softwareescrow]

MUST
MAY

9.1.2. Domain Owner Operational Requirements 

The domain owner  operate an EST  server with the extensions described in this
document. This is the JRC or registrar. This JRC/EST server  announce itself using GRASP
within the ACP. This EST server will typically reside with the Network Operations Center for the
organization.

MUST [RFC7030]
MUST

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 66



The domain owner  operate an internal CA that is separate from the EST server, or it 
combine all activities into a single device. The determination of the architecture depends upon
the scale and resiliency requirements of the organization. Multiple JRC instances  be
announced into the ACP from multiple locations to achieve an appropriate level of redundancy.

In order to recognize which devices and which manufacturers are welcome on the domain
owner's network, the domain owner  maintain an acceptlist of manufacturers. This 
extend to integration with purchasing departments to know the serial numbers of devices.

The domain owner  use the resulting overlay ACP network to manage devices, replacing
legacy out-of-band mechanisms.

The domain owner  operate one or more EST servers that can be used to renew the
domain certificates (LDevIDs), which are deployed to devices. These servers  be the same as
the JRC or  be a distinct set of devices, as appropriate for resiliency.

The organization  take appropriate precautions against loss of access to the CA private key.
Hardware security modules and/or secret splitting are appropriate.

MAY MAY

MAY

SHOULD MAY

SHOULD

SHOULD
MAY

MAY

MUST

9.1.3. Device Operational Requirements 

Devices  come with built-in trust anchors that permit the device to validate vouchers from
the MASA.

Devices  come with (unique, per-device) IDevID certificates that include their serial
numbers and the MASA URL extension.

Devices are expected to find Join Proxies using GRASP, and then connect to the JRC using the
protocol described in this document.

Once a domain owner has been validated with the voucher, devices are expected to enroll into
the domain using EST. Devices are then expected to form ACPs using IPsec over IPv6 link-local
addresses as described in .

Once a device has been enrolled, it  listen for the address of the JRC using GRASP, and it 
 enable itself as a Join Proxy and announce itself on all links/interfaces using GRASP

DULL.

Devices are expected to renew their certificates before they expire.

MUST

MUST

[RFC8994]

SHOULD
SHOULD

10. Privacy Considerations 

10.1. MASA Audit-Log 
The MASA audit-log includes the domainID for each domain a voucher has been issued to. This
information is closely related to the actual domain identity. A MASA may need additional
defenses against Denial-of-Service attacks (Section 11.1), and this may involve collecting

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 67



additional (unspecified here) information. This could provide sufficient information for the
MASA service to build a detailed understanding of the devices that have been provisioned within
a domain.

There are a number of design choices that mitigate this risk. The domain can maintain some
privacy since it has not necessarily been authenticated and is not authoritatively bound to the
supply chain.

Additionally, the domainID captures only the unauthenticated subject key identifier of the
domain. A privacy-sensitive domain could theoretically generate a new domainID for each
device being deployed. Similarly, a privacy-sensitive domain would likely purchase devices that
support proximity assertions from a manufacturer that does not require sales channel
integrations. This would result in a significant level of privacy while maintaining the security
characteristics provided by the registrar-based audit-log inspection.

10.2. What BRSKI-EST Reveals 
During the provisional phase of the BRSKI-EST connection between the pledge and the registrar,
each party reveals its certificates to each other. For the pledge, this includes the serialNumber
attribute, the MASA URL, and the identity that signed the IDevID certificate.

TLS 1.2 reveals the certificate identities to on-path observers, including the Join Proxy.

TLS 1.3 reveals the certificate identities only to the end parties, but as the connection is
provisional; an on-path attacker (MITM) can see the certificates. This includes not just malicious
attackers but also registrars that are visible to the pledge but are not part of the intended
domain.

The certificate of the registrar is rather arbitrary from the point of view of the BRSKI protocol. As
no validations  are expected to be done, the contents could be easily pseudonymized.
Any device that can see a Join Proxy would be able to connect to the registrar and learn the
identity of the network in question. Even if the contents of the certificate are pseudonymized, it
would be possible to correlate different connections in different locations that belong to the same
entity. This is unlikely to present a significant privacy concern to ANIMA ACP uses of BRSKI, but it
may be a concern to other users of BRSKI.

The certificate of the pledge could be revealed by a malicious Join Proxy that performed a MITM
attack on the provisional TLS connection. Such an attacker would be able to reveal the identity of
the pledge to third parties if it chose to do so.

Research into a mechanism to do multistep, multiparty authenticated key agreement,
incorporating some kind of zero-knowledge proof, would be valuable. Such a mechanism would
ideally avoid disclosing identities until the pledge, registrar, and MASA agree to the transaction.
Such a mechanism would need to discover the location of the MASA without knowing the
identity of the pledge or the identity of the MASA. This part of the problem may be unsolvable.

[RFC6125]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 68



10.3. What BRSKI-MASA Reveals to the Manufacturer 
With consumer-oriented devices, the "call-home" mechanism in IoT devices raises significant
privacy concerns. See  and  for exemplars. The ACP usage of
BRSKI is not targeted at individual usage of IoT devices but rather at the enterprise and ISP
creation of networks in a zero-touch fashion where the "call-home" represents a different class of
privacy and life-cycle management concerns.

It needs to be reiterated that the BRSKI-MASA mechanism only occurs once during the
commissioning of the device. It is well defined, and although encrypted with TLS, it could in
theory be made auditable as the contents are well defined. This connection does not occur when
the device powers on or is restarted for normal routines. (It is conceivable, but remarkably
unusual, that a device could be forced to go through a full factory reset during an exceptional
firmware update situation, after which enrollment would have to be repeated, and a new
connection would occur.)

The BRSKI call-home mechanism is mediated via the owner's registrar, and the information that
is transmitted is directly auditable by the device owner. This is in stark contrast to many "call-
home" protocols where the device autonomously calls home and uses an undocumented
protocol.

While the contents of the signed part of the pledge voucher-request cannot be changed, they are
not encrypted at the registrar. The ability to audit the messages by the owner of the network is a
mechanism to defend against exfiltration of data by a nefarious pledge. Both are, to reiterate,
encrypted by TLS while in transit.

The BRSKI-MASA exchange reveals the following information to the manufacturer:

the identity of the device being enrolled. This is revealed by transmission of a signed
voucher-request containing the serial-number. The manufacturer can usually link the serial
number to a device model. 
an identity of the domain owner in the form of the domain trust anchor. However, this is not
a global PKI-anchored name within the WebPKI, so this identity could be pseudonymous. If
there is sales channel integration, then the MASA will have authenticated the domain owner,
via either a pinned certificate or perhaps another HTTP authentication method, as per 
Section 5.5.4. 
the time the device is activated. 
the IP address of the domain owner's registrar. For ISPs and enterprises, the IP address
provides very clear geolocation of the owner. No amount of IP address privacy extensions 

 can do anything about this, as a simple whois lookup likely identifies the ISP or
enterprise from the upper bits anyway. A passive attacker who observes the connection
definitely may conclude that the given enterprise/ISP is a customer of the particular
equipment vendor. The precise model that is being enrolled will remain private. 

[livingwithIoT] [IoTstrangeThings]

• 

• 

• 
• 

[RFC8981]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 69



10.4. Manufacturers and Used or Stolen Equipment 
As explained above, the manufacturer receives information each time a device that is in factory-
default mode does a zero-touch bootstrap and attempts to enroll into a domain owner's registrar.

The manufacturer is therefore in a position to decline to issue a voucher if it detects that the new
owner is not the same as the previous owner.

This can be seen as a feature if the equipment is believed to have been stolen. If the
legitimate owner notifies the manufacturer of the theft, then when the new owner brings the
device up, if they use the zero-touch mechanism, the new (illegitimate) owner reveals their
location and identity. 
In the case of used equipment, the initial owner could inform the manufacturer of the sale,
or the manufacturer may just permit resales unless told otherwise. In which case, the
transfer of ownership simply occurs. 

Based upon the above information, the manufacturer is able to track a specific device from
pseudonymous domain identity to the next pseudonymous domain identity. If there is sales-
channel integration, then the identities are not pseudonymous.

The manufacturer knows the IP address of the registrar, but it cannot see the IP address of the
device itself. The manufacturer cannot track the device to a detailed physical or network
location, only to the location of the registrar. That is likely to be at the enterprise or ISP's
headquarters.

The above situation is to be distinguished from a residential/individual person who registers a
device from a manufacturer. Individuals do not tend to have multiple offices, and their registrar
is likely on the same network as the device. A manufacturer that sells switching/routing products
to enterprises should hardly be surprised if additional purchases of switching/routing products
are made. Deviations from a historical trend or an established baseline would, however, be
notable.

The situation is not improved by the enterprise/ISP using anonymization services such as Tor 
, as a TLS 1.2 connection will reveal the ClientCertificate used, clearly identifying the

enterprise/ISP involved. TLS 1.3 is better in this regard, but an active attacker can still discover
the parties involved by performing a MITM attack on the first attempt (breaking/killing it with a
TCP reset (RST)), and then letting subsequent connection pass through.

A manufacturer could attempt to mix the BRSKI-MASA traffic in with general traffic on their site
by hosting the MASA behind the same (set) of load balancers that the company's normal
marketing site is hosted behind. This makes a lot of sense from a straight capacity planning point
of view as the same set of services (and the same set of Distributed Denial-of-Service mitigations)
may be used. Unfortunately, as the BRSKI-MASA connections include TLS ClientCertificate
exchanges, this may easily be observed in TLS 1.2, and a traffic analysis may reveal it even in TLS
1.3. This does not make such a plan irrelevant. There may be other organizational reasons to
keep the marketing site (which is often subject to frequent redesigns, outsourcing, etc.) separate
from the MASA, which may need to operate reliably for decades.

[Dingledine]

1. 

2. 

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 70



A manufacturer could, however, decide not to issue a new voucher in response to a transfer
of ownership. This is essentially the same as the stolen case, with the manufacturer having
decided that the sale was not legitimate. 
There is a fourth case, if the manufacturer is providing protection against stolen devices. The
manufacturer then has a responsibility to protect the legitimate owner against fraudulent
claims that the equipment was stolen. In the absence of such manufacturer protection, such
a claim would cause the manufacturer to refuse to issue a new voucher. Should the device go
through a deep factory reset (for instance, replacement of a damaged main board
component), the device would not bootstrap. 
Finally, there is a fifth case: the manufacturer has decided to end-of-line the device, or the
owner has not paid a yearly support amount, and the manufacturer refuses to issue new
vouchers at that point. This last case is not new to the industry: many license systems are
already deployed that have a significantly worse effect. 

This section has outlined five situations in which a manufacturer could use the voucher system
to enforce what are clearly license terms. A manufacturer that attempted to enforce license
terms via vouchers would find it rather ineffective as the terms would only be enforced when the
device is enrolled, and this is not (to repeat) a daily or even monthly occurrence.

10.5. Manufacturers and Grey Market Equipment 
Manufacturers of devices often sell different products into different regional markets. Which
product is available in which market can be driven by price differentials, support issues (some
markets may require manuals and tech support to be done in the local language), and
government export regulation (such as whether strong crypto is permitted to be exported or
permitted to be used in a particular market). When a domain owner obtains a device from a
different market (they can be new) and transfers it to a different location, this is called a Grey
Market.

A manufacturer could decide not to issue a voucher to an enterprise/ISP based upon their
location. There are a number of ways that this could be determined: from the geolocation of the
registrar, from sales channel knowledge about the customer, and from what products are
available or unavailable in that market. If the device has a GPS, the coordinates of the device
could even be placed into an extension of the voucher.

The above actions are not illegal, and not new. Many manufacturers have shipped crypto-weak
(exportable) versions of firmware as the default on equipment for decades. The first task of an
enterprise/ISP has always been to login to a manufacturer system, show one's "entitlement"
(country information, proof that support payments have been made), and receive either a new
updated firmware or a license key that will activate the correct firmware.

BRSKI permits the above process to be automated (in an autonomic fashion) and therefore
perhaps encourages this kind of differentiation by reducing the cost of doing it.

3. 

4. 

5. 

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 71



An issue that manufacturers will need to deal with in the above automated process is when a
device is shipped to one country with one set of rules (or laws or entitlements), but the domain
registry is in another one. Which rules apply is something that will have to be worked out: the
manufacturer could believe they are dealing with Grey Market equipment when they are simply
dealing with a global enterprise.

10.6. Some Mitigations for Meddling by Manufacturers 
The most obvious mitigation is not to buy the product. Pick manufacturers that are up front
about their policies and who do not change them gratuitously.

Section 7.4.3 describes some ways in which a manufacturer could provide a mechanism to
manage the trust anchors and built-in certificates (IDevID) as an extension. There are a variety of
mechanisms, and some may take a substantial amount of work to get exactly correct. These
mechanisms do not change the flow of the protocol described here but rather allow the starting
trust assumptions to be changed. This is an area for future standardization work.

Replacement of the voucher validation anchors (usually pointing to the original manufacturer's
MASA) with those of the new owner permits the new owner to issue vouchers to subsequent
owners. This would be done by having the selling (old) owner run a MASA.

The BRSKI protocol depends upon a trust anchor and an identity on the device. Management of
these entities facilitates a few new operational modes without making any changes to the BRSKI
protocol. Those modes include: offline modes where the domain owner operates an internal
MASA for all devices, resell modes where the first domain owner becomes the MASA for the next
(resold-to) domain owner, and services where an aggregator acquires a large variety of devices
and then acts as a pseudonymized MASA for a variety of devices from a variety of
manufacturers.

Although replacement of the IDevID is not required for all modes described above, a
manufacturer could support such a thing. Some may wish to consider replacement of the IDevID
as an indication that the device's warranty is terminated. For others, the privacy requirements of
some deployments might consider this a standard operating practice.

As discussed at the end of Section 5.8.1, new work could be done to use a distributed consensus
technology for the audit-log. This would permit the audit-log to continue to be useful, even when
there is a chain of MASA due to changes of ownership.

10.7. Death of a Manufacturer 
A common concern has been that a manufacturer could go out of business, leaving owners of
devices unable to get new vouchers for existing products. Said products might have been
previously deployed but need to be reinitialized, used, or kept in a warehouse as long-term
spares.

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 72



The MASA was named the Manufacturer *Authorized* Signing Authority to emphasize that it
need not be the manufacturer itself that performs this. It is anticipated that specialist service
providers will come to exist that deal with the creation of vouchers in much the same way that
many companies have outsourced email, advertising, and janitorial services.

Further, it is expected that as part of any service agreement, the manufacturer would arrange to
escrow appropriate private keys such that a MASA service could be provided by a third party.
This has routinely been done for source code for decades.

11. Security Considerations 
This document details a protocol for bootstrapping that balances operational concerns against
security concerns. As detailed in the introduction, and touched on again in Section 7, the protocol
allows for reduced security modes. These attempt to deliver additional control to the local
administrator and owner in cases where less security provides operational benefits. This section
goes into more detail about a variety of specific considerations.

To facilitate logging and administrative oversight, in addition to triggering registrar verification
of MASA logs, the pledge reports on the voucher parsing status to the registrar. In the case of a
failure, this information is informative to a potentially malicious registrar. This is mandated
anyway because of the operational benefits of an informed administrator in cases where the
failure is indicative of a problem. The registrar is  to verify MASA logs if voucher
status telemetry is not received.

To facilitate truly limited clients, EST requires that the client  support a client
authentication model (see ); Section 7 updates these requirements by
stating that the registrar  choose to accept devices that fail cryptographic authentication.
This reflects current (poor) practices in shipping devices without a cryptographic identity that
are .

During the provisional period of the connection, the pledge  treat all HTTP header and
content data as untrusted data. HTTP libraries are regularly exposed to non-secured HTTP traffic:
mature libraries should not have any problems.

Pledges might chose to engage in protocol operations with multiple discovered registrars in
parallel. As noted above, they will only do so with distinct nonce values, but the end result could
be multiple vouchers issued from the MASA if all registrars attempt to claim the device. This is
not a failure, and the pledge chooses whichever voucher to accept based on internal logic. The
registrars verifying log information will see multiple entries and take this into account for their
analytic purposes.

RECOMMENDED

MUST
[RFC7030], Section 3.3.2

MAY

NOT RECOMMENDED

MUST

11.1. Denial of Service (DoS) against MASA 
There are use cases where the MASA could be unavailable or uncooperative to the registrar. They
include active DoS attacks, planned and unplanned network partitions, changes to MASA policy,
or other instances where MASA policy rejects a claim. These introduce an operational risk to the
registrar owner in that MASA behavior might limit the ability to bootstrap a pledge device. For

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 73

https://www.rfc-editor.org/rfc/rfc7030#section-3.3.2


11.2. DomainID Must Be Resistant to Second-Preimage Attacks 
The domainID is used as the reference in the audit-log to the domain. The domainID is expected
to be calculated by a hash that is resistant to a second-preimage attack. Such an attack would
allow a second registrar to create audit-log entries that are fake.

11.3. Availability of Good Random Numbers 
The nonce used by the pledge in the voucher-request  be generated by a Strong
Cryptographic Sequence ( ). TLS has a similar requirement.

In particular, implementations should pay attention to the advance in ; see Sections 3
and, in particular, 3.4. The random seed used by a device at boot  be unique across all
devices and all bootstraps. Resetting a device to factory default state does not obviate this
requirement.

11.4. Freshness in Voucher-Requests 
A concern has been raised that the pledge voucher-request should contain some content (a
nonce) provided by the registrar and/or MASA in order for those actors to verify that the pledge
voucher-request is fresh.

There are a number of operational problems with getting a nonce from the MASA to the pledge.
It is somewhat easier to collect a random value from the registrar, but as the registrar is not yet
vouched for, such a registrar nonce has little value. There are privacy and logistical challenges to

example, this might be an issue during disaster recovery. This risk can be mitigated by registrars
that request and maintain long-term copies of "nonceless" vouchers. In that way, they are
guaranteed to be able to bootstrap their devices.

The issuance of nonceless vouchers themselves creates a security concern. If the registrar of a
previous domain can intercept protocol communications, then it can use a previously issued
nonceless voucher to establish management control of a pledge device even after having sold it.
This risk is mitigated by recording the issuance of such vouchers in the MASA audit-log that is
verified by the subsequent registrar and by pledges only bootstrapping when in a factory default
state. This reflects a balance between enabling MASA independence during future bootstrapping
and the security of bootstrapping itself. Registrar control over requesting and auditing nonceless
vouchers allows device owners to choose an appropriate balance.

The MASA is exposed to DoS attacks wherein attackers claim an unbounded number of devices.
Ensuring a registrar is representative of a valid manufacturer customer, even without validating
ownership of specific pledge devices, helps to mitigate this. Pledge signatures on the pledge
voucher-request, as forwarded by the registrar in the prior-signed-voucher-request field of the
registrar voucher-request, significantly reduce this risk by ensuring the MASA can confirm
proximity between the pledge and the registrar making the request. Supply-chain integration
("know your customer") is an additional step that MASA providers and device vendors can
explore.

SHOULD
[RFC4086], Section 6.2

[RFC4086]
MUST

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 74

https://www.rfc-editor.org/rfc/rfc4086#section-6.2
https://www.rfc-editor.org/rfc/rfc4086#section-3
https://www.rfc-editor.org/rfc/rfc4086#section-3.4


addressing these operational issues, so if such a thing were to be considered, it would have to
provide some clear value. This section examines the impacts of not having a fresh pledge
voucher-request.

Because the registrar authenticates the pledge, a full MITM attack is not possible, despite the
provisional TLS authentication by the pledge (see Section 5.) Instead, we examine the case of a
fake registrar (Rm) that communicates with the pledge in parallel or in close-time proximity with
the intended registrar. (This scenario is intentionally supported as described in Section 4.1.)

The fake registrar (Rm) can obtain a voucher signed by the MASA either directly or through
arbitrary intermediaries. Assuming that the MASA accepts the registrar voucher-request
(because either the Rm is collaborating with a legitimate registrar according to supply-chain
information or the MASA is in audit-log only mode), then a voucher linking the pledge to the
registrar Rm is issued.

Such a voucher, when passed back to the pledge, would link the pledge to registrar Rm and
permit the pledge to end the provisional state. It now trusts the Rm and, if it has any security
vulnerabilities leverageable by an Rm with full administrative control, can be assumed to be a
threat against the intended registrar.

This flow is mitigated by the intended registrar verifying the audit-logs available from the MASA
as described in Section 5.8. The Rm might chose to collect a voucher-request but wait until after
the intended registrar completes the authorization process before submitting it. This pledge
voucher-request would be "stale" in that it has a nonce that no longer matches the internal state
of the pledge. In order to successfully use any resulting voucher, the Rm would need to remove
the stale nonce or anticipate the pledge's future nonce state. Reducing the possibility of this is
why the pledge is mandated to generate a strong random or pseudo-random number nonce.

Additionally, in order to successfully use the resulting voucher, the Rm would have to attack the
pledge and return it to a bootstrapping-enabled state. This would require wiping the pledge of
current configuration and triggering a rebootstrapping of the pledge. This is no more likely than
simply taking control of the pledge directly, but if this is a consideration, it is  that
the target network take the following steps:

Ongoing network monitoring for unexpected bootstrapping attempts by pledges. 
Retrieval and examination of MASA log information upon the occurrence of any such
unexpected events. The Rm will be listed in the logs along with nonce information for
analysis. 

11.5. Trusting Manufacturers 
The BRSKI extensions to EST permit a new pledge to be completely configured with domain-
specific trust anchors. The link from built-in manufacturer-provided trust anchors to domain-
specific trust anchors is mediated by the signed voucher artifact.

RECOMMENDED

• 
• 

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 75



If the manufacturer's IDevID signing key is not properly validated, then there is a risk that the
network will accept a pledge that should not be a member of the network. As the address of the
manufacturer's MASA is provided in the IDevID using the extension from Section 2.3, the
malicious pledge will have no problem collaborating with its MASA to produce a completely valid
voucher.

BRSKI does not, however, fundamentally change the trust model from domain owner to
manufacturer. Assuming that the pledge used its IDevID with EST  and BRSKI, the
domain (registrar) still needs to trust the manufacturer.

Establishing this trust between domain and manufacturer is outside the scope of BRSKI. There
are a number of mechanisms that can be adopted including:

Manually configuring each manufacturer's trust anchor. 
A TOFU mechanism. A human would be queried upon seeing a manufacturer's trust anchor
for the first time, and then the trust anchor would be installed to the trusted store. There are
risks with this; even if the key to name mapping is validated using something like the
WebPKI, there remains the possibility that the name is a look alike: e.g., dem0.example. vs.
demO.example. 
scanning the trust anchor from a QR code that came with the packaging (this is really a
manual TOFU mechanism). 
some sales integration processing where trust anchors are provided as part of the sales
process, probably included in a digital packing "slip", or a sales invoice. 
consortium membership, where all manufacturers of a particular device category (e.g, a
light bulb or a cable modem) are signed by a CA specifically for this. This is done by
CableLabs today. It is used for authentication and authorization as part of  and 

. 

The existing WebPKI provides a reasonable anchor between manufacturer name and public key.
It authenticates the key. It does not provide a reasonable authorization for the manufacturer, so
it is not directly usable on its own.

11.6. Manufacturer Maintenance of Trust Anchors 
BRSKI depends upon the manufacturer building in trust anchors to the pledge device. The
voucher artifact that is signed by the MASA will be validated by the pledge using that anchor.
This implies that the manufacturer needs to maintain access to a signing key that the pledge can
validate.

The manufacturer will need to maintain the ability to make signatures that can be validated for
the lifetime that the device could be onboarded. Whether this onboarding lifetime is less than the
device lifetime depends upon how the device is used. An inventory of devices kept in a
warehouse as spares might not be onboarded for many decades.

[RFC7030]

• 
• 

• 

• 

• 

[docsisroot]
[TR069]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 76



There are good cryptographic hygiene reasons why a manufacturer would not want to maintain
access to a private key for many decades. A manufacturer in that situation can leverage a long-
term CA anchor, built-in to the pledge, and then a certificate chain may be incorporated using the
normal CMS certificate set. This may increase the size of the voucher artifacts, but that is not a
significant issue in non-constrained environments.

There are a few other operational variations that manufacturers could consider. For instance,
there is no reason that every device need have the same set of trust anchors preinstalled. Devices
built in different factories, or on different days, or in any other consideration, could have
different trust anchors built in, and the record of which batch the device is in would be recorded
in the asset database. The manufacturer would then know which anchor to sign an artifact
against.

Aside from the concern about long-term access to private keys, a major limiting factor for the
shelf life of many devices will be the age of the cryptographic algorithms included. A device
produced in 2019 will have hardware and software capable of validating algorithms common in
2019 and will have no defense against attacks (both quantum and von Neumann brute-force
attacks) that have not yet been invented. This concern is orthogonal to the concern about access
to private keys, but this concern likely dominates and limits the life span of a device in a
warehouse. If any update to the firmware to support new cryptographic mechanisms were
possible (while the device was in a warehouse), updates to trust anchors would also be done at
the same time.

The set of standard operating procedures for maintaining high-value private keys is well
documented. For instance, the WebPKI provides a number of options for audits in 

, and the DNSSEC root operations are well documented in .

It is not clear if manufacturers will take this level of precaution, or how strong the economic
incentives are to maintain an appropriate level of security.

The next section examines the risk due to a compromised manufacturer IDevID signing key. This
is followed by examination of the risk due to a compromised MASA key. The third section below
examines the situation where a MASA web server itself is under attacker control, but the MASA
signing key itself is safe in a not-directly connected hardware module.

11.6.1. Compromise of Manufacturer IDevID Signing Keys 

An attacker that has access to the key that the manufacturer uses to sign IDevID certificates can
create counterfeit devices. Such devices can claim to be from a particular manufacturer but can
be entirely different devices: Trojan horses in effect.

As the attacker controls the MASA URL in the certificate, the registrar can be convinced to talk to
the attacker's MASA. The registrar does not need to be in any kind of promiscuous mode to be
vulnerable.

In addition to creating fake devices, the attacker may also be able to issue revocations for
existing certificates if the IDevID certificate process relies upon CRL lists that are distributed.

[cabforumaudit] [dnssecroot]

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 77



There does not otherwise seem to be any risk from this compromise to devices that are already
deployed or that are sitting locally in boxes waiting for deployment (local spares). The issue is
that operators will be unable to trust devices that have been in an uncontrolled warehouse as
they do not know if those are real devices.

11.6.2. Compromise of MASA Signing Keys 

There are two periods of time in which to consider: when the MASA key has fallen into the hands
of an attacker and after the MASA recognizes that the key has been compromised.

11.6.2.1. Attacker Opportunities with a Compromised MASA Key 
An attacker that has access to the MASA signing key could create vouchers. These vouchers could
be for existing deployed devices or for devices that are still in a warehouse. In order to exploit
these vouchers, two things need to occur: the device has to go through a factory default boot
cycle, and the registrar has to be convinced to contact the attacker's MASA.

If the attacker controls a registrar that is visible to the device, then there is no difficulty in
delivery of the false voucher. A possible practical example of an attack like this would be in a
data center, at an ISP peering point (whether a public IX or a private peering point). In such a
situation, there are already cables attached to the equipment that lead to other devices (the peers
at the IX), and through those links, the false voucher could be delivered. The difficult part would
be to put the device through a factory reset. This might be accomplished through social
engineering of data center staff. Most locked cages have ventilation holes, and possibly a long
"paperclip" could reach through to depress a factory reset button. Once such a piece of ISP
equipment has been compromised, it could be used to compromise equipment that it was
connected to (through long haul links even), assuming that those pieces of equipment could also
be forced through a factory reset.

The above scenario seems rather unlikely as it requires some element of physical access; but if
there was a remote exploit that did not cause a direct breach, but rather a fault that resulted in a
factory reset, this could provide a reasonable path.

The above deals with ANI uses of BRSKI. For cases where IEEE 802.11 or 802.15.4 is involved, the
need to connect directly to the device is eliminated, but the need to do a factory reset is not.
Physical possession of the device is not required as above, provided that there is some way to
force a factory reset. With some consumer devices that have low overall implementation quality,
end users might be familiar with the need to reset the device regularly.

The authors are unable to come up with an attack scenario where a compromised voucher
signature enables an attacker to introduce a compromised pledge into an existing operator's
network. This is the case because the operator controls the communication between registrar
and MASA, and there is no opportunity to introduce the fake voucher through that conduit.

11.6.2.2. Risks after Key Compromise is Known 
Once the operator of the MASA realizes that the voucher signing key has been compromised, it
has to do a few things.

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 78



First, it  issue a firmware update to all devices that had that key as a trust anchor, such that
they will no longer trust vouchers from that key. This will affect devices in the field that are
operating, but those devices, being in operation, are not performing onboarding operations, so
this is not a critical patch.

Devices in boxes (in warehouses) are vulnerable and remain vulnerable until patched. An
operator would be prudent to unbox the devices, onboard them in a safe environment, and then
perform firmware updates. This does not have to be done by the end-operator; it could be done
by a distributor that stores the spares. A recommended practice for high-value devices (which
typically have a <4hr service window) may be to validate the device operation on a regular basis
anyway.

If the onboarding process includes attestations about firmware versions, then through that
process, the operator would be advised to upgrade the firmware before going into production.
Unfortunately, this does not help against situations where the attacker operates their own
registrar (as listed above).

The need for short-lived vouchers is explained in . The nonce guarantees
freshness, and the short-lived nature of the voucher means that the window to deliver a fake
voucher is very short. A nonceless, long-lived voucher would be the only option for the attacker,
and devices in the warehouse would be vulnerable to such a thing.

A key operational recommendation is for manufacturers to sign nonceless, long-lived vouchers
with a different key than what is used to sign short-lived vouchers. That key needs significantly
better protection. If both keys come from a common trust-anchor (the manufacturer's CA), then a
compromise of the manufacturer's CA would compromise both keys. Such a compromise of the
manufacturer's CA likely compromises all keys outlined in this section.

11.6.3. Compromise of MASA Web Service 

An attacker that takes over the MASA web service can inflict a number of attacks. The most
obvious one is simply to take the database listing of customers and devices and sell the data to
other attackers who will now know where to find potentially vulnerable devices.

The second most obvious thing that the attacker can do is to kill the service, or make it operate
unreliably, making customers frustrated. This could have a serious effect on the ability to deploy
new services by customers and would be a significant issue during disaster recovery.

While the compromise of the MASA web service may lead to the compromise of the MASA
voucher signing key, if the signing occurs offboard (such as in a hardware signing module
(HSM)), then the key may well be safe, but control over it resides with the attacker.

Such an attacker can issue vouchers for any device presently in service. Said device still needs to
be convinced to go through a factory reset process before an attack.

MUST

[RFC8366], Section 6.1

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 79

https://www.rfc-editor.org/rfc/rfc8366#section-6.1


[IDevID]

[ITU.X690]

[REST]

[RFC2119]

[RFC3339]

[RFC3688]

[RFC3748]

12. References 

12.1. Normative References 

, 
, , . 

, 

, , , 
August 2015, . 

, 
, 2000, 

. 

, , , 
, , March 1997, 
. 

 and , , 
, , July 2002, 

. 

, , , , , 
January 2004, . 

, , , , and , 
, , , June 2004, 

. 

If the attacker has access to a key that is trusted for long-lived nonceless vouchers, then they
could issue vouchers for devices that are not yet in service. This attack may be very hard to
verify as it would involve doing firmware updates on every device in warehouses (a potentially
ruinously expensive process); a manufacturer might be reluctant to admit this possibility.

11.7. YANG Module Security Considerations 
As described in Section 7.4 (Security Considerations) of , the YANG module specified in
this document defines the schema for data that is subsequently encapsulated by a CMS signed-
data content type, as described in . As such, all of the YANG-modeled data
is protected from modification.

The use of YANG to define data structures, via the "yang-data" statement, is relatively new and
distinct from the traditional use of YANG to define an API accessed by network management
protocols such as NETCONF  and RESTCONF . For this reason, these
guidelines do not follow the template described by .

[RFC8366]

Section 5 of [RFC5652]

[RFC6241] [RFC8040]
Section 3.7 of [RFC8407]

IEEE "IEEE Standard for Local and metropolitan area networks - Secure Device
Identity" IEEE 802.1AR <https://1.ieee802.org/security/802-1ar>

ITU-T "Information Technology - ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)" ITU-T Recommendation X.690 ISO/IEC 8825-1:2015

<https://www.itu.int/rec/T-REC-X.690>

Fielding, R.F. "Architectural Styles and the Design of Network-based Software
Architectures" <http://www.ics.uci.edu/~fielding/pubs/dissertation/
fielding_dissertation.pdf>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Klyne, G. C. Newman "Date and Time on the Internet: Timestamps" RFC
3339 DOI 10.17487/RFC3339 <https://www.rfc-editor.org/info/
rfc3339>

Mealling, M. "The IETF XML Registry" BCP 81 RFC 3688 DOI 10.17487/RFC3688
<https://www.rfc-editor.org/info/rfc3688>

Aboba, B. Blunk, L. Vollbrecht, J. Carlson, J. H. Levkowetz, Ed. "Extensible
Authentication Protocol (EAP)" RFC 3748 DOI 10.17487/RFC3748
<https://www.rfc-editor.org/info/rfc3748>

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 80

https://www.rfc-editor.org/rfc/rfc8366#section-7.4
https://www.rfc-editor.org/rfc/rfc5652#section-5
https://www.rfc-editor.org/rfc/rfc8407#section-3.7
https://1.ieee802.org/security/802-1ar
https://www.itu.int/rec/T-REC-X.690
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3748


[RFC3927]

[RFC4086]

[RFC4519]

[RFC4648]

[RFC4862]

[RFC5272]

[RFC5280]

[RFC5652]

[RFC6020]

[RFC6125]

[RFC6241]

[RFC6762]

[RFC6763]

, , and , 
, , , May 2005, 

. 

, , and , 
, , , , June 2005, 

. 

, 
, , , June 2006, 

. 

, , , 
, October 2006, . 

, , and , 
, , , September 2007, 

. 

 and , , , 
, June 2008, . 

, , , , , and , 

, , , May 2008, 
. 

, , , , 
, September 2009, . 

, 
, , , October

2010, . 

 and , 

, 
, , March 2011, 

. 

, , , and , 
, , , 

June 2011, . 

 and , , , ,
February 2013, . 

 and , , , 
, February 2013, . 

Cheshire, S. Aboba, B. E. Guttman "Dynamic Configuration of IPv4 Link-
Local Addresses" RFC 3927 DOI 10.17487/RFC3927 <https://www.rfc-
editor.org/info/rfc3927>

Eastlake 3rd, D. Schiller, J. S. Crocker "Randomness Requirements for
Security" BCP 106 RFC 4086 DOI 10.17487/RFC4086 <https://
www.rfc-editor.org/info/rfc4086>

Sciberras, A., Ed. "Lightweight Directory Access Protocol (LDAP): Schema for
User Applications" RFC 4519 DOI 10.17487/RFC4519 <https://
www.rfc-editor.org/info/rfc4519>

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI
10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

Thomson, S. Narten, T. T. Jinmei "IPv6 Stateless Address
Autoconfiguration" RFC 4862 DOI 10.17487/RFC4862 <https://
www.rfc-editor.org/info/rfc4862>

Schaad, J. M. Myers "Certificate Management over CMS (CMC)" RFC 5272
DOI 10.17487/RFC5272 <https://www.rfc-editor.org/info/rfc5272>

Cooper, D. Santesson, S. Farrell, S. Boeyen, S. Housley, R. W. Polk
"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile" RFC 5280 DOI 10.17487/RFC5280 <https://www.rfc-
editor.org/info/rfc5280>

Housley, R. "Cryptographic Message Syntax (CMS)" STD 70 RFC 5652 DOI
10.17487/RFC5652 <https://www.rfc-editor.org/info/rfc5652>

Bjorklund, M., Ed. "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)" RFC 6020 DOI 10.17487/RFC6020

<https://www.rfc-editor.org/info/rfc6020>

Saint-Andre, P. J. Hodges "Representation and Verification of Domain-Based
Application Service Identity within Internet Public Key Infrastructure Using
X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)" RFC
6125 DOI 10.17487/RFC6125 <https://www.rfc-editor.org/info/
rfc6125>

Enns, R., Ed. Bjorklund, M., Ed. Schoenwaelder, J., Ed. A. Bierman, Ed.
"Network Configuration Protocol (NETCONF)" RFC 6241 DOI 10.17487/RFC6241

<https://www.rfc-editor.org/info/rfc6241>

Cheshire, S. M. Krochmal "Multicast DNS" RFC 6762 DOI 10.17487/RFC6762
<https://www.rfc-editor.org/info/rfc6762>

Cheshire, S. M. Krochmal "DNS-Based Service Discovery" RFC 6763 DOI
10.17487/RFC6763 <https://www.rfc-editor.org/info/rfc6763>

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 81

https://www.rfc-editor.org/info/rfc3927
https://www.rfc-editor.org/info/rfc3927
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4519
https://www.rfc-editor.org/info/rfc4519
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc4862
https://www.rfc-editor.org/info/rfc4862
https://www.rfc-editor.org/info/rfc5272
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6762
https://www.rfc-editor.org/info/rfc6763


[RFC7030]

[RFC7230]

[RFC7231]

[RFC7469]

[RFC7950]

[RFC7951]

[RFC8040]

[RFC8174]

[RFC8259]

[RFC8366]

[RFC8368]

[RFC8407]

[RFC8446]

, , and , 
, , , October 2013, 

. 

 and , 
, , , June 2014, 

. 

 and , 
, , , June 2014, 

. 

, , and , , 
, , April 2015, 
. 

, , , 
, August 2016, . 

, , , 
, August 2016, . 

, , and , , , 
, January 2017, . 

, , 
, , , May 2017, 

. 

, , 
, , , December 2017, 

. 

, , , and , 
, , , May 2018, 

. 

 and , 
, 

, , May 2018, 
. 

, 
, , , , October 2018, 

. 

, , ,
, August 2018, . 

Pritikin, M., Ed. Yee, P., Ed. D. Harkins, Ed. "Enrollment over Secure
Transport" RFC 7030 DOI 10.17487/RFC7030 <https://www.rfc-
editor.org/info/rfc7030>

Fielding, R., Ed. J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing" RFC 7230 DOI 10.17487/RFC7230
<https://www.rfc-editor.org/info/rfc7230>

Fielding, R., Ed. J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content" RFC 7231 DOI 10.17487/RFC7231 <https://
www.rfc-editor.org/info/rfc7231>

Evans, C. Palmer, C. R. Sleevi "Public Key Pinning Extension for HTTP"
RFC 7469 DOI 10.17487/RFC7469 <https://www.rfc-editor.org/info/
rfc7469>

Bjorklund, M., Ed. "The YANG 1.1 Data Modeling Language" RFC 7950 DOI
10.17487/RFC7950 <https://www.rfc-editor.org/info/rfc7950>

Lhotka, L. "JSON Encoding of Data Modeled with YANG" RFC 7951 DOI
10.17487/RFC7951 <https://www.rfc-editor.org/info/rfc7951>

Bierman, A. Bjorklund, M. K. Watsen "RESTCONF Protocol" RFC 8040 DOI
10.17487/RFC8040 <https://www.rfc-editor.org/info/rfc8040>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

Watsen, K. Richardson, M. Pritikin, M. T. Eckert "A Voucher Artifact for
Bootstrapping Protocols" RFC 8366 DOI 10.17487/RFC8366 <https://
www.rfc-editor.org/info/rfc8366>

Eckert, T., Ed. M. Behringer "Using an Autonomic Control Plane for Stable
Connectivity of Network Operations, Administration, and Maintenance (OAM)"
RFC 8368 DOI 10.17487/RFC8368 <https://www.rfc-editor.org/info/
rfc8368>

Bierman, A. "Guidelines for Authors and Reviewers of Documents Containing
YANG Data Models" BCP 216 RFC 8407 DOI 10.17487/RFC8407
<https://www.rfc-editor.org/info/rfc8407>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 82

https://www.rfc-editor.org/info/rfc7030
https://www.rfc-editor.org/info/rfc7030
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7469
https://www.rfc-editor.org/info/rfc7469
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc7951
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8366
https://www.rfc-editor.org/info/rfc8366
https://www.rfc-editor.org/info/rfc8368
https://www.rfc-editor.org/info/rfc8368
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8446


[RFC8610]

[RFC8951]

[RFC8981]

[RFC8990]

[RFC8994]

[ACE-COAP-EST]

[ANIMA-CONSTRAINED-VOUCHER]

[ANIMA-STATE]

[brewski]

[cabforumaudit]

[Dingledine]

[dnssecroot]

, , and , 

, , 
, June 2019, . 

, , and , 
, , 

, November 2020, . 

, , , and , 
, , 

, February 2021, . 

, , and , 
, , , May 2021, 

. 

, , and , 
, , , May 2021, 

. 

12.2. Informative References 

, , , and , 
, , , 6

January 2020, . 

, , , and 
, , 

, , 21 February
2021, . 

, 
, , 

, 22 September 2020, 
. 

, , March 2003, 
. 

, , August 2019, 
. 

, , and , 
, August 2004, 

. 

, December 2017, 

. 

Birkholz, H. Vigano, C. C. Bormann "Concise Data Definition Language
(CDDL): A Notational Convention to Express Concise Binary Object
Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/
RFC8610 <https://www.rfc-editor.org/info/rfc8610>

Richardson, M. Werner, T. W. Pan "Clarification of Enrollment over Secure
Transport (EST): Transfer Encodings and ASN.1" RFC 8951 DOI 10.17487/
RFC8951 <https://www.rfc-editor.org/info/rfc8951>

Gont, F. Krishnan, S. Narten, T. R. Draves "Temporary Address Extensions
for Stateless Address Autoconfiguration in IPv6" RFC 8981 DOI 10.17487/
RFC8981 <https://www.rfc-editor.org/info/rfc8981>

Bormann, C. Carpenter, B., Ed. B. Liu, Ed. "GeneRic Autonomic Signaling
Protocol (GRASP)" RFC 8990 DOI 10.17487/RFC8990 <https://
www.rfc-editor.org/rfc/rfc8990>

Eckert, T., Ed. Behringer, M., Ed. S. Bjarnason "An Autonomic Control Plane
(ACP)" RFC 8994 DOI 10.17487/RFC8994 <https://www.rfc-editor.org/
rfc/rfc8994>

van der Stok, P. Kampanakis, P. Richardson, M. S. Raza "EST over secure
CoAP (EST-coaps)" Work in Progress Internet-Draft, draft-ietf-ace-coap-est-18

<https://tools.ietf.org/html/draft-ietf-ace-coap-est-18>

Richardson, M. van der Stok, P. Kampanakis, P. E.
Dijk "Constrained Voucher Artifacts for Bootstrapping Protocols" Work in
Progress Internet-Draft, draft-ietf-anima-constrained-voucher-10

<https://tools.ietf.org/html/draft-ietf-anima-constrained-voucher-10>

Richardson, M. "Considerations for stateful vs stateless join router in ANIMA
bootstrap" Work in Progress Internet-Draft, draft-richardson-anima-state-for-
joinrouter-03 <https://tools.ietf.org/html/draft-richardson-
anima-state-for-joinrouter-03>

Urban Dictionary "brewski" <https://www.urbandictionary.com/
define.php?term=brewski>

CA/Browser Forum "Information for Auditors and Assessors"
<https://cabforum.org/information-for-auditors-and-assessors/>

Dingledine, R. Mathewson, N. P. Syverson "Tor: The Second-Generation
Onion Router" <https://svn-archive.torproject.org/svn/projects/
design-paper/tor-design.pdf>

"DNSSEC Practice Statement for the Root Zone ZSK Operator"
<https://www.iana.org/dnssec/procedures/zsk-operator/dps-zsk-operator-
v2.1.pdf>

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 83

https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8951
https://www.rfc-editor.org/info/rfc8981
https://www.rfc-editor.org/rfc/rfc8990
https://www.rfc-editor.org/rfc/rfc8990
https://www.rfc-editor.org/rfc/rfc8994
https://www.rfc-editor.org/rfc/rfc8994
https://tools.ietf.org/html/draft-ietf-ace-coap-est-18
https://tools.ietf.org/html/draft-ietf-anima-constrained-voucher-10
https://tools.ietf.org/html/draft-richardson-anima-state-for-joinrouter-03
https://tools.ietf.org/html/draft-richardson-anima-state-for-joinrouter-03
https://www.urbandictionary.com/define.php?term=brewski
https://www.urbandictionary.com/define.php?term=brewski
https://cabforum.org/information-for-auditors-and-assessors/
https://svn-archive.torproject.org/svn/projects/design-paper/tor-design.pdf
https://svn-archive.torproject.org/svn/projects/design-paper/tor-design.pdf
https://www.iana.org/dnssec/procedures/zsk-operator/dps-zsk-operator-v2.1.pdf
https://www.iana.org/dnssec/procedures/zsk-operator/dps-zsk-operator-v2.1.pdf


[docsisroot]

[imprinting]

[IoTstrangeThings]

[livingwithIoT]

[minerva]

[minervagithub]

[openssl]

[RFC2131]

[RFC2663]

[RFC5209]

[RFC6960]

[RFC6961]

[RFC7228]

[RFC7258]

, February 2018, 
. 

, , January 2021, 
. 

, 
, March 2017, 

. 

, 
, February 2018, 

. 

, , 2020, 
. 

, . 

, , September 2019, 
. 

, , , 
, March 1997, . 

 and , 
, , , August

1999, . 

, , , , and , 
, , 

, June 2008, . 

, , , , , and , 

, , , June 2013, 
. 

, 
, , , June 2013, 

. 

, , and , 
, , , May 2014, 

. 

 and , , , 
, , May 2014, 

. 

"CableLabs Digital Certificate Issuance Service" <https://
www.cablelabs.com/resources/digital-certificate-issuance-service/>

Wikipedia "Imprinting (psychology)" <https://en.wikipedia.org/w/
index.php?title=Imprinting_(psychology)&=999211441>

ESET "IoT of toys stranger than fiction: Cybersecurity and data privacy
update" <https://www.welivesecurity.com/2017/03/03/internet-of-
things-security-privacy-iot-update/>

Silicon Republic "What is it actually like to live in a house filled with IoT
devices?" <https://www.siliconrepublic.com/machines/iot-smart-
devices-reality>

Richardson, M. "Minerva reference implementation for BRSKI" <https://
minerva.sandelman.ca/>

"ANIMA Minerva toolkit" <https://github.com/ANIMAgus-minerva>

OpenSSL "OpenSSL X509 Utility" <https://www.openssl.org/
docs/man1.1.1/man1/openssl-x509.html/>

Droms, R. "Dynamic Host Configuration Protocol" RFC 2131 DOI 10.17487/
RFC2131 <https://www.rfc-editor.org/info/rfc2131>

Srisuresh, P. M. Holdrege "IP Network Address Translator (NAT)
Terminology and Considerations" RFC 2663 DOI 10.17487/RFC2663

<https://www.rfc-editor.org/info/rfc2663>

Sangster, P. Khosravi, H. Mani, M. Narayan, K. J. Tardo "Network
Endpoint Assessment (NEA): Overview and Requirements" RFC 5209 DOI
10.17487/RFC5209 <https://www.rfc-editor.org/info/rfc5209>

Santesson, S. Myers, M. Ankney, R. Malpani, A. Galperin, S. C. Adams
"X.509 Internet Public Key Infrastructure Online Certificate Status Protocol -
OCSP" RFC 6960 DOI 10.17487/RFC6960 <https://www.rfc-editor.org/
info/rfc6960>

Pettersen, Y. "The Transport Layer Security (TLS) Multiple Certificate Status
Request Extension" RFC 6961 DOI 10.17487/RFC6961 <https://
www.rfc-editor.org/info/rfc6961>

Bormann, C. Ersue, M. A. Keranen "Terminology for Constrained-Node
Networks" RFC 7228 DOI 10.17487/RFC7228 <https://www.rfc-
editor.org/info/rfc7228>

Farrell, S. H. Tschofenig "Pervasive Monitoring Is an Attack" BCP 188 RFC
7258 DOI 10.17487/RFC7258 <https://www.rfc-editor.org/info/
rfc7258>

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 84

https://www.cablelabs.com/resources/digital-certificate-issuance-service/
https://www.cablelabs.com/resources/digital-certificate-issuance-service/
https://en.wikipedia.org/w/index.php?title=Imprinting_(psychology)&=999211441
https://en.wikipedia.org/w/index.php?title=Imprinting_(psychology)&=999211441
https://www.welivesecurity.com/2017/03/03/internet-of-things-security-privacy-iot-update/
https://www.welivesecurity.com/2017/03/03/internet-of-things-security-privacy-iot-update/
https://www.siliconrepublic.com/machines/iot-smart-devices-reality
https://www.siliconrepublic.com/machines/iot-smart-devices-reality
https://minerva.sandelman.ca/
https://minerva.sandelman.ca/
https://github.com/ANIMAgus-minerva
https://www.openssl.org/docs/man1.1.1/man1/openssl-x509.html/
https://www.openssl.org/docs/man1.1.1/man1/openssl-x509.html/
https://www.rfc-editor.org/info/rfc2131
https://www.rfc-editor.org/info/rfc2663
https://www.rfc-editor.org/info/rfc5209
https://www.rfc-editor.org/info/rfc6960
https://www.rfc-editor.org/info/rfc6960
https://www.rfc-editor.org/info/rfc6961
https://www.rfc-editor.org/info/rfc6961
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7258
https://www.rfc-editor.org/info/rfc7258


[RFC7435]

[RFC7575]

[RFC8126]

[RFC8340]

[RFC8615]

[RFC8993]

[slowloris]

[softwareescrow]

[Stajano99theresurrecting]

[TR069]

[W3C.capability-urls]

[YANG-KEYSTORE]

, , 
, , December 2014, 

. 

, , , , , , and 
, , , 

, June 2015, . 

, , and , 
, , , , June

2017, . 

 and , , , , 
, March 2018, . 

, , , 
, May 2019, . 

, , , , and , 
, , , 

May 2021, . 

, , January 2021, 

. 

, , March 2020, 
. 

 and , 
, 1999, 

. 

, , 
, March 2018, 

. 

, , 
, , 

February 2014, . 

, , , 
, 10 February 2021, 

. 

Dukhovni, V. "Opportunistic Security: Some Protection Most of the Time" RFC
7435 DOI 10.17487/RFC7435 <https://www.rfc-editor.org/info/
rfc7435>

Behringer, M. Pritikin, M. Bjarnason, S. Clemm, A. Carpenter, B. Jiang, S.
L. Ciavaglia "Autonomic Networking: Definitions and Design Goals" RFC 7575
DOI 10.17487/RFC7575 <https://www.rfc-editor.org/info/rfc7575>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Bjorklund, M. L. Berger, Ed. "YANG Tree Diagrams" BCP 215 RFC 8340 DOI
10.17487/RFC8340 <https://www.rfc-editor.org/info/rfc8340>

Nottingham, M. "Well-Known Uniform Resource Identifiers (URIs)" RFC 8615
DOI 10.17487/RFC8615 <https://www.rfc-editor.org/info/rfc8615>

Behringer, M., Ed. Carpenter, B. Eckert, T. Ciavaglia, L. J. Nobre "A
Reference Model for Autonomic Networking" RFC 8993 DOI 10.17487/RFC8993

<https://www.rfc-editor.org/info/rfc8993>

Wikipedia "Slowloris (computer security)" <https://
en.wikipedia.org/w/index.php?title=Slowloris_
(computer_security)&oldid=1001473290/>

Wikipedia "Source code escrow" <https://en.wikipedia.org/w/
index.php?title=Source_code_escrow)&oldid=948073074>

Stajano, F. R. Anderson "The Resurrecting Duckling: Security
Issues for Ad-hoc Wireless Networks" <https://www.cl.cam.ac.uk/~fms27/
papers/1999-StajanoAnd-duckling.pdf>

Broadband Forum "CPE WAN Management Protocol" TR-069, Issue 1,
Amendment 6 <https://www.broadband-forum.org/download/
TR-069_Amendment-6.pdf>

Tennison, J. "Good Practices for Capability URLs" W3C First Public
Working Draft World Wide Web Consortium WD WD-capability-urls-20140218

<https://www.w3.org/TR/2014/WD-capability-urls>

Watsen, K. "A YANG Data Model for a Keystore" Work in Progress
Internet-Draft, draft-ietf-netconf-keystore-21 <https://
tools.ietf.org/html/draft-ietf-netconf-keystore-21>

Appendix A. IPv4 and Non-ANI Operations 
The specification of BRSKI in Section 4 intentionally covers only the mechanisms for an IPv6
pledge using link-local addresses. This section describes non-normative extensions that can be
used in other environments.

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 85

https://www.rfc-editor.org/info/rfc7435
https://www.rfc-editor.org/info/rfc7435
https://www.rfc-editor.org/info/rfc7575
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8615
https://www.rfc-editor.org/info/rfc8993
https://en.wikipedia.org/w/index.php?title=Slowloris_(computer_security)&oldid=1001473290/
https://en.wikipedia.org/w/index.php?title=Slowloris_(computer_security)&oldid=1001473290/
https://en.wikipedia.org/w/index.php?title=Slowloris_(computer_security)&oldid=1001473290/
https://en.wikipedia.org/w/index.php?title=Source_code_escrow
https://en.wikipedia.org/w/index.php?title=Source_code_escrow
https://www.cl.cam.ac.uk/~fms27/papers/1999-StajanoAnd-duckling.pdf
https://www.cl.cam.ac.uk/~fms27/papers/1999-StajanoAnd-duckling.pdf
https://www.broadband-forum.org/download/TR-069_Amendment-6.pdf
https://www.broadband-forum.org/download/TR-069_Amendment-6.pdf
https://www.w3.org/TR/2014/WD-capability-urls
https://tools.ietf.org/html/draft-ietf-netconf-keystore-21
https://tools.ietf.org/html/draft-ietf-netconf-keystore-21


A.1. IPv4 Link-Local Addresses 
Instead of an IPv6 link-local address, an IPv4 address may be generated using "Dynamic
Configuration of IPv4 Link-Local Addresses" .

In the case where an IPv4 link-local address is formed, the bootstrap process would continue, as
in an IPv6 case, by looking for a (circuit) proxy.

[RFC3927]

A.2. Use of DHCPv4 
The pledge  obtain an IP address via DHCP ( . The DHCP-provided parameters for
the Domain Name System can be used to perform DNS operations if all local discovery attempts
fail.

MAY [RFC2131]

Appendix B. mDNS / DNS-SD Proxy Discovery Options 
Pledge discovery of the proxy (Section 4.1)  be performed with DNS-based Service Discovery 

 over Multicast DNS  to discover the proxy at "_brski-proxy._tcp.local.".

Proxy discovery of the registrar (Section 4.3)  be performed with DNS-based Service
Discovery over Multicast DNS to discover registrars by searching for the service "_brski-
registrar._tcp.local.".

To prevent unacceptable levels of network traffic, when using mDNS, the congestion avoidance
mechanisms specified in   be followed. The pledge  listen for an
unsolicited broadcast response as described in . This allows devices to avoid
announcing their presence via mDNS broadcasts and instead silently join a network by watching
for periodic unsolicited broadcast responses.

Discovery of the registrar  also be performed with DNS-based Service Discovery by searching
for the service "_brski-registrar._tcp.example.com". In this case, the domain "example.com" is
discovered as described in  (Appendix A.2 of this document suggests the use
of DHCP parameters).

If no local proxy or registrar service is located using the GRASP mechanisms or the above-
mentioned DNS-based Service Discovery methods, the pledge  contact a well-known
manufacturer-provided bootstrapping server by performing a DNS lookup using a well-known
URI such as "brski-registrar.manufacturer.example.com". The details of the URI are
manufacturer specific. Manufacturers that leverage this method on the pledge are responsible
for providing the registrar service. Also see Section 2.7.

MAY
[RFC6763] [RFC6762]

MAY

[RFC6762], Section 7 MUST SHOULD
[RFC6762]

MAY

[RFC6763], Section 11

MAY

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 86

https://www.rfc-editor.org/rfc/rfc6762#section-7
https://www.rfc-editor.org/rfc/rfc6763#section-11


Appendix C. Example Vouchers 
Three entities are involved in a voucher: the MASA issues (signs) it, the registrar's public key is
mentioned in it, and the pledge validates it. In order to provide reproducible examples, the
public and private keys for an example MASA and registrar are listed first.

The keys come from an open source reference implementation of BRSKI, called "Minerva" 
. It is available on GitHub . The keys presented here are used in the

unit and integration tests. The MASA code is called "highway", the registrar code is called
"fountain", and the example client is called "reach".

The public key components of each are presented as base64 certificates and are decoded by
openssl's x509 utility so that the extensions can be seen. This was version 1.1.1c of the library and
utility of .

C.1. Keys Involved 
The manufacturer has a CA that signs the pledge's IDevID. In addition, the Manufacturer's
signing authority (the MASA) signs the vouchers, and that certificate must distributed to the
devices at manufacturing time so that vouchers can be validated.

C.1.1. Manufacturer Certification Authority for IDevID Signatures 
This private key is the CA that signs IDevID certificates:

The current DNS services returned during each query are maintained until bootstrapping is
completed. If bootstrapping fails and the pledge returns to the Discovery state, it picks up where
it left off and continues attempting bootstrapping. For example, if the first Multicast DNS
_bootstrapks._tcp.local response doesn't work, then the second and third responses are tried. If
these fail, the pledge moves on to normal DNS-based Service Discovery.

[minerva] [minervagithub]

[openssl]

<CODE BEGINS> file "vendor.key"

-----BEGIN EC PRIVATE KEY-----
MIGkAgEBBDCAYkoLW1IEA5SKKhMMdkTK7sJxk5ybKqYq9Yr5aR7tNwqXyLGS7z8G
8S4w/UJ58BqgBwYFK4EEACKhZANiAAQu5/yktJbFLjMC87h7b+yTreFuF8GwewKH
L4mS0r0dVAQubqDUQcTrjvpXrXCpTojiLCzgp8fzkcUDkZ9LD/M90LDipiLNIOkP
juF8QkoAbT8pMrY83MS8y76wZ7AalNQ=
-----END EC PRIVATE KEY-----

<CODE ENDS>

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 87



This public key validates IDevID certificates:

file: examples/vendor.key

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 88



<CODE BEGINS> file "vendor.cert"

Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 1216069925 (0x487bc125)
        Signature Algorithm: ecdsa-with-SHA256
        Issuer: CN = highway-test.example.com CA
        Validity
            Not Before: Apr 13 20:34:24 2021 GMT
            Not After : Apr 13 20:34:24 2023 GMT
        Subject: CN = highway-test.example.com CA
        Subject Public Key Info:
            Public Key Algorithm: id-ecPublicKey
                Public-Key: (384 bit)
                pub:
                    04:2e:e7:fc:a4:b4:96:c5:2e:33:02:f3:b8:7b:6f:
                    ec:93:ad:e1:6e:17:c1:b0:7b:02:87:2f:89:92:d2:
                    bd:1d:54:04:2e:6e:a0:d4:41:c4:eb:8e:fa:57:ad:
                    70:a9:4e:88:e2:2c:2c:e0:a7:c7:f3:91:c5:03:91:
                    9f:4b:0f:f3:3d:d0:b0:e2:a6:22:cd:20:e9:0f:8e:
                    e1:7c:42:4a:00:6d:3f:29:32:b6:3c:dc:c4:bc:cb:
                    be:b0:67:b0:1a:94:d4
                ASN1 OID: secp384r1
                NIST CURVE: P-384
        X509v3 extensions:
            X509v3 Basic Constraints: critical
                CA:TRUE
            X509v3 Key Usage: critical
                Certificate Sign, CRL Sign
            X509v3 Subject Key Identifier:
                5E:0C:A9:52:5A:8C:DF:A9:0F:03:14:E9:96:F1:80:76:
                8C:53:8A:08
            X509v3 Authority Key Identifier:
                keyid:5E:0C:A9:52:5A:8C:DF:A9:0F:03:14:E9:96:F1:
                80:76:8C:53:8A:08

    Signature Algorithm: ecdsa-with-SHA256
         30:64:02:30:60:37:a0:66:89:80:27:e1:0d:e5:43:9a:62:f1:
         02:bc:0f:72:6d:a9:e9:cb:84:a5:c6:44:d3:41:9e:5d:ce:7d:
         46:16:6e:15:de:f7:cc:e8:3e:61:f9:03:7c:20:c4:b7:02:30:
         7f:e9:f3:12:bb:06:c6:24:00:2b:41:aa:21:6b:d8:25:ed:81:
         07:11:ef:66:8f:06:bf:c8:be:f0:58:74:24:45:39:4d:04:fc:
         31:69:6f:cf:db:fe:61:7b:c3:24:31:ff
-----BEGIN CERTIFICATE-----
MIIB3TCCAWSgAwIBAgIESHvBJTAKBggqhkjOPQQDAjAmMSQwIgYDVQQDDBtoaWdo
d2F5LXRlc3QuZXhhbXBsZS5jb20gQ0EwHhcNMjEwNDEzMjAzNDI0WhcNMjMwNDEz
MjAzNDI0WjAmMSQwIgYDVQQDDBtoaWdod2F5LXRlc3QuZXhhbXBsZS5jb20gQ0Ew
djAQBgcqhkjOPQIBBgUrgQQAIgNiAAQu5/yktJbFLjMC87h7b+yTreFuF8GwewKH
L4mS0r0dVAQubqDUQcTrjvpXrXCpTojiLCzgp8fzkcUDkZ9LD/M90LDipiLNIOkP
juF8QkoAbT8pMrY83MS8y76wZ7AalNSjYzBhMA8GA1UdEwEB/wQFMAMBAf8wDgYD
VR0PAQH/BAQDAgEGMB0GA1UdDgQWBBReDKlSWozfqQ8DFOmW8YB2jFOKCDAfBgNV
HSMEGDAWgBReDKlSWozfqQ8DFOmW8YB2jFOKCDAKBggqhkjOPQQDAgNnADBkAjBg
N6BmiYAn4Q3lQ5pi8QK8D3JtqenLhKXGRNNBnl3OfUYWbhXe98zoPmH5A3wgxLcC
MH/p8xK7BsYkACtBqiFr2CXtgQcR72aPBr/IvvBYdCRFOU0E/DFpb8/b/mF7wyQx
/w==
-----END CERTIFICATE-----

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 89



C.1.2. MASA Key Pair for Voucher Signatures 
The MASA is the Manufacturer Authorized Signing Authority. This key pair signs vouchers. An
example TLS certificate (see Section 5.4) HTTP authentication is not provided as it is a common
form.

This private key signs the vouchers that are presented below:

<CODE ENDS>

<CODE BEGINS> file "masa.key"

-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIFhdd0eDdzip67kXx72K+KHGJQYJHNy8pkiLJ6CcvxMGoAoGCCqGSM49
AwEHoUQDQgAEqgQVo0S54kT4yfkbBxumdHOcHrpsqbOpMKmiMln3oB1HAW25MJV+
gqi4tMFfSJ0iEwt8kszfWXK4rLgJS2mnpQ==
-----END EC PRIVATE KEY-----

<CODE ENDS>

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 90



This public key validates vouchers, and it has been signed by the CA above:

file: examples/masa.key

<CODE BEGINS> file "masa.cert"

Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 193399345 (0xb870a31)
        Signature Algorithm: ecdsa-with-SHA256
        Issuer: CN = highway-test.example.com CA
        Validity
            Not Before: Apr 13 21:40:16 2021 GMT
            Not After : Apr 13 21:40:16 2023 GMT
        Subject: CN = highway-test.example.com MASA
        Subject Public Key Info:
            Public Key Algorithm: id-ecPublicKey
                Public-Key: (256 bit)
                pub:
                    04:aa:04:15:a3:44:b9:e2:44:f8:c9:f9:1b:07:1b:
                    a6:74:73:9c:1e:ba:6c:a9:b3:a9:30:a9:a2:32:59:
                    f7:a0:1d:47:01:6d:b9:30:95:7e:82:a8:b8:b4:c1:
                    5f:48:9d:22:13:0b:7c:92:cc:df:59:72:b8:ac:b8:
                    09:4b:69:a7:a5
                ASN1 OID: prime256v1
                NIST CURVE: P-256
        X509v3 extensions:
            X509v3 Basic Constraints: critical
                CA:FALSE
    Signature Algorithm: ecdsa-with-SHA256
         30:66:02:31:00:ae:cb:61:2d:d4:5c:8d:6e:86:aa:0b:06:1d:
         c6:d3:60:ba:32:73:36:25:d3:23:85:49:87:1c:ce:94:23:79:
         1a:9e:41:55:24:1d:15:22:a1:48:bb:0a:c0:ab:3c:13:73:02:
         31:00:86:3c:67:b3:95:a2:e2:e5:f9:ad:f9:1d:9c:c1:34:32:
         78:f5:cf:ea:d5:47:03:9f:00:bf:d0:59:cb:51:c2:98:04:81:
         24:8a:51:13:50:b1:75:b2:2f:9d:a8:b4:f4:b9
-----BEGIN CERTIFICATE-----
MIIBcDCB9qADAgECAgQLhwoxMAoGCCqGSM49BAMCMCYxJDAiBgNVBAMMG2hpZ2h3
YXktdGVzdC5leGFtcGxlLmNvbSBDQTAeFw0yMTA0MTMyMTQwMTZaFw0yMzA0MTMy
MTQwMTZaMCgxJjAkBgNVBAMMHWhpZ2h3YXktdGVzdC5leGFtcGxlLmNvbSBNQVNB
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEqgQVo0S54kT4yfkbBxumdHOcHrps
qbOpMKmiMln3oB1HAW25MJV+gqi4tMFfSJ0iEwt8kszfWXK4rLgJS2mnpaMQMA4w
DAYDVR0TAQH/BAIwADAKBggqhkjOPQQDAgNpADBmAjEArsthLdRcjW6GqgsGHcbT
YLoyczYl0yOFSYcczpQjeRqeQVUkHRUioUi7CsCrPBNzAjEAhjxns5Wi4uX5rfkd
nME0Mnj1z+rVRwOfAL/QWctRwpgEgSSKURNQsXWyL52otPS5
-----END CERTIFICATE-----

<CODE ENDS>

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 91



C.1.3. Registrar Certification Authority 
This CA enrolls the pledge once it is authorized, and it also signs the registrar's certificate.

<CODE BEGINS> file "ownerca_secp384r1.key"

-----BEGIN EC PRIVATE KEY-----
MIGkAgEBBDCHnLI0MSOLf8XndiZqoZdqblcPR5YSoPGhPOuFxWy1gFi9HbWv8b/R
EGdRgGEVSjKgBwYFK4EEACKhZANiAAQbf1m6F8MavGaNjGzgw/oxcQ9l9iKRvbdW
gAfb37h6pUVNeYpGlxlZljGxj2l9Mr48yD5bY7VG9qjVb5v5wPPTuRQ/ckdRpHbd
0vC/9cqPMAF/+MJf0/UgA0SLi/IHbLQ=
-----END EC PRIVATE KEY-----

<CODE ENDS>

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 92



The public key is indicated in a pledge voucher-request to show proximity.

file: examples/ownerca_secp384r1.key

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 93



<CODE BEGINS> file "ownerca_secp384r1.cert"

Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 694879833 (0x296b0659)
        Signature Algorithm: ecdsa-with-SHA256
        Issuer: DC = ca, DC = sandelman,
         CN = fountain-test.example.com Unstrung Fountain Root CA
        Validity
            Not Before: Feb 25 21:31:45 2020 GMT
            Not After : Feb 24 21:31:45 2022 GMT
        Subject: DC = ca, DC = sandelman,
         CN = fountain-test.example.com Unstrung Fountain Root CA
        Subject Public Key Info:
            Public Key Algorithm: id-ecPublicKey
                Public-Key: (384 bit)
                pub:
                    04:1b:7f:59:ba:17:c3:1a:bc:66:8d:8c:6c:e0:c3:
                    fa:31:71:0f:65:f6:22:91:bd:b7:56:80:07:db:df:
                    b8:7a:a5:45:4d:79:8a:46:97:19:59:96:31:b1:8f:
                    69:7d:32:be:3c:c8:3e:5b:63:b5:46:f6:a8:d5:6f:
                    9b:f9:c0:f3:d3:b9:14:3f:72:47:51:a4:76:dd:d2:
                    f0:bf:f5:ca:8f:30:01:7f:f8:c2:5f:d3:f5:20:03:
                    44:8b:8b:f2:07:6c:b4
                ASN1 OID: secp384r1
                NIST CURVE: P-384
        X509v3 extensions:
            X509v3 Basic Constraints: critical
                CA:TRUE
            X509v3 Key Usage: critical
                Certificate Sign, CRL Sign
            X509v3 Subject Key Identifier:
                B9:A5:F6:CB:11:E1:07:A4:49:2C:A7:08:C6:7C:10:BC:
                87:B3:74:26
            X509v3 Authority Key Identifier:
                keyid:B9:A5:F6:CB:11:E1:07:A4:49:2C:A7:08:C6:7C:
                10:BC:87:B3:74:26

    Signature Algorithm: ecdsa-with-SHA256
         30:64:02:30:20:83:06:ce:8d:98:a4:54:7a:66:4c:4a:3a:70:
         c2:52:36:5a:52:8d:59:7d:20:9b:2a:69:14:58:87:38:d8:55:
         79:dd:fd:29:38:95:1e:91:93:76:b4:f5:66:29:44:b4:02:30:
         6f:38:f9:af:12:ed:30:d5:85:29:7c:b1:16:58:bd:67:91:43:
         c4:0d:30:f9:d8:1c:ac:2f:06:dd:bc:d5:06:42:2c:84:a2:04:
         ea:02:a4:5f:17:51:26:fb:d9:2f:d2:5c
-----BEGIN CERTIFICATE-----
MIICazCCAfKgAwIBAgIEKWsGWTAKBggqhkjOPQQDAjBtMRIwEAYKCZImiZPyLGQB
GRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xPDA6BgNVBAMMM2ZvdW50
YWluLXRlc3QuZXhhbXBsZS5jb20gVW5zdHJ1bmcgRm91bnRhaW4gUm9vdCBDQTAe
Fw0yMDAyMjUyMTMxNDVaFw0yMjAyMjQyMTMxNDVaMG0xEjAQBgoJkiaJk/IsZAEZ
FgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1hbjE8MDoGA1UEAwwzZm91bnRh
aW4tdGVzdC5leGFtcGxlLmNvbSBVbnN0cnVuZyBGb3VudGFpbiBSb290IENBMHYw
EAYHKoZIzj0CAQYFK4EEACIDYgAEG39ZuhfDGrxmjYxs4MP6MXEPZfYikb23VoAH
29+4eqVFTXmKRpcZWZYxsY9pfTK+PMg+W2O1Rvao1W+b+cDz07kUP3JHUaR23dLw
v/XKjzABf/jCX9P1IANEi4vyB2y0o2MwYTAPBgNVHRMBAf8EBTADAQH/MA4GA1Ud
DwEB/wQEAwIBBjAdBgNVHQ4EFgQUuaX2yxHhB6RJLKcIxnwQvIezdCYwHwYDVR0j

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 94



C.1.4. Registrar Key Pair 
The registrar is the representative of the domain owner. This key signs registrar voucher-
requests and terminates the TLS connection from the pledge.

BBgwFoAUuaX2yxHhB6RJLKcIxnwQvIezdCYwCgYIKoZIzj0EAwIDZwAwZAIwIIMG
zo2YpFR6ZkxKOnDCUjZaUo1ZfSCbKmkUWIc42FV53f0pOJUekZN2tPVmKUS0AjBv
OPmvEu0w1YUpfLEWWL1nkUPEDTD52BysLwbdvNUGQiyEogTqAqRfF1Em+9kv0lw=
-----END CERTIFICATE-----

<CODE ENDS>

<CODE BEGINS> file "jrc_prime256v1.key"

-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIFZodk+PC5Mu24+ra0sbOjKzan+dW5rvDAR7YuJUOC1YoAoGCCqGSM49
AwEHoUQDQgAElmVQcjS6n+Xd5l/28IFv6UiegQwSBztGj5dkK2MAjQIPV8l8lH+E
jLIOYdbJiI0VtEIf1/Jqt+TOBfinTNOLOg==
-----END EC PRIVATE KEY-----

<CODE ENDS>

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 95



The public key is indicated in a pledge voucher-request to show proximity.

<CODE BEGINS> file "jrc_prime256v1.cert"

Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 1066965842 (0x3f989b52)
        Signature Algorithm: ecdsa-with-SHA256
        Issuer: DC = ca, DC = sandelman,
         CN = fountain-test.example.com Unstrung Fountain Root CA
        Validity
            Not Before: Feb 25 21:31:54 2020 GMT
            Not After : Feb 24 21:31:54 2022 GMT
        Subject: DC = ca, DC = sandelman,
         CN = fountain-test.example.com
        Subject Public Key Info:
            Public Key Algorithm: id-ecPublicKey
                Public-Key: (256 bit)
                pub:
                    04:96:65:50:72:34:ba:9f:e5:dd:e6:5f:f6:f0:81:
                    6f:e9:48:9e:81:0c:12:07:3b:46:8f:97:64:2b:63:
                    00:8d:02:0f:57:c9:7c:94:7f:84:8c:b2:0e:61:d6:
                    c9:88:8d:15:b4:42:1f:d7:f2:6a:b7:e4:ce:05:f8:
                    a7:4c:d3:8b:3a
                ASN1 OID: prime256v1
                NIST CURVE: P-256
        X509v3 extensions:
            X509v3 Extended Key Usage: critical
                CMC Registration Authority
            X509v3 Key Usage: critical
                Digital Signature
    Signature Algorithm: ecdsa-with-SHA256
         30:65:02:30:66:4f:60:4c:55:48:1e:96:07:f8:dd:1f:b9:c8:
         12:8d:45:36:87:9b:23:c0:bc:bb:f1:cb:3d:26:15:56:6f:5f:
         1f:bf:d5:1c:0e:6a:09:af:1b:76:97:99:19:23:fd:7e:02:31:
         00:bc:ac:c3:41:b0:ba:0d:af:52:f9:9c:6e:7a:7f:00:1d:23:
         c8:62:01:61:bc:4b:c5:c0:47:99:35:0a:0c:77:61:44:01:4a:
         07:52:70:57:00:75:ff:be:07:0e:98:cb:e5
-----BEGIN CERTIFICATE-----
MIIB/DCCAYKgAwIBAgIEP5ibUjAKBggqhkjOPQQDAjBtMRIwEAYKCZImiZPyLGQB
GRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xPDA6BgNVBAMMM2ZvdW50
YWluLXRlc3QuZXhhbXBsZS5jb20gVW5zdHJ1bmcgRm91bnRhaW4gUm9vdCBDQTAe
Fw0yMDAyMjUyMTMxNTRaFw0yMjAyMjQyMTMxNTRaMFMxEjAQBgoJkiaJk/IsZAEZ
FgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1hbjEiMCAGA1UEAwwZZm91bnRh
aW4tdGVzdC5leGFtcGxlLmNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABJZl
UHI0up/l3eZf9vCBb+lInoEMEgc7Ro+XZCtjAI0CD1fJfJR/hIyyDmHWyYiNFbRC
H9fyarfkzgX4p0zTizqjKjAoMBYGA1UdJQEB/wQMMAoGCCsGAQUFBwMcMA4GA1Ud
DwEB/wQEAwIHgDAKBggqhkjOPQQDAgNoADBlAjBmT2BMVUgelgf43R+5yBKNRTaH
myPAvLvxyz0mFVZvXx+/1RwOagmvG3aXmRkj/X4CMQC8rMNBsLoNr1L5nG56fwAd
I8hiAWG8S8XAR5k1Cgx3YUQBSgdScFcAdf++Bw6Yy+U=
-----END CERTIFICATE-----

<CODE ENDS>

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 96



C.1.5. Pledge Key Pair 
The pledge has an IDevID key pair built in at manufacturing time:

<CODE BEGINS> file "idevid_00-D0-E5-F2-00-02.key"

-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIBHNh6r8QRevRuo+tEmBJeFjQKf6bpFA/9NGoltv+9sNoAoGCCqGSM49
AwEHoUQDQgAEA6N1Q4ezfMAKmoecrfb0OBMc1AyEH+BATkF58FsTSyBxs0SbSWLx
FjDOuwB9gLGn2TsTUJumJ6VPw5Z/TP4hJw==
-----END EC PRIVATE KEY-----

<CODE ENDS>

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 97



The certificate is used by the registrar to find the MASA.

<CODE BEGINS> file "idevid_00-D0-E5-F2-00-02.cert"

Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 521731815 (0x1f18fee7)
        Signature Algorithm: ecdsa-with-SHA256
        Issuer: CN = highway-test.example.com CA
        Validity
            Not Before: Apr 27 18:29:30 2021 GMT
            Not After : Dec 31 00:00:00 2999 GMT
        Subject: serialNumber = 00-D0-E5-F2-00-02
        Subject Public Key Info:
            Public Key Algorithm: id-ecPublicKey
                Public-Key: (256 bit)
                pub:
                    04:03:a3:75:43:87:b3:7c:c0:0a:9a:87:9c:ad:f6:
                    f4:38:13:1c:d4:0c:84:1f:e0:40:4e:41:79:f0:5b:
                    13:4b:20:71:b3:44:9b:49:62:f1:16:30:ce:bb:00:
                    7d:80:b1:a7:d9:3b:13:50:9b:a6:27:a5:4f:c3:96:
                    7f:4c:fe:21:27
                ASN1 OID: prime256v1
                NIST CURVE: P-256
        X509v3 extensions:
            X509v3 Subject Key Identifier:
                45:88:CC:96:96:00:64:37:B0:BA:23:65:64:64:54:08:
                06:6C:56:AD
            X509v3 Basic Constraints:
                CA:FALSE
            1.3.6.1.5.5.7.1.32:
                ..highway-test.example.com:9443
    Signature Algorithm: ecdsa-with-SHA256
         30:65:02:30:62:2a:db:be:34:f7:1b:cb:85:de:26:8e:43:00:
         f9:0d:88:c8:77:a8:dd:3c:08:40:54:bc:ec:3d:b6:dc:70:2b:
         c3:7f:ca:19:21:9a:a0:ab:c5:51:8e:aa:df:36:de:8b:02:31:
         00:b2:5d:59:f8:47:c7:ed:03:97:a8:c0:c7:a8:81:fa:a8:86:
         ed:67:64:37:51:7a:6e:9c:a3:82:4d:6d:ad:bc:f3:35:9e:9d:
         6a:a2:6d:7f:7f:25:1c:03:ef:f0:ba:9b:71
-----BEGIN CERTIFICATE-----
MIIBrzCCATWgAwIBAgIEHxj+5zAKBggqhkjOPQQDAjAmMSQwIgYDVQQDDBtoaWdo
d2F5LXRlc3QuZXhhbXBsZS5jb20gQ0EwIBcNMjEwNDI3MTgyOTMwWhgPMjk5OTEy
MzEwMDAwMDBaMBwxGjAYBgNVBAUTETAwLUQwLUU1LUYyLTAwLTAyMFkwEwYHKoZI
zj0CAQYIKoZIzj0DAQcDQgAEA6N1Q4ezfMAKmoecrfb0OBMc1AyEH+BATkF58FsT
SyBxs0SbSWLxFjDOuwB9gLGn2TsTUJumJ6VPw5Z/TP4hJ6NZMFcwHQYDVR0OBBYE
FEWIzJaWAGQ3sLojZWRkVAgGbFatMAkGA1UdEwQCMAAwKwYIKwYBBQUHASAEHxYd
aGlnaHdheS10ZXN0LmV4YW1wbGUuY29tOjk0NDMwCgYIKoZIzj0EAwIDaAAwZQIw
YirbvjT3G8uF3iaOQwD5DYjId6jdPAhAVLzsPbbccCvDf8oZIZqgq8VRjqrfNt6L
AjEAsl1Z+EfH7QOXqMDHqIH6qIbtZ2Q3UXpunKOCTW2tvPM1np1qom1/fyUcA+/w
uptx
-----END CERTIFICATE-----

<CODE ENDS>

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 98



C.2. Example Process 
The JSON examples below are wrapped at 60 columns. This results in strings that have newlines
in them, which makes them invalid JSON as is. The strings would otherwise be too long, so they
need to be unwrapped before processing.

For readability, the output of the asn1parse has been truncated at 68 columns rather than
wrapped.

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 99



C.2.1. Pledge to Registrar 
As described in Section 5.2, the pledge will sign a pledge voucher-request containing the
registrar's public key in the proximity-registrar-cert field. The base64 has been wrapped at 60
characters for presentation reasons.

<CODE BEGINS> file "vr_00-D0-E5-F2-00-02.b64"

MIIGcAYJKoZIhvcNAQcCoIIGYTCCBl0CAQExDTALBglghkgBZQMEAgEwggOJBgkqhkiG
9w0BBwGgggN6BIIDdnsiaWV0Zi12b3VjaGVyLXJlcXVlc3Q6dm91Y2hlciI6eyJhc3Nl
cnRpb24iOiJwcm94aW1pdHkiLCJjcmVhdGVkLW9uIjoiMjAyMS0wNC0xM1QxNzo0Mzoy
My43NDctMDQ6MDAiLCJzZXJpYWwtbnVtYmVyIjoiMDAtRDAtRTUtRjItMDAtMDIiLCJu
b25jZSI6Ii1fWEU5eks5cThMbDFxeWxNdExLZWciLCJwcm94aW1pdHktcmVnaXN0cmFy
LWNlcnQiOiJNSUlCL0RDQ0FZS2dBd0lCQWdJRVA1aWJVakFLQmdncWhrak9QUVFEQWpC
dE1SSXdFQVlLQ1pJbWlaUHlMR1FCR1JZQ1kyRXhHVEFYQmdvSmtpYUprL0lzWkFFWkZn
bHpZVzVrWld4dFlXNHhQREE2QmdOVkJBTU1NMlp2ZFc1MFlXbHVMWFJsYzNRdVpYaGhi
WEJzWlM1amIyMGdWVzV6ZEhKMWJtY2dSbTkxYm5SaGFXNGdVbTl2ZENCRFFUQWVGdzB5
TURBeU1qVXlNVE14TlRSYUZ3MHlNakF5TWpReU1UTXhOVFJhTUZNeEVqQVFCZ29Ka2lh
SmsvSXNaQUVaRmdKallURVpNQmNHQ2dtU0pvbVQ4aXhrQVJrV0NYTmhibVJsYkcxaGJq
RWlNQ0FHQTFVRUF3d1pabTkxYm5SaGFXNHRkR1Z6ZEM1bGVHRnRjR3hsTG1OdmJUQlpN
Qk1HQnlxR1NNNDlBZ0VHQ0NxR1NNNDlBd0VIQTBJQUJKWmxVSEkwdXAvbDNlWmY5dkNC
YitsSW5vRU1FZ2M3Um8rWFpDdGpBSTBDRDFmSmZKUi9oSXl5RG1IV3lZaU5GYlJDSDlm
eWFyZmt6Z1g0cDB6VGl6cWpLakFvTUJZR0ExVWRKUUVCL3dRTU1Bb0dDQ3NHQVFVRkJ3
TWNNQTRHQTFVZER3RUIvd1FFQXdJSGdEQUtCZ2dxaGtqT1BRUURBZ05vQURCbEFqQm1U
MkJNVlVnZWxnZjQzUis1eUJLTlJUYUhteVBBdkx2eHl6MG1GVlp2WHgrLzFSd09hZ212
RzNhWG1Sa2ovWDRDTVFDOHJNTkJzTG9OcjFMNW5HNTZmd0FkSThoaUFXRzhTOFhBUjVr
MUNneDNZVVFCU2dkU2NGY0FkZisrQnc2WXkrVT0ifX2gggGyMIIBrjCCATWgAwIBAgIE
DYOv2TAKBggqhkjOPQQDAjAmMSQwIgYDVQQDDBtoaWdod2F5LXRlc3QuZXhhbXBsZS5j
b20gQ0EwIBcNMjEwNDEzMjAzNzM5WhgPMjk5OTEyMzEwMDAwMDBaMBwxGjAYBgNVBAUM
ETAwLUQwLUU1LUYyLTAwLTAyMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEA6N1Q4ez
fMAKmoecrfb0OBMc1AyEH+BATkF58FsTSyBxs0SbSWLxFjDOuwB9gLGn2TsTUJumJ6VP
w5Z/TP4hJ6NZMFcwHQYDVR0OBBYEFEWIzJaWAGQ3sLojZWRkVAgGbFatMAkGA1UdEwQC
MAAwKwYIKwYBBQUHASAEHxYdaGlnaHdheS10ZXN0LmV4YW1wbGUuY29tOjk0NDMwCgYI
KoZIzj0EAwIDZwAwZAIwTmlG8sXkKGNbwbKQcYMapFbmSbnHHURFUoFuRqvbgYX7FlXp
BczfwF2kllNuujigAjAow1kc4r55EmiH+OMEXjBNlWlBSZC5QuJjEf0Jsmxssc+pucjO
J4ShqnexMEy7bjAxggEEMIIBAAIBATAuMCYxJDAiBgNVBAMMG2hpZ2h3YXktdGVzdC5l
eGFtcGxlLmNvbSBDQQIEDYOv2TALBglghkgBZQMEAgGgaTAYBgkqhkiG9w0BCQMxCwYJ
KoZIhvcNAQcBMBwGCSqGSIb3DQEJBTEPFw0yMTA0MTMyMTQzMjNaMC8GCSqGSIb3DQEJ
BDEiBCBJwhyYibIjeqeR3bOaLURzMlGrc3F2X+kvJ1errtoCtTAKBggqhkjOPQQDAgRH
MEUCIQCmYuCE61HFQXH/E16GDOCsVquDtgr+Q/6/Du/9QkzA7gIgf7MFhAIPW2PNwRa2
vZFQAKXUbimkiHKzXBA8md0VHbU=

<CODE ENDS>

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 100



The ASN1 decoding of the artifact:

file: examples/vr_00-D0-E5-F2-00-02.b64

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 101



    0:d=0  hl=4 l=1648 cons: SEQUENCE
    4:d=1  hl=2 l=   9 prim: OBJECT            :pkcs7-signedData
   15:d=1  hl=4 l=1633 cons: cont [ 0 ]
   19:d=2  hl=4 l=1629 cons: SEQUENCE
   23:d=3  hl=2 l=   1 prim: INTEGER           :01
   26:d=3  hl=2 l=  13 cons: SET
   28:d=4  hl=2 l=  11 cons: SEQUENCE
   30:d=5  hl=2 l=   9 prim: OBJECT            :sha256
   41:d=3  hl=4 l= 905 cons: SEQUENCE
   45:d=4  hl=2 l=   9 prim: OBJECT            :pkcs7-data
   56:d=4  hl=4 l= 890 cons: cont [ 0 ]
   60:d=5  hl=4 l= 886 prim: OCTET STRING      :{"ietf-voucher-request:v
  950:d=3  hl=4 l= 434 cons: cont [ 0 ]
  954:d=4  hl=4 l= 430 cons: SEQUENCE
  958:d=5  hl=4 l= 309 cons: SEQUENCE
  962:d=6  hl=2 l=   3 cons: cont [ 0 ]
  964:d=7  hl=2 l=   1 prim: INTEGER           :02
  967:d=6  hl=2 l=   4 prim: INTEGER           :0D83AFD9
  973:d=6  hl=2 l=  10 cons: SEQUENCE
  975:d=7  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
  985:d=6  hl=2 l=  38 cons: SEQUENCE
  987:d=7  hl=2 l=  36 cons: SET
  989:d=8  hl=2 l=  34 cons: SEQUENCE
  991:d=9  hl=2 l=   3 prim: OBJECT            :commonName
  996:d=9  hl=2 l=  27 prim: UTF8STRING        :highway-test.example.com
 1025:d=6  hl=2 l=  32 cons: SEQUENCE
 1027:d=7  hl=2 l=  13 prim: UTCTIME           :210413203739Z
 1042:d=7  hl=2 l=  15 prim: GENERALIZEDTIME   :29991231000000Z
 1059:d=6  hl=2 l=  28 cons: SEQUENCE
 1061:d=7  hl=2 l=  26 cons: SET
 1063:d=8  hl=2 l=  24 cons: SEQUENCE
 1065:d=9  hl=2 l=   3 prim: OBJECT            :serialNumber
 1070:d=9  hl=2 l=  17 prim: UTF8STRING        :00-D0-E5-F2-00-02
 1089:d=6  hl=2 l=  89 cons: SEQUENCE
 1091:d=7  hl=2 l=  19 cons: SEQUENCE
 1093:d=8  hl=2 l=   7 prim: OBJECT            :id-ecPublicKey
 1102:d=8  hl=2 l=   8 prim: OBJECT            :prime256v1
 1112:d=7  hl=2 l=  66 prim: BIT STRING
 1180:d=6  hl=2 l=  89 cons: cont [ 3 ]
 1182:d=7  hl=2 l=  87 cons: SEQUENCE
 1184:d=8  hl=2 l=  29 cons: SEQUENCE
 1186:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Subject Key Ident
 1191:d=9  hl=2 l=  22 prim: OCTET STRING      [HEX DUMP]:04144588CC9696
 1215:d=8  hl=2 l=   9 cons: SEQUENCE
 1217:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Basic Constraints
 1222:d=9  hl=2 l=   2 prim: OCTET STRING      [HEX DUMP]:3000
 1226:d=8  hl=2 l=  43 cons: SEQUENCE
 1228:d=9  hl=2 l=   8 prim: OBJECT            :1.3.6.1.5.5.7.1.32
 1238:d=9  hl=2 l=  31 prim: OCTET STRING      [HEX DUMP]:161D6869676877
 1271:d=5  hl=2 l=  10 cons: SEQUENCE
 1273:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 1283:d=5  hl=2 l= 103 prim: BIT STRING
 1388:d=3  hl=4 l= 260 cons: SET
 1392:d=4  hl=4 l= 256 cons: SEQUENCE
 1396:d=5  hl=2 l=   1 prim: INTEGER           :01
 1399:d=5  hl=2 l=  46 cons: SEQUENCE
 1401:d=6  hl=2 l=  38 cons: SEQUENCE

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 102



The JSON contained in the voucher-request:

 1403:d=7  hl=2 l=  36 cons: SET
 1405:d=8  hl=2 l=  34 cons: SEQUENCE
 1407:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 1412:d=9  hl=2 l=  27 prim: UTF8STRING        :highway-test.example.com
 1441:d=6  hl=2 l=   4 prim: INTEGER           :0D83AFD9
 1447:d=5  hl=2 l=  11 cons: SEQUENCE
 1449:d=6  hl=2 l=   9 prim: OBJECT            :sha256
 1460:d=5  hl=2 l= 105 cons: cont [ 0 ]
 1462:d=6  hl=2 l=  24 cons: SEQUENCE
 1464:d=7  hl=2 l=   9 prim: OBJECT            :contentType
 1475:d=7  hl=2 l=  11 cons: SET
 1477:d=8  hl=2 l=   9 prim: OBJECT            :pkcs7-data
 1488:d=6  hl=2 l=  28 cons: SEQUENCE
 1490:d=7  hl=2 l=   9 prim: OBJECT            :signingTime
 1501:d=7  hl=2 l=  15 cons: SET
 1503:d=8  hl=2 l=  13 prim: UTCTIME           :210413214323Z
 1518:d=6  hl=2 l=  47 cons: SEQUENCE
 1520:d=7  hl=2 l=   9 prim: OBJECT            :messageDigest
 1531:d=7  hl=2 l=  34 cons: SET
 1533:d=8  hl=2 l=  32 prim: OCTET STRING      [HEX DUMP]:49C21C9889B223
 1567:d=5  hl=2 l=  10 cons: SEQUENCE
 1569:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 1579:d=5  hl=2 l=  71 prim: OCTET STRING      [HEX DUMP]:3045022100A662

{"ietf-voucher-request:voucher":{"assertion":"proximity","cr
eated-on":"2021-04-13T17:43:23.747-04:00","serial-number":"0
0-D0-E5-F2-00-02","nonce":"-_XE9zK9q8Ll1qylMtLKeg","proximit
y-registrar-cert":"MIIB/DCCAYKgAwIBAgIEP5ibUjAKBggqhkjOPQQDA
jBtMRIwEAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZ
WxtYW4xPDA6BgNVBAMMM2ZvdW50YWluLXRlc3QuZXhhbXBsZS5jb20gVW5zd
HJ1bmcgRm91bnRhaW4gUm9vdCBDQTAeFw0yMDAyMjUyMTMxNTRaFw0yMjAyM
jQyMTMxNTRaMFMxEjAQBgoJkiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkA
RkWCXNhbmRlbG1hbjEiMCAGA1UEAwwZZm91bnRhaW4tdGVzdC5leGFtcGxlL
mNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABJZlUHI0up/l3eZf9vCBb
+lInoEMEgc7Ro+XZCtjAI0CD1fJfJR/hIyyDmHWyYiNFbRCH9fyarfkzgX4p
0zTizqjKjAoMBYGA1UdJQEB/wQMMAoGCCsGAQUFBwMcMA4GA1UdDwEB/wQEA
wIHgDAKBggqhkjOPQQDAgNoADBlAjBmT2BMVUgelgf43R+5yBKNRTaHmyPAv
Lvxyz0mFVZvXx+/1RwOagmvG3aXmRkj/X4CMQC8rMNBsLoNr1L5nG56fwAdI
8hiAWG8S8XAR5k1Cgx3YUQBSgdScFcAdf++Bw6Yy+U="}}

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 103



C.2.2. Registrar to MASA 
As described in Section 5.5, the registrar will sign a registrar voucher-request and will include
the pledge's voucher-request in the prior-signed-voucher-request.

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 104



<CODE BEGINS> file "parboiled_vr_00-D0-E5-F2-00-02.b64"

MIIPYwYJKoZIhvcNAQcCoIIPVDCCD1ACAQExDTALBglghkgBZQMEAgEwggl4BgkqhkiG
9w0BBwGggglpBIIJZXsiaWV0Zi12b3VjaGVyLXJlcXVlc3Q6dm91Y2hlciI6eyJhc3Nl
cnRpb24iOiJwcm94aW1pdHkiLCJjcmVhdGVkLW9uIjoiMjAyMS0wNC0xM1QyMTo0Mzoy
My43ODdaIiwic2VyaWFsLW51bWJlciI6IjAwLUQwLUU1LUYyLTAwLTAyIiwibm9uY2Ui
OiItX1hFOXpLOXE4TGwxcXlsTXRMS2VnIiwicHJpb3Itc2lnbmVkLXZvdWNoZXItcmVx
dWVzdCI6Ik1JSUdjQVlKS29aSWh2Y05BUWNDb0lJR1lUQ0NCbDBDQVFFeERUQUxCZ2xn
aGtnQlpRTUVBZ0V3Z2dPSkJna3Foa2lHOXcwQkJ3R2dnZ042QklJRGRuc2lhV1YwWmkx
MmIzVmphR1Z5TFhKbGNYVmxjM1E2ZG05MVkyaGxjaUk2ZXlKaGMzTmxjblJwYjI0aU9p
SndjbTk0YVcxcGRIa2lMQ0pqY21WaGRHVmtMVzl1SWpvaU1qQXlNUzB3TkMweE0xUXhO
em8wTXpveU15NDNORGN0TURRNk1EQWlMQ0p6WlhKcFlXd3RiblZ0WW1WeUlqb2lNREF0
UkRBdFJUVXRSakl0TURBdE1ESWlMQ0p1YjI1alpTSTZJaTFmV0VVNWVrczVjVGhNYkRG
eGVXeE5kRXhMWldjaUxDSndjbTk0YVcxcGRIa3RjbVZuYVhOMGNtRnlMV05sY25RaU9p
Sk5TVWxDTDBSRFEwRlpTMmRCZDBsQ1FXZEpSVkExYVdKVmFrRkxRbWRuY1docmFrOVFV
VkZFUVdwQ2RFMVNTWGRGUVZsTFExcEpiV2xhVUhsTVIxRkNSMUpaUTFreVJYaEhWRUZZ
UW1kdlNtdHBZVXByTDBseldrRkZXa1puYkhwWlZ6VnJXbGQ0ZEZsWE5IaFFSRUUyUW1k
T1ZrSkJUVTFOTWxwMlpGYzFNRmxYYkhWTVdGSnNZek5SZFZwWWFHaGlXRUp6V2xNMWFt
SXlNR2RXVnpWNlpFaEtNV0p0WTJkU2JUa3hZbTVTYUdGWE5HZFZiVGwyWkVOQ1JGRlVR
V1ZHZHpCNVRVUkJlVTFxVlhsTlZFMTRUbFJTWVVaM01IbE5ha0Y1VFdwUmVVMVVUWGhP
VkZKaFRVWk5lRVZxUVZGQ1oyOUthMmxoU21zdlNYTmFRVVZhUm1kS2FsbFVSVnBOUW1O
SFEyZHRVMHB2YlZRNGFYaHJRVkpyVjBOWVRtaGliVkpzWWtjeGFHSnFSV2xOUTBGSFFU
RlZSVUYzZDFwYWJUa3hZbTVTYUdGWE5IUmtSMVo2WkVNMWJHVkhSblJqUjNoc1RHMU9k
bUpVUWxwTlFrMUhRbmx4UjFOTk5EbEJaMFZIUTBOeFIxTk5ORGxCZDBWSVFUQkpRVUpL
V214VlNFa3dkWEF2YkRObFdtWTVka05DWWl0c1NXNXZSVTFGWjJNM1VtOHJXRnBEZEdw
QlNUQkRSREZtU21aS1VpOW9TWGw1UkcxSVYzbFphVTVHWWxKRFNEbG1lV0Z5Wm10Nlox
ZzBjREI2VkdsNmNXcExha0Z2VFVKWlIwRXhWV1JLVVVWQ0wzZFJUVTFCYjBkRFEzTkhR
VkZWUmtKM1RXTk5RVFJIUVRGVlpFUjNSVUl2ZDFGRlFYZEpTR2RFUVV0Q1oyZHhhR3Rx
VDFCUlVVUkJaMDV2UVVSQ2JFRnFRbTFVTWtKTlZsVm5aV3huWmpRelVpczFlVUpMVGxK
VVlVaHRlVkJCZGt4MmVIbDZNRzFHVmxwMldIZ3JMekZTZDA5aFoyMTJSek5oV0cxU2Ey
b3ZXRFJEVFZGRE9ISk5Ua0p6VEc5T2NqRk1OVzVITlRabWQwRmtTVGhvYVVGWFJ6aFRP
RmhCVWpWck1VTm5lRE5aVlZGQ1UyZGtVMk5HWTBGa1ppc3JRbmMyV1hrclZUMGlmWDJn
Z2dHeU1JSUJyakNDQVRXZ0F3SUJBZ0lFRFlPdjJUQUtCZ2dxaGtqT1BRUURBakFtTVNR
d0lnWURWUVFEREJ0b2FXZG9kMkY1TFhSbGMzUXVaWGhoYlhCc1pTNWpiMjBnUTBFd0lC
Y05NakV3TkRFek1qQXpOek01V2hnUE1qazVPVEV5TXpFd01EQXdNREJhTUJ3eEdqQVlC
Z05WQkFVTUVUQXdMVVF3TFVVMUxVWXlMVEF3TFRBeU1Ga3dFd1lIS29aSXpqMENBUVlJ
S29aSXpqMERBUWNEUWdBRUE2TjFRNGV6Zk1BS21vZWNyZmIwT0JNYzFBeUVIK0JBVGtG
NThGc1RTeUJ4czBTYlNXTHhGakRPdXdCOWdMR24yVHNUVUp1bUo2VlB3NVovVFA0aEo2
TlpNRmN3SFFZRFZSME9CQllFRkVXSXpKYVdBR1Ezc0xvalpXUmtWQWdHYkZhdE1Ba0dB
MVVkRXdRQ01BQXdLd1lJS3dZQkJRVUhBU0FFSHhZZGFHbG5hSGRoZVMxMFpYTjBMbVY0
WVcxd2JHVXVZMjl0T2prME5ETXdDZ1lJS29aSXpqMEVBd0lEWndBd1pBSXdUbWxHOHNY
a0tHTmJ3YktRY1lNYXBGYm1TYm5ISFVSRlVvRnVScXZiZ1lYN0ZsWHBCY3pmd0Yya2xs
TnV1amlnQWpBb3cxa2M0cjU1RW1pSCtPTUVYakJObFdsQlNaQzVRdUpqRWYwSnNteHNz
YytwdWNqT0o0U2hxbmV4TUV5N2JqQXhnZ0VFTUlJQkFBSUJBVEF1TUNZeEpEQWlCZ05W
QkFNTUcyaHBaMmgzWVhrdGRHVnpkQzVsZUdGdGNHeGxMbU52YlNCRFFRSUVEWU92MlRB
TEJnbGdoa2dCWlFNRUFnR2dhVEFZQmdrcWhraUc5dzBCQ1FNeEN3WUpLb1pJaHZjTkFR
Y0JNQndHQ1NxR1NJYjNEUUVKQlRFUEZ3MHlNVEEwTVRNeU1UUXpNak5hTUM4R0NTcUdT
SWIzRFFFSkJERWlCQ0JKd2h5WWliSWplcWVSM2JPYUxVUnpNbEdyYzNGMlgra3ZKMWVy
cnRvQ3RUQUtCZ2dxaGtqT1BRUURBZ1JITUVVQ0lRQ21ZdUNFNjFIRlFYSC9FMTZHRE9D
c1ZxdUR0Z3IrUS82L0R1LzlRa3pBN2dJZ2Y3TUZoQUlQVzJQTndSYTJ2WkZRQUtYVWJp
bWtpSEt6WEJBOG1kMFZIYlU9In19oIIEbzCCAfwwggGCoAMCAQICBD+Ym1IwCgYIKoZI
zj0EAwIwbTESMBAGCgmSJomT8ixkARkWAmNhMRkwFwYKCZImiZPyLGQBGRYJc2FuZGVs
bWFuMTwwOgYDVQQDDDNmb3VudGFpbi10ZXN0LmV4YW1wbGUuY29tIFVuc3RydW5nIEZv
dW50YWluIFJvb3QgQ0EwHhcNMjAwMjI1MjEzMTU0WhcNMjIwMjI0MjEzMTU0WjBTMRIw
EAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xIjAgBgNV
BAMMGWZvdW50YWluLXRlc3QuZXhhbXBsZS5jb20wWTATBgcqhkjOPQIBBggqhkjOPQMB
BwNCAASWZVByNLqf5d3mX/bwgW/pSJ6BDBIHO0aPl2QrYwCNAg9XyXyUf4SMsg5h1smI

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 105



jRW0Qh/X8mq35M4F+KdM04s6oyowKDAWBgNVHSUBAf8EDDAKBggrBgEFBQcDHDAOBgNV
HQ8BAf8EBAMCB4AwCgYIKoZIzj0EAwIDaAAwZQIwZk9gTFVIHpYH+N0fucgSjUU2h5sj
wLy78cs9JhVWb18fv9UcDmoJrxt2l5kZI/1+AjEAvKzDQbC6Da9S+Zxuen8AHSPIYgFh
vEvFwEeZNQoMd2FEAUoHUnBXAHX/vgcOmMvlMIICazCCAfKgAwIBAgIEKWsGWTAKBggq
hkjOPQQDAjBtMRIwEAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5k
ZWxtYW4xPDA6BgNVBAMMM2ZvdW50YWluLXRlc3QuZXhhbXBsZS5jb20gVW5zdHJ1bmcg
Rm91bnRhaW4gUm9vdCBDQTAeFw0yMDAyMjUyMTMxNDVaFw0yMjAyMjQyMTMxNDVaMG0x
EjAQBgoJkiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1hbjE8MDoG
A1UEAwwzZm91bnRhaW4tdGVzdC5leGFtcGxlLmNvbSBVbnN0cnVuZyBGb3VudGFpbiBS
b290IENBMHYwEAYHKoZIzj0CAQYFK4EEACIDYgAEG39ZuhfDGrxmjYxs4MP6MXEPZfYi
kb23VoAH29+4eqVFTXmKRpcZWZYxsY9pfTK+PMg+W2O1Rvao1W+b+cDz07kUP3JHUaR2
3dLwv/XKjzABf/jCX9P1IANEi4vyB2y0o2MwYTAPBgNVHRMBAf8EBTADAQH/MA4GA1Ud
DwEB/wQEAwIBBjAdBgNVHQ4EFgQUuaX2yxHhB6RJLKcIxnwQvIezdCYwHwYDVR0jBBgw
FoAUuaX2yxHhB6RJLKcIxnwQvIezdCYwCgYIKoZIzj0EAwIDZwAwZAIwIIMGzo2YpFR6
ZkxKOnDCUjZaUo1ZfSCbKmkUWIc42FV53f0pOJUekZN2tPVmKUS0AjBvOPmvEu0w1YUp
fLEWWL1nkUPEDTD52BysLwbdvNUGQiyEogTqAqRfF1Em+9kv0lwxggFLMIIBRwIBATB1
MG0xEjAQBgoJkiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1hbjE8
MDoGA1UEAwwzZm91bnRhaW4tdGVzdC5leGFtcGxlLmNvbSBVbnN0cnVuZyBGb3VudGFp
biBSb290IENBAgQ/mJtSMAsGCWCGSAFlAwQCAaBpMBgGCSqGSIb3DQEJAzELBgkqhkiG
9w0BBwEwHAYJKoZIhvcNAQkFMQ8XDTIxMDQxMzIxNDMyM1owLwYJKoZIhvcNAQkEMSIE
IEnOrdWjlG70K74IhCJ7UXi+wPS+r2C8DFEqjabGP+G8MAoGCCqGSM49BAMCBEcwRQIh
AMhO3M+tSWb2wKTBOXPArN+XvjSzAhaQA/uLj3qhPwi/AiBDDthf6mjMuirqXE0yjMif
C2UY9oNUFF9Nl0wEQpBBAA==

<CODE ENDS>

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 106



The ASN1 decoding of the artifact:

file: examples/parboiled_vr_00_D0-E5-02-00-2D.b64

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 107



    0:d=0  hl=4 l=3939 cons: SEQUENCE
    4:d=1  hl=2 l=   9 prim: OBJECT            :pkcs7-signedData
   15:d=1  hl=4 l=3924 cons: cont [ 0 ]
   19:d=2  hl=4 l=3920 cons: SEQUENCE
   23:d=3  hl=2 l=   1 prim: INTEGER           :01
   26:d=3  hl=2 l=  13 cons: SET
   28:d=4  hl=2 l=  11 cons: SEQUENCE
   30:d=5  hl=2 l=   9 prim: OBJECT            :sha256
   41:d=3  hl=4 l=2424 cons: SEQUENCE
   45:d=4  hl=2 l=   9 prim: OBJECT            :pkcs7-data
   56:d=4  hl=4 l=2409 cons: cont [ 0 ]
   60:d=5  hl=4 l=2405 prim: OCTET STRING      :{"ietf-voucher-request:v
 2469:d=3  hl=4 l=1135 cons: cont [ 0 ]
 2473:d=4  hl=4 l= 508 cons: SEQUENCE
 2477:d=5  hl=4 l= 386 cons: SEQUENCE
 2481:d=6  hl=2 l=   3 cons: cont [ 0 ]
 2483:d=7  hl=2 l=   1 prim: INTEGER           :02
 2486:d=6  hl=2 l=   4 prim: INTEGER           :3F989B52
 2492:d=6  hl=2 l=  10 cons: SEQUENCE
 2494:d=7  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 2504:d=6  hl=2 l= 109 cons: SEQUENCE
 2506:d=7  hl=2 l=  18 cons: SET
 2508:d=8  hl=2 l=  16 cons: SEQUENCE
 2510:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 2522:d=9  hl=2 l=   2 prim: IA5STRING         :ca
 2526:d=7  hl=2 l=  25 cons: SET
 2528:d=8  hl=2 l=  23 cons: SEQUENCE
 2530:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 2542:d=9  hl=2 l=   9 prim: IA5STRING         :sandelman
 2553:d=7  hl=2 l=  60 cons: SET
 2555:d=8  hl=2 l=  58 cons: SEQUENCE
 2557:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 2562:d=9  hl=2 l=  51 prim: UTF8STRING        :fountain-test.example.co
 2615:d=6  hl=2 l=  30 cons: SEQUENCE
 2617:d=7  hl=2 l=  13 prim: UTCTIME           :200225213154Z
 2632:d=7  hl=2 l=  13 prim: UTCTIME           :220224213154Z
 2647:d=6  hl=2 l=  83 cons: SEQUENCE
 2649:d=7  hl=2 l=  18 cons: SET
 2651:d=8  hl=2 l=  16 cons: SEQUENCE
 2653:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 2665:d=9  hl=2 l=   2 prim: IA5STRING         :ca
 2669:d=7  hl=2 l=  25 cons: SET
 2671:d=8  hl=2 l=  23 cons: SEQUENCE
 2673:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 2685:d=9  hl=2 l=   9 prim: IA5STRING         :sandelman
 2696:d=7  hl=2 l=  34 cons: SET
 2698:d=8  hl=2 l=  32 cons: SEQUENCE
 2700:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 2705:d=9  hl=2 l=  25 prim: UTF8STRING        :fountain-test.example.co
 2732:d=6  hl=2 l=  89 cons: SEQUENCE
 2734:d=7  hl=2 l=  19 cons: SEQUENCE
 2736:d=8  hl=2 l=   7 prim: OBJECT            :id-ecPublicKey
 2745:d=8  hl=2 l=   8 prim: OBJECT            :prime256v1
 2755:d=7  hl=2 l=  66 prim: BIT STRING
 2823:d=6  hl=2 l=  42 cons: cont [ 3 ]
 2825:d=7  hl=2 l=  40 cons: SEQUENCE
 2827:d=8  hl=2 l=  22 cons: SEQUENCE

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 108



 2829:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Extended Key Usag
 2834:d=9  hl=2 l=   1 prim: BOOLEAN           :255
 2837:d=9  hl=2 l=  12 prim: OCTET STRING      [HEX DUMP]:300A06082B0601
 2851:d=8  hl=2 l=  14 cons: SEQUENCE
 2853:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Key Usage
 2858:d=9  hl=2 l=   1 prim: BOOLEAN           :255
 2861:d=9  hl=2 l=   4 prim: OCTET STRING      [HEX DUMP]:03020780
 2867:d=5  hl=2 l=  10 cons: SEQUENCE
 2869:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 2879:d=5  hl=2 l= 104 prim: BIT STRING
 2985:d=4  hl=4 l= 619 cons: SEQUENCE
 2989:d=5  hl=4 l= 498 cons: SEQUENCE
 2993:d=6  hl=2 l=   3 cons: cont [ 0 ]
 2995:d=7  hl=2 l=   1 prim: INTEGER           :02
 2998:d=6  hl=2 l=   4 prim: INTEGER           :296B0659
 3004:d=6  hl=2 l=  10 cons: SEQUENCE
 3006:d=7  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 3016:d=6  hl=2 l= 109 cons: SEQUENCE
 3018:d=7  hl=2 l=  18 cons: SET
 3020:d=8  hl=2 l=  16 cons: SEQUENCE
 3022:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 3034:d=9  hl=2 l=   2 prim: IA5STRING         :ca
 3038:d=7  hl=2 l=  25 cons: SET
 3040:d=8  hl=2 l=  23 cons: SEQUENCE
 3042:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 3054:d=9  hl=2 l=   9 prim: IA5STRING         :sandelman
 3065:d=7  hl=2 l=  60 cons: SET
 3067:d=8  hl=2 l=  58 cons: SEQUENCE
 3069:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 3074:d=9  hl=2 l=  51 prim: UTF8STRING        :fountain-test.example.co
 3127:d=6  hl=2 l=  30 cons: SEQUENCE
 3129:d=7  hl=2 l=  13 prim: UTCTIME           :200225213145Z
 3144:d=7  hl=2 l=  13 prim: UTCTIME           :220224213145Z
 3159:d=6  hl=2 l= 109 cons: SEQUENCE
 3161:d=7  hl=2 l=  18 cons: SET
 3163:d=8  hl=2 l=  16 cons: SEQUENCE
 3165:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 3177:d=9  hl=2 l=   2 prim: IA5STRING         :ca
 3181:d=7  hl=2 l=  25 cons: SET
 3183:d=8  hl=2 l=  23 cons: SEQUENCE
 3185:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 3197:d=9  hl=2 l=   9 prim: IA5STRING         :sandelman
 3208:d=7  hl=2 l=  60 cons: SET
 3210:d=8  hl=2 l=  58 cons: SEQUENCE
 3212:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 3217:d=9  hl=2 l=  51 prim: UTF8STRING        :fountain-test.example.co
 3270:d=6  hl=2 l= 118 cons: SEQUENCE
 3272:d=7  hl=2 l=  16 cons: SEQUENCE
 3274:d=8  hl=2 l=   7 prim: OBJECT            :id-ecPublicKey
 3283:d=8  hl=2 l=   5 prim: OBJECT            :secp384r1
 3290:d=7  hl=2 l=  98 prim: BIT STRING
 3390:d=6  hl=2 l=  99 cons: cont [ 3 ]
 3392:d=7  hl=2 l=  97 cons: SEQUENCE
 3394:d=8  hl=2 l=  15 cons: SEQUENCE
 3396:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Basic Constraints
 3401:d=9  hl=2 l=   1 prim: BOOLEAN           :255
 3404:d=9  hl=2 l=   5 prim: OCTET STRING      [HEX DUMP]:30030101FF
 3411:d=8  hl=2 l=  14 cons: SEQUENCE

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 109



 3413:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Key Usage
 3418:d=9  hl=2 l=   1 prim: BOOLEAN           :255
 3421:d=9  hl=2 l=   4 prim: OCTET STRING      [HEX DUMP]:03020106
 3427:d=8  hl=2 l=  29 cons: SEQUENCE
 3429:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Subject Key Ident
 3434:d=9  hl=2 l=  22 prim: OCTET STRING      [HEX DUMP]:0414B9A5F6CB11
 3458:d=8  hl=2 l=  31 cons: SEQUENCE
 3460:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Authority Key Ide
 3465:d=9  hl=2 l=  24 prim: OCTET STRING      [HEX DUMP]:30168014B9A5F6
 3491:d=5  hl=2 l=  10 cons: SEQUENCE
 3493:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 3503:d=5  hl=2 l= 103 prim: BIT STRING
 3608:d=3  hl=4 l= 331 cons: SET
 3612:d=4  hl=4 l= 327 cons: SEQUENCE
 3616:d=5  hl=2 l=   1 prim: INTEGER           :01
 3619:d=5  hl=2 l= 117 cons: SEQUENCE
 3621:d=6  hl=2 l= 109 cons: SEQUENCE
 3623:d=7  hl=2 l=  18 cons: SET
 3625:d=8  hl=2 l=  16 cons: SEQUENCE
 3627:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 3639:d=9  hl=2 l=   2 prim: IA5STRING         :ca
 3643:d=7  hl=2 l=  25 cons: SET
 3645:d=8  hl=2 l=  23 cons: SEQUENCE
 3647:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 3659:d=9  hl=2 l=   9 prim: IA5STRING         :sandelman
 3670:d=7  hl=2 l=  60 cons: SET
 3672:d=8  hl=2 l=  58 cons: SEQUENCE
 3674:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 3679:d=9  hl=2 l=  51 prim: UTF8STRING        :fountain-test.example.co
 3732:d=6  hl=2 l=   4 prim: INTEGER           :3F989B52
 3738:d=5  hl=2 l=  11 cons: SEQUENCE
 3740:d=6  hl=2 l=   9 prim: OBJECT            :sha256
 3751:d=5  hl=2 l= 105 cons: cont [ 0 ]
 3753:d=6  hl=2 l=  24 cons: SEQUENCE
 3755:d=7  hl=2 l=   9 prim: OBJECT            :contentType
 3766:d=7  hl=2 l=  11 cons: SET
 3768:d=8  hl=2 l=   9 prim: OBJECT            :pkcs7-data
 3779:d=6  hl=2 l=  28 cons: SEQUENCE
 3781:d=7  hl=2 l=   9 prim: OBJECT            :signingTime
 3792:d=7  hl=2 l=  15 cons: SET
 3794:d=8  hl=2 l=  13 prim: UTCTIME           :210413214323Z
 3809:d=6  hl=2 l=  47 cons: SEQUENCE
 3811:d=7  hl=2 l=   9 prim: OBJECT            :messageDigest
 3822:d=7  hl=2 l=  34 cons: SET
 3824:d=8  hl=2 l=  32 prim: OCTET STRING      [HEX DUMP]:49CEADD5A3946E
 3858:d=5  hl=2 l=  10 cons: SEQUENCE
 3860:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 3870:d=5  hl=2 l=  71 prim: OCTET STRING      [HEX DUMP]:3045022100C84E

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 110



The JSON contained in the voucher-request. Note that the previous voucher-request is in the
prior-signed-voucher-request attribute.

{"ietf-voucher-request:voucher":{"assertion":"proximity","cr
eated-on":"2021-04-13T21:43:23.787Z","serial-number":"00-D0-
E5-F2-00-02","nonce":"-_XE9zK9q8Ll1qylMtLKeg","prior-signed-
voucher-request":"MIIGcAYJKoZIhvcNAQcCoIIGYTCCBl0CAQExDTALBg
lghkgBZQMEAgEwggOJBgkqhkiG9w0BBwGgggN6BIIDdnsiaWV0Zi12b3VjaG
VyLXJlcXVlc3Q6dm91Y2hlciI6eyJhc3NlcnRpb24iOiJwcm94aW1pdHkiLC
JjcmVhdGVkLW9uIjoiMjAyMS0wNC0xM1QxNzo0MzoyMy43NDctMDQ6MDAiLC
JzZXJpYWwtbnVtYmVyIjoiMDAtRDAtRTUtRjItMDAtMDIiLCJub25jZSI6Ii
1fWEU5eks5cThMbDFxeWxNdExLZWciLCJwcm94aW1pdHktcmVnaXN0cmFyLW
NlcnQiOiJNSUlCL0RDQ0FZS2dBd0lCQWdJRVA1aWJVakFLQmdncWhrak9QUV
FEQWpCdE1SSXdFQVlLQ1pJbWlaUHlMR1FCR1JZQ1kyRXhHVEFYQmdvSmtpYU
prL0lzWkFFWkZnbHpZVzVrWld4dFlXNHhQREE2QmdOVkJBTU1NMlp2ZFc1MF
lXbHVMWFJsYzNRdVpYaGhiWEJzWlM1amIyMGdWVzV6ZEhKMWJtY2dSbTkxYm
5SaGFXNGdVbTl2ZENCRFFUQWVGdzB5TURBeU1qVXlNVE14TlRSYUZ3MHlNak
F5TWpReU1UTXhOVFJhTUZNeEVqQVFCZ29Ka2lhSmsvSXNaQUVaRmdKallURV
pNQmNHQ2dtU0pvbVQ4aXhrQVJrV0NYTmhibVJsYkcxaGJqRWlNQ0FHQTFVRU
F3d1pabTkxYm5SaGFXNHRkR1Z6ZEM1bGVHRnRjR3hsTG1OdmJUQlpNQk1HQn
lxR1NNNDlBZ0VHQ0NxR1NNNDlBd0VIQTBJQUJKWmxVSEkwdXAvbDNlWmY5dk
NCYitsSW5vRU1FZ2M3Um8rWFpDdGpBSTBDRDFmSmZKUi9oSXl5RG1IV3lZaU
5GYlJDSDlmeWFyZmt6Z1g0cDB6VGl6cWpLakFvTUJZR0ExVWRKUUVCL3dRTU
1Bb0dDQ3NHQVFVRkJ3TWNNQTRHQTFVZER3RUIvd1FFQXdJSGdEQUtCZ2dxaG
tqT1BRUURBZ05vQURCbEFqQm1UMkJNVlVnZWxnZjQzUis1eUJLTlJUYUhteV
BBdkx2eHl6MG1GVlp2WHgrLzFSd09hZ212RzNhWG1Sa2ovWDRDTVFDOHJNTk
JzTG9OcjFMNW5HNTZmd0FkSThoaUFXRzhTOFhBUjVrMUNneDNZVVFCU2dkU2
NGY0FkZisrQnc2WXkrVT0ifX2gggGyMIIBrjCCATWgAwIBAgIEDYOv2TAKBg
gqhkjOPQQDAjAmMSQwIgYDVQQDDBtoaWdod2F5LXRlc3QuZXhhbXBsZS5jb2
0gQ0EwIBcNMjEwNDEzMjAzNzM5WhgPMjk5OTEyMzEwMDAwMDBaMBwxGjAYBg
NVBAUMETAwLUQwLUU1LUYyLTAwLTAyMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQ
cDQgAEA6N1Q4ezfMAKmoecrfb0OBMc1AyEH+BATkF58FsTSyBxs0SbSWLxFj
DOuwB9gLGn2TsTUJumJ6VPw5Z/TP4hJ6NZMFcwHQYDVR0OBBYEFEWIzJaWAG
Q3sLojZWRkVAgGbFatMAkGA1UdEwQCMAAwKwYIKwYBBQUHASAEHxYdaGlnaH
dheS10ZXN0LmV4YW1wbGUuY29tOjk0NDMwCgYIKoZIzj0EAwIDZwAwZAIwTm
lG8sXkKGNbwbKQcYMapFbmSbnHHURFUoFuRqvbgYX7FlXpBczfwF2kllNuuj
igAjAow1kc4r55EmiH+OMEXjBNlWlBSZC5QuJjEf0Jsmxssc+pucjOJ4Shqn
exMEy7bjAxggEEMIIBAAIBATAuMCYxJDAiBgNVBAMMG2hpZ2h3YXktdGVzdC
5leGFtcGxlLmNvbSBDQQIEDYOv2TALBglghkgBZQMEAgGgaTAYBgkqhkiG9w
0BCQMxCwYJKoZIhvcNAQcBMBwGCSqGSIb3DQEJBTEPFw0yMTA0MTMyMTQzMj
NaMC8GCSqGSIb3DQEJBDEiBCBJwhyYibIjeqeR3bOaLURzMlGrc3F2X+kvJ1
errtoCtTAKBggqhkjOPQQDAgRHMEUCIQCmYuCE61HFQXH/E16GDOCsVquDtg
r+Q/6/Du/9QkzA7gIgf7MFhAIPW2PNwRa2vZFQAKXUbimkiHKzXBA8md0VHb
U="}}

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 111



C.2.3. MASA to Registrar 
The MASA will return a voucher to the registrar, which is to be relayed to the pledge.

<CODE BEGINS> file "voucher_00-D0-E5-F2-00-02.b64"

MIIGIgYJKoZIhvcNAQcCoIIGEzCCBg8CAQExDTALBglghkgBZQMEAgEwggN4BgkqhkiG
9w0BBwGgggNpBIIDZXsiaWV0Zi12b3VjaGVyOnZvdWNoZXIiOnsiYXNzZXJ0aW9uIjoi
bG9nZ2VkIiwiY3JlYXRlZC1vbiI6IjIwMjEtMDQtMTNUMTc6NDM6MjQuNTg5LTA0OjAw
Iiwic2VyaWFsLW51bWJlciI6IjAwLUQwLUU1LUYyLTAwLTAyIiwibm9uY2UiOiItX1hF
OXpLOXE4TGwxcXlsTXRMS2VnIiwicGlubmVkLWRvbWFpbi1jZXJ0IjoiTUlJQi9EQ0NB
WUtnQXdJQkFnSUVQNWliVWpBS0JnZ3Foa2pPUFFRREFqQnRNUkl3RUFZS0NaSW1pWlB5
TEdRQkdSWUNZMkV4R1RBWEJnb0praWFKay9Jc1pBRVpGZ2x6WVc1a1pXeHRZVzR4UERB
NkJnTlZCQU1NTTJadmRXNTBZV2x1TFhSbGMzUXVaWGhoYlhCc1pTNWpiMjBnVlc1emRI
SjFibWNnUm05MWJuUmhhVzRnVW05dmRDQkRRVEFlRncweU1EQXlNalV5TVRNeE5UUmFG
dzB5TWpBeU1qUXlNVE14TlRSYU1GTXhFakFRQmdvSmtpYUprL0lzWkFFWkZnSmpZVEVa
TUJjR0NnbVNKb21UOGl4a0FSa1dDWE5oYm1SbGJHMWhiakVpTUNBR0ExVUVBd3daWm05
MWJuUmhhVzR0ZEdWemRDNWxlR0Z0Y0d4bExtTnZiVEJaTUJNR0J5cUdTTTQ5QWdFR0ND
cUdTTTQ5QXdFSEEwSUFCSlpsVUhJMHVwL2wzZVpmOXZDQmIrbElub0VNRWdjN1JvK1ha
Q3RqQUkwQ0QxZkpmSlIvaEl5eURtSFd5WWlORmJSQ0g5ZnlhcmZremdYNHAwelRpenFq
S2pBb01CWUdBMVVkSlFFQi93UU1NQW9HQ0NzR0FRVUZCd01jTUE0R0ExVWREd0VCL3dR
RUF3SUhnREFLQmdncWhrak9QUVFEQWdOb0FEQmxBakJtVDJCTVZVZ2VsZ2Y0M1IrNXlC
S05SVGFIbXlQQXZMdnh5ejBtRlZadlh4Ky8xUndPYWdtdkczYVhtUmtqL1g0Q01RQzhy
TU5Cc0xvTnIxTDVuRzU2ZndBZEk4aGlBV0c4UzhYQVI1azFDZ3gzWVVRQlNnZFNjRmNB
ZGYrK0J3Nll5K1U9In19oIIBdDCCAXAwgfagAwIBAgIEC4cKMTAKBggqhkjOPQQDAjAm
MSQwIgYDVQQDDBtoaWdod2F5LXRlc3QuZXhhbXBsZS5jb20gQ0EwHhcNMjEwNDEzMjE0
MDE2WhcNMjMwNDEzMjE0MDE2WjAoMSYwJAYDVQQDDB1oaWdod2F5LXRlc3QuZXhhbXBs
ZS5jb20gTUFTQTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABKoEFaNEueJE+Mn5Gwcb
pnRznB66bKmzqTCpojJZ96AdRwFtuTCVfoKouLTBX0idIhMLfJLM31lyuKy4CUtpp6Wj
EDAOMAwGA1UdEwEB/wQCMAAwCgYIKoZIzj0EAwIDaQAwZgIxAK7LYS3UXI1uhqoLBh3G
02C6MnM2JdMjhUmHHM6UI3kankFVJB0VIqFIuwrAqzwTcwIxAIY8Z7OVouLl+a35HZzB
NDJ49c/q1UcDnwC/0FnLUcKYBIEkilETULF1si+dqLT0uTGCAQUwggEBAgEBMC4wJjEk
MCIGA1UEAwwbaGlnaHdheS10ZXN0LmV4YW1wbGUuY29tIENBAgQLhwoxMAsGCWCGSAFl
AwQCAaBpMBgGCSqGSIb3DQEJAzELBgkqhkiG9w0BBwEwHAYJKoZIhvcNAQkFMQ8XDTIx
MDQxMzIxNDMyNFowLwYJKoZIhvcNAQkEMSIEIFUUjg4WYVO+MpX122Qfk/7zm/G6/B59
HD/xrVR0lGIjMAoGCCqGSM49BAMCBEgwRgIhAOhUfxbH2dwpB2BrTDcsYSjRkCCk/WE6
Mdt+y4z5KD9IAiEAphwdIUb40A0noNIUpH7N2lTyAFZgyn1lNHTteY9DmYI=

<CODE ENDS>

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 112



The ASN1 decoding of the artifact:

file: examples/voucher_00-D0-E5-F2-00-02.b64

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 113



    0:d=0  hl=4 l=1570 cons: SEQUENCE
    4:d=1  hl=2 l=   9 prim: OBJECT            :pkcs7-signedData
   15:d=1  hl=4 l=1555 cons: cont [ 0 ]
   19:d=2  hl=4 l=1551 cons: SEQUENCE
   23:d=3  hl=2 l=   1 prim: INTEGER           :01
   26:d=3  hl=2 l=  13 cons: SET
   28:d=4  hl=2 l=  11 cons: SEQUENCE
   30:d=5  hl=2 l=   9 prim: OBJECT            :sha256
   41:d=3  hl=4 l= 888 cons: SEQUENCE
   45:d=4  hl=2 l=   9 prim: OBJECT            :pkcs7-data
   56:d=4  hl=4 l= 873 cons: cont [ 0 ]
   60:d=5  hl=4 l= 869 prim: OCTET STRING      :{"ietf-voucher:voucher":
  933:d=3  hl=4 l= 372 cons: cont [ 0 ]
  937:d=4  hl=4 l= 368 cons: SEQUENCE
  941:d=5  hl=3 l= 246 cons: SEQUENCE
  944:d=6  hl=2 l=   3 cons: cont [ 0 ]
  946:d=7  hl=2 l=   1 prim: INTEGER           :02
  949:d=6  hl=2 l=   4 prim: INTEGER           :0B870A31
  955:d=6  hl=2 l=  10 cons: SEQUENCE
  957:d=7  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
  967:d=6  hl=2 l=  38 cons: SEQUENCE
  969:d=7  hl=2 l=  36 cons: SET
  971:d=8  hl=2 l=  34 cons: SEQUENCE
  973:d=9  hl=2 l=   3 prim: OBJECT            :commonName
  978:d=9  hl=2 l=  27 prim: UTF8STRING        :highway-test.example.com
 1007:d=6  hl=2 l=  30 cons: SEQUENCE
 1009:d=7  hl=2 l=  13 prim: UTCTIME           :210413214016Z
 1024:d=7  hl=2 l=  13 prim: UTCTIME           :230413214016Z
 1039:d=6  hl=2 l=  40 cons: SEQUENCE
 1041:d=7  hl=2 l=  38 cons: SET
 1043:d=8  hl=2 l=  36 cons: SEQUENCE
 1045:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 1050:d=9  hl=2 l=  29 prim: UTF8STRING        :highway-test.example.com
 1081:d=6  hl=2 l=  89 cons: SEQUENCE
 1083:d=7  hl=2 l=  19 cons: SEQUENCE
 1085:d=8  hl=2 l=   7 prim: OBJECT            :id-ecPublicKey
 1094:d=8  hl=2 l=   8 prim: OBJECT            :prime256v1
 1104:d=7  hl=2 l=  66 prim: BIT STRING
 1172:d=6  hl=2 l=  16 cons: cont [ 3 ]
 1174:d=7  hl=2 l=  14 cons: SEQUENCE
 1176:d=8  hl=2 l=  12 cons: SEQUENCE
 1178:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Basic Constraints
 1183:d=9  hl=2 l=   1 prim: BOOLEAN           :255
 1186:d=9  hl=2 l=   2 prim: OCTET STRING      [HEX DUMP]:3000
 1190:d=5  hl=2 l=  10 cons: SEQUENCE
 1192:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 1202:d=5  hl=2 l= 105 prim: BIT STRING
 1309:d=3  hl=4 l= 261 cons: SET
 1313:d=4  hl=4 l= 257 cons: SEQUENCE
 1317:d=5  hl=2 l=   1 prim: INTEGER           :01
 1320:d=5  hl=2 l=  46 cons: SEQUENCE
 1322:d=6  hl=2 l=  38 cons: SEQUENCE
 1324:d=7  hl=2 l=  36 cons: SET
 1326:d=8  hl=2 l=  34 cons: SEQUENCE
 1328:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 1333:d=9  hl=2 l=  27 prim: UTF8STRING        :highway-test.example.com
 1362:d=6  hl=2 l=   4 prim: INTEGER           :0B870A31

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 114



Acknowledgements 
We would like to thank the various reviewers for their input, in particular , 

, , , , , , 
, , and .

Significant reviews were done by , , and .

 contributed the CDDL for the audit-log response.

This document started its life as a two-page idea from .

In addition, significant review comments were provided by many IESG members, including 
, , , , , ,

and .

 1368:d=5  hl=2 l=  11 cons: SEQUENCE
 1370:d=6  hl=2 l=   9 prim: OBJECT            :sha256
 1381:d=5  hl=2 l= 105 cons: cont [ 0 ]
 1383:d=6  hl=2 l=  24 cons: SEQUENCE
 1385:d=7  hl=2 l=   9 prim: OBJECT            :contentType
 1396:d=7  hl=2 l=  11 cons: SET
 1398:d=8  hl=2 l=   9 prim: OBJECT            :pkcs7-data
 1409:d=6  hl=2 l=  28 cons: SEQUENCE
 1411:d=7  hl=2 l=   9 prim: OBJECT            :signingTime
 1422:d=7  hl=2 l=  15 cons: SET
 1424:d=8  hl=2 l=  13 prim: UTCTIME           :210413214324Z
 1439:d=6  hl=2 l=  47 cons: SEQUENCE
 1441:d=7  hl=2 l=   9 prim: OBJECT            :messageDigest
 1452:d=7  hl=2 l=  34 cons: SET
 1454:d=8  hl=2 l=  32 prim: OCTET STRING      [HEX DUMP]:55148E0E166153
 1488:d=5  hl=2 l=  10 cons: SEQUENCE
 1490:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 1500:d=5  hl=2 l=  72 prim: OCTET STRING      [HEX DUMP]:3046022100E854

William Atwood
Brian Carpenter Fuyu Eleven Eliot Lear Sergey Kasatkin Anoop Kumar Tom Petch Markus
Stenberg Peter van der Stok Thomas Werner

Jari Arkko Christian Huitema Russ Housley

Henk Birkholz

Steinthor Bjarnason

Adam Roach Alexey Melnikov Alissa Cooper Benjamin Kaduk Éric Vyncke Roman Danyliw
Magnus Westerlund

Authors' Addresses 
Max Pritikin
Cisco

 pritikin@cisco.com Email:

Michael C. Richardson
Sandelman Software Works

 mcr+ietf@sandelman.ca Email:
 http://www.sandelman.ca/ URI:

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 115

mailto:pritikin@cisco.com
mailto:mcr+ietf@sandelman.ca
http://www.sandelman.ca/


Toerless Eckert
Futurewei Technologies Inc. USA
2330 Central Expy

,   Santa Clara CA 95050
United States of America

 tte+ietf@cs.fau.de Email:

Michael H. Behringer
 Michael.H.Behringer@gmail.com Email:

Kent Watsen
Watsen Networks

 kent+ietf@watsen.net Email:

RFC 8995 BRSKI May 2021

Pritikin, et al. Standards Track Page 116

mailto:tte+ietf@cs.fau.de
mailto:Michael.H.Behringer@gmail.com
mailto:kent+ietf@watsen.net

	RFC 8995
	Bootstrapping Remote Secure Key Infrastructure (BRSKI)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Prior Bootstrapping Approaches
	1.2. Terminology
	1.3. Scope of Solution
	1.3.1. Support Environment
	1.3.2. Constrained Environments
	1.3.3. Network Access Controls
	1.3.4. Bootstrapping is Not Booting

	1.4. Leveraging the New Key Infrastructure / Next Steps
	1.5. Requirements for Autonomic Networking Infrastructure (ANI) Devices

	2. Architectural Overview
	2.1. Behavior of a Pledge
	2.2. Secure Imprinting Using Vouchers
	2.3. Initial Device Identifier
	2.3.1. Identification of the Pledge
	2.3.2. MASA URI Extension

	2.4. Protocol Flow
	2.5. Architectural Components
	2.5.1. Pledge
	2.5.2. Join Proxy
	2.5.3. Domain Registrar
	2.5.4. Manufacturer Service
	2.5.5. Public Key Infrastructure (PKI)

	2.6. Certificate Time Validation
	2.6.1. Lack of Real-Time Clock
	2.6.2. Infinite Lifetime of IDevID

	2.7. Cloud Registrar
	2.8. Determining the MASA to Contact

	3. Voucher-Request Artifact
	3.1. Nonceless Voucher-Requests
	3.2. Tree Diagram
	3.3. Examples
	3.4. YANG Module

	4. Proxying Details (Pledge -- Proxy -- Registrar)
	4.1. Pledge Discovery of Proxy
	4.1.1. Proxy GRASP Announcements

	4.2. CoAP Connection to Registrar
	4.3. Proxy Discovery and Communication of Registrar

	5. Protocol Details (Pledge -- Registrar -- MASA)
	5.1. BRSKI-EST TLS Establishment Details
	5.2. Pledge Requests Voucher from the Registrar
	5.3. Registrar Authorization of Pledge
	5.4. BRSKI-MASA TLS Establishment Details
	5.4.1. MASA Authentication of Customer Registrar

	5.5. Registrar Requests Voucher from MASA
	5.5.1. MASA Renewal of Expired Vouchers
	5.5.2. MASA Pinning of Registrar
	5.5.3. MASA Check of the Voucher-Request Signature
	5.5.4. MASA Verification of the Domain Registrar
	5.5.5. MASA Verification of the Pledge 'prior-signed-voucher-request'
	5.5.6. MASA Nonce Handling

	5.6. MASA and Registrar Voucher Response
	5.6.1. Pledge Voucher Verification
	5.6.2. Pledge Authentication of Provisional TLS Connection

	5.7. Pledge BRSKI Status Telemetry
	5.8. Registrar Audit-Log Request
	5.8.1. MASA Audit-Log Response
	5.8.2. Calculation of domainID
	5.8.3. Registrar Audit-Log Verification

	5.9. EST Integration for PKI Bootstrapping
	5.9.1. EST Distribution of CA Certificates
	5.9.2. EST CSR Attributes
	5.9.3. EST Client Certificate Request
	5.9.4. Enrollment Status Telemetry
	5.9.5. Multiple Certificates
	5.9.6. EST over CoAP


	6. Clarification of Transfer-Encoding
	7. Reduced Security Operational Modes
	7.1. Trust Model
	7.2. Pledge Security Reductions
	7.3. Registrar Security Reductions
	7.4. MASA Security Reductions
	7.4.1. Issuing Nonceless Vouchers
	7.4.2. Trusting Owners on First Use
	7.4.3. Updating or Extending Voucher Trust Anchors


	8. IANA Considerations
	8.1. The IETF XML Registry
	8.2. YANG Module Names Registry
	8.3. BRSKI Well-Known Considerations
	8.3.1. BRSKI .well-known Registration
	8.3.2. BRSKI .well-known Registry

	8.4. PKIX Registry
	8.5. Pledge BRSKI Status Telemetry
	8.6. DNS Service Names
	8.7. GRASP Objective Names

	9. Applicability to the Autonomic Control Plane (ACP)
	9.1. Operational Requirements
	9.1.1. MASA Operational Requirements
	9.1.2. Domain Owner Operational Requirements
	9.1.3. Device Operational Requirements


	10. Privacy Considerations
	10.1. MASA Audit-Log
	10.2. What BRSKI-EST Reveals
	10.3. What BRSKI-MASA Reveals to the Manufacturer
	10.4. Manufacturers and Used or Stolen Equipment
	10.5. Manufacturers and Grey Market Equipment
	10.6. Some Mitigations for Meddling by Manufacturers
	10.7. Death of a Manufacturer

	11. Security Considerations
	11.1. Denial of Service (DoS) against MASA
	11.2. DomainID Must Be Resistant to Second-Preimage Attacks
	11.3. Availability of Good Random Numbers
	11.4. Freshness in Voucher-Requests
	11.5. Trusting Manufacturers
	11.6. Manufacturer Maintenance of Trust Anchors
	11.6.1. Compromise of Manufacturer IDevID Signing Keys
	11.6.2. Compromise of MASA Signing Keys
	11.6.2.1. Attacker Opportunities with a Compromised MASA Key
	11.6.2.2. Risks after Key Compromise is Known

	11.6.3. Compromise of MASA Web Service

	11.7. YANG Module Security Considerations

	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. IPv4 and Non-ANI Operations
	A.1. IPv4 Link-Local Addresses
	A.2. Use of DHCPv4
	Appendix B. mDNS / DNS-SD Proxy Discovery Options
	Appendix C. Example Vouchers
	C.1. Keys Involved
	C.1.1. Manufacturer Certification Authority for IDevID Signatures
	C.1.2. MASA Key Pair for Voucher Signatures
	C.1.3. Registrar Certification Authority
	C.1.4. Registrar Key Pair
	C.1.5. Pledge Key Pair

	C.2. Example Process
	C.2.1. Pledge to Registrar
	C.2.2. Registrar to MASA
	C.2.3. MASA to Registrar
	Acknowledgements

	Authors' Addresses


