
RFC 9043
FFV1 Video Coding Format Versions 0, 1, and 3

Abstract
This document defines FFV1, a lossless, intra-frame video encoding format. FFV1 is designed to
efficiently compress video data in a variety of pixel formats. Compared to uncompressed video,
FFV1 offers storage compression, frame fixity, and self-description, which makes FFV1 useful as a
preservation or intermediate video format.

Stream: Internet Engineering Task Force (IETF)
RFC: 9043
Category: Informational
Published: August 2021
ISSN: 2070-1721
Authors: M. Niedermayer D. Rice J. Martinez

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not all documents approved by
the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9043

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Niedermayer, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9043
https://www.rfc-editor.org/info/rfc9043
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Notation and Conventions

2.1. Definitions

2.2. Conventions

2.2.1. Pseudocode

2.2.2. Arithmetic Operators

2.2.3. Assignment Operators

2.2.4. Comparison Operators

2.2.5. Mathematical Functions

2.2.6. Order of Operation Precedence

2.2.7. Range

2.2.8. NumBytes

2.2.9. Bitstream Functions

3. Sample Coding

3.1. Border

3.2. Samples

3.3. Median Predictor

3.3.1. Exception

3.4. Quantization Table Sets

3.5. Context

3.6. Quantization Table Set Indexes

3.7. Color Spaces

3.7.1. YCbCr

3.7.2. RGB

3.8. Coding of the Sample Difference

3.8.1. Range Coding Mode

3.8.2. Golomb Rice Mode

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 2

4. Bitstream

4.1. Quantization Table Set

4.1.1. quant_tables

4.1.2. context_count

4.2. Parameters

4.2.1. version

4.2.2. micro_version

4.2.3. coder_type

4.2.4. state_transition_delta

4.2.5. colorspace_type

4.2.6. chroma_planes

4.2.7. bits_per_raw_sample

4.2.8. log2_h_chroma_subsample

4.2.9. log2_v_chroma_subsample

4.2.10. extra_plane

4.2.11. num_h_slices

4.2.12. num_v_slices

4.2.13. quant_table_set_count

4.2.14. states_coded

4.2.15. initial_state_delta

4.2.16. ec

4.2.17. intra

4.3. Configuration Record

4.3.1. reserved_for_future_use

4.3.2. configuration_record_crc_parity

4.3.3. Mapping FFV1 into Containers

4.4. Frame

4.5. Slice

4.6. Slice Header

4.6.1. slice_x

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 3

4.6.2. slice_y

4.6.3. slice_width

4.6.4. slice_height

4.6.5. quant_table_set_index_count

4.6.6. quant_table_set_index

4.6.7. picture_structure

4.6.8. sar_num

4.6.9. sar_den

4.7. Slice Content

4.7.1. primary_color_count

4.7.2. plane_pixel_height

4.7.3. slice_pixel_height

4.7.4. slice_pixel_y

4.8. Line

4.8.1. plane_pixel_width

4.8.2. slice_pixel_width

4.8.3. slice_pixel_x

4.8.4. sample_difference

4.9. Slice Footer

4.9.1. slice_size

4.9.2. error_status

4.9.3. slice_crc_parity

5. Restrictions

6. Security Considerations

7. IANA Considerations

7.1. Media Type Definition

8. References

8.1. Normative References

8.2. Informative References

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 4

Appendix A. Multithreaded Decoder Implementation Suggestions

Appendix B. Future Handling of Some Streams Created by Nonconforming Encoders

Appendix C. FFV1 Implementations

C.1. FFmpeg FFV1 Codec

C.2. FFV1 Decoder in Go

C.3. MediaConch

Authors' Addresses

1. Introduction
This document describes FFV1, a lossless video encoding format. The design of FFV1 considers
the storage of image characteristics, data fixity, and the optimized use of encoding time and
storage requirements. FFV1 is designed to support a wide range of lossless video applications
such as long-term audiovisual preservation, scientific imaging, screen recording, and other video
encoding scenarios that seek to avoid the generational loss of lossy video encodings.

This document defines versions 0, 1, and 3 of FFV1. The distinctions of the versions are provided
throughout the document, but in summary:

Version 0 of FFV1 was the original implementation of FFV1 and was flagged as stable on
April 14, 2006 .
Version 1 of FFV1 adds support of more video bit depths and was flagged as stable on April
24, 2009 .
Version 2 of FFV1 only existed in experimental form and is not described by this document,
but it is available as a LyX file at

.
Version 3 of FFV1 adds several features such as increased description of the characteristics
of the encoding images and embedded Cyclic Redundancy Check (CRC) data to support fixity
verification of the encoding. Version 3 was flagged as stable on August 17, 2013 .

This document assumes familiarity with mathematical and coding concepts such as Range
encoding and YCbCr color spaces .

This specification describes the valid bitstream and how to decode it. Nonconformant bitstreams
and the nonconformant handling of bitstreams are outside this specification. A decoder can
perform any action that it deems appropriate for an invalid bitstream: reject the bitstream,
attempt to perform error concealment, or re-download or use a redundant copy of the invalid
part.

•
[FFV1_V0]

•
[FFV1_V1]

•
<https://github.com/FFmpeg/FFV1/

blob/8ad772b6d61c3dd8b0171979a2cd9f11924d5532/ffv1.lyx>
•

[FFV1_V3]

[Range-Encoding] [YCbCr]

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 5

https://github.com/FFmpeg/FFV1/blob/8ad772b6d61c3dd8b0171979a2cd9f11924d5532/ffv1.lyx
https://github.com/FFmpeg/FFV1/blob/8ad772b6d61c3dd8b0171979a2cd9f11924d5532/ffv1.lyx

2. Notation and Conventions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

FFV1:

Container:

Sample:

Symbol:

Line:

Plane:

Pixel:

MSB:

VLC:

RGB:

YCbCr:

2.1. Definitions

The chosen name of this video encoding format, which is the short version of "FF Video
1". The letters "FF" come from "FFmpeg", which is the name of the reference decoder whose
first letters originally meant "Fast Forward".

A format that encapsulates Frames (see Section 4.4) and (when required) a
Configuration Record into a bitstream.

The smallest addressable representation of a color component or a luma component in
a Frame. Examples of Sample are Luma (Y), Blue-difference Chroma (Cb), Red-difference
Chroma (Cr), Transparency, Red, Green, and Blue.

A value stored in the bitstream, which is defined and decoded through one of the
methods described in Table 4.

A discrete component of a static image composed of Samples that represent a specific
quantification of Samples of that image.

A discrete component of a static image composed of Lines that represent a specific
quantification of Lines of that image.

The smallest addressable representation of a color in a Frame. It is composed of one or
more Samples.

Most Significant Bit, the bit that can cause the largest change in magnitude of the symbol.

Variable Length Code, a code that maps source symbols to a variable number of bits.

A reference to the method of storing the value of a pixel by using three numeric values
that represent Red, Green, and Blue.

A reference to the method of storing the value of a pixel by using three numeric values
that represent the luma of the pixel (Y) and the chroma of the pixel (Cb and Cr). The term
YCbCr is used for historical reasons and currently references any color space relying on one
luma Sample and two chroma Samples, e.g., YCbCr (luma, blue-difference chroma, red-
difference chroma), YCgCo, or ICtCp (intensity, blue-yellow, red-green).

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 6

2.2. Conventions
2.2.1. Pseudocode

The FFV1 bitstream is described in this document using pseudocode. Note that the pseudocode is
used to illustrate the structure of FFV1 and is not intended to specify any particular
implementation. The pseudocode used is based upon the C programming language

 and uses its if/else, while, and for keywords as well as functions defined
within this document.

In some instances, pseudocode is presented in a two-column format such as shown in Figure 1. In
this form, the type column provides a symbol as defined in Table 4 that defines the storage of the
data referenced in that same line of pseudocode.

[ISO.9899.2018]

Figure 1: A depiction of type-labeled pseudocode used within this document.

pseudocode	type
ExamplePseudoCode() { |
 value | ur
} |

2.2.2. Arithmetic Operators

Note: the operators and the order of precedence are the same as used in the C programming
language , with the exception of >> (removal of implementation-defined
behavior) and ^ (power instead of XOR) operators, which are redefined within this section.

a + b means a plus b.

a - b means a minus b.

-a means negation of a.

a * b means a multiplied by b.

a / b means a divided by b.

a ^ b means a raised to the b-th power.

a & b means bitwise "and" of a and b.

a | b means bitwise "or" of a and b.

a >> b means arithmetic right shift of the two's complement integer representation of a by b
binary digits. This is equivalent to dividing a by 2, b times, with rounding toward negative
infinity.

[ISO.9899.2018]

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 7

a << b means arithmetic left shift of the two's complement integer representation of a by b
binary digits.

2.2.3. Assignment Operators

a = b means a is assigned b.

a++ is equivalent to a is assigned a + 1.

a-- is equivalent to a is assigned a - 1.

a += b is equivalent to a is assigned a + b.

a -= b is equivalent to a is assigned a - b.

a *= b is equivalent to a is assigned a * b.

2.2.4. Comparison Operators

a > b is true when a is greater than b.

a >= b is true when a is greater than or equal to b.

a < b is true when a is less than b.

a <= b is true when a is less than or equal b.

a == b is true when a is equal to b.

a != b is true when a is not equal to b.

a && b is true when both a is true and b is true.

a || b is true when either a is true or b is true.

!a is true when a is not true.

a ? b : c if a is true, then b, otherwise c.

2.2.5. Mathematical Functions

floor(a) means the largest integer less than or equal to a.

ceil(a) means the smallest integer greater than or equal to a.

sign(a) extracts the sign of a number, i.e., if a < 0 then -1, else if a > 0 then 1, else 0.

abs(a) means the absolute value of a, i.e., abs(a) = sign(a) * a.

log2(a) means the base-two logarithm of a.

min(a,b) means the smaller of two values a and b.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 8

max(a,b) means the larger of two values a and b.

median(a,b,c) means the numerical middle value in a data set of a, b, and c, i.e., a+b+c-min
(a,b,c)-max(a,b,c).

a ==> b means a implies b.

a <==> b means a ==> b, b ==> a.

ab means the b-th value of a sequence of a.

ab,c means the 'b,c'-th value of a sequence of a.

2.2.6. Order of Operation Precedence

When order of precedence is not indicated explicitly by use of parentheses, operations are
evaluated in the following order (from top to bottom, operations of same precedence being
evaluated from left to right). This order of operations is based on the order of operations used in
Standard C.

a++, a--
!a, -a
a ^ b
a * b, a / b
a + b, a - b
a << b, a >> b
a < b, a <= b, a > b, a >= b
a == b, a != b
a & b
a | b
a && b
a || b
a ? b : c
a = b, a += b, a -= b, a *= b

2.2.7. Range

a...b means any value from a to b, inclusive.

2.2.8. NumBytes

NumBytes is a nonnegative integer that expresses the size in 8-bit octets of a particular FFV1
Configuration Record or Frame. FFV1 relies on its container to store the NumBytes values; see
Section 4.3.3.

2.2.9. Bitstream Functions

2.2.9.1. remaining_bits_in_bitstream
remaining_bits_in_bitstream(NumBytes) means the count of remaining bits after the
pointer in that Configuration Record or Frame. It is computed from the NumBytes value
multiplied by 8 minus the count of bits of that Configuration Record or Frame already read by
the bitstream parser.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 9

2.2.9.2. remaining_symbols_in_syntax
remaining_symbols_in_syntax() is true as long as the range coder has not consumed all the
given input bytes.

2.2.9.3. byte_aligned
byte_aligned() is true if remaining_bits_in_bitstream(NumBytes) is a multiple of 8,
otherwise false.

2.2.9.4. get_bits
get_bits(i) is the action to read the next i bits in the bitstream, from most significant bit to
least significant bit, and to return the corresponding value. The pointer is increased by i.

3. Sample Coding
For each Slice (as described in Section 4.5) of a Frame, the Planes, Lines, and Samples are coded
in an order determined by the color space (see Section 3.7). Each Sample is predicted by the
median predictor as described in Section 3.3 from other Samples within the same Plane, and the
difference is stored using the method described in Section 3.8.

3.1. Border
A border is assumed for each coded Slice for the purpose of the median predictor and context
according to the following rules:

One column of Samples to the left of the coded Slice is assumed as identical to the Samples of
the leftmost column of the coded Slice shifted down by one row. The value of the topmost
Sample of the column of Samples to the left of the coded Slice is assumed to be 0.
One column of Samples to the right of the coded Slice is assumed as identical to the Samples
of the rightmost column of the coded Slice.
An additional column of Samples to the left of the coded Slice and two rows of Samples
above the coded Slice are assumed to be 0.

Figure 2 depicts a Slice of nine Samples a,b,c,d,e,f,g,h,i in a three-by-three arrangement
along with its assumed border.

•

•

•

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 10

Figure 2: A depiction of FFV1's assumed border for a set of example Samples.

+---+---+---+---+---+---+---+---+
| 0 | 0 | | 0 | 0 | 0 | | 0 |
+---+---+---+---+---+---+---+---+
| 0 | 0 | | 0 | 0 | 0 | | 0 |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| 0 | 0 | | a | b | c | | c |
+---+---+---+---+---+---+---+---+
| 0 | a | | d | e | f | | f |
+---+---+---+---+---+---+---+---+
| 0 | d | | g | h | i | | i |
+---+---+---+---+---+---+---+---+

3.2. Samples
Relative to any Sample X, six other relatively positioned Samples from the coded Samples and
presumed border are identified according to the labels used in Figure 3. The labels for these
relatively positioned Samples are used within the median predictor and context.

The labels for these relative Samples are made of the first letters of the words Top, Left, and
Right.

Figure 3: A depiction of how relatively positioned Samples are referenced within this document.

+---+---+---+---+
| | | T | |
+---+---+---+---+
| |tl | t |tr |
+---+---+---+---+
| L | l | X | |
+---+---+---+---+

3.3. Median Predictor
The prediction for any Sample value at position X may be computed based upon the relative
neighboring values of l, t, and tl via this equation:

Note that this prediction template is also used in and .

median(l, t, l + t - tl)

[ISO.14495-1.1999] [HuffYUV]

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 11

3.3.1. Exception

If colorspace_type == 0 && bits_per_raw_sample == 16 && (coder_type == 1 ||
coder_type == 2) (see Sections 4.2.5, 4.2.7, and 4.2.3), the following median predictor be
used:

where:

Background: a two's complement 16-bit signed integer was used for storing Sample values in all
known implementations of FFV1 bitstream (see Appendix C). So in some circumstances, the most
significant bit was wrongly interpreted (used as a sign bit instead of the 16th bit of an unsigned
integer). Note that when the issue was discovered, the only impacted configuration of all known
implementations was the 16-bit YCbCr with no pixel transformation and with the range coder
coder type, as the other potentially impacted configurations (e.g., the 15/16-bit JPEG 2000
Reversible Color Transform (RCT) with range coder or the 16-bit content with
the Golomb Rice coder type) were not implemented. Meanwhile, the 16-bit JPEG 2000 RCT with
range coder was deployed without this issue in one implementation and validated by one
conformance checker. It is expected (to be confirmed) that this exception for the median
predictor will be removed in the next version of the FFV1 bitstream.

MUST

median(left16s, top16s, left16s + top16s - diag16s)

left16s = l >= 32768 ? (l - 65536) : l
top16s = t >= 32768 ? (t - 65536) : t
diag16s = tl >= 32768 ? (tl - 65536) : tl

[ISO.15444-1.2019]

3.4. Quantization Table Sets
Quantization Tables are used on Sample Differences (see Section 3.8), so Quantized Sample
Differences are stored in the bitstream.

The FFV1 bitstream contains one or more Quantization Table Sets. Each Quantization Table Set
contains exactly five Quantization Tables with each Quantization Table corresponding to one of
the five Quantized Sample Differences. For each Quantization Table, both the number of
quantization steps and their distribution are stored in the FFV1 bitstream; each Quantization
Table has exactly 256 entries, and the eight least significant bits of the Quantized Sample
Difference are used as an index:

In this formula, i is the Quantization Table Set index, j is the Quantized Table index, and k is the
Quantized Sample Difference (see Section 4.1.1).

Figure 4: Description of the mapping from sample differences to the corresponding Quantized
Sample Differences.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 12

3.5. Context
Relative to any Sample X, the Quantized Sample Differences L-l, l-tl, tl-t, T-t, and t-tr are
used as context:

If context >= 0 then context is used, and the difference between the Sample and its predicted
value is encoded as is; else -context is used, and the difference between the Sample and its
predicted value is encoded with a flipped sign.

Figure 5: Description of the computing of the Context.

3.6. Quantization Table Set Indexes
For each Plane of each Slice, a Quantization Table Set is selected from an index:

For Y Plane, quant_table_set_index[0] index is used.
For Cb and Cr Planes, quant_table_set_index[1] index is used.
For extra Plane, quant_table_set_index[(version <= 3 || chroma_planes) ? 2 : 1]
index is used.

Background: in the first implementations of the FFV1 bitstream, the index for Cb and Cr Planes
was stored even if it was not used (chroma_planes set to 0), this index is kept for version <= 3
in order to keep compatibility with FFV1 bitstreams in the wild.

•
•
•

3.7. Color Spaces
FFV1 supports several color spaces. The count of allowed coded Planes and the meaning of the
extra Plane are determined by the selected color space.

The FFV1 bitstream interleaves data in an order determined by the color space. In YCbCr for each
Plane, each Line is coded from top to bottom, and for each Line, each Sample is coded from left to
right. In JPEG 2000 RCT for each Line from top to bottom, each Plane is coded, and for each Plane,
each Sample is encoded from left to right.

3.7.1. YCbCr

This color space allows one to four Planes.

The Cb and Cr Planes are optional, but if they are used, then they be used together.
Omitting the Cb and Cr Planes codes the frames in gray scale without color data.

An optional transparency Plane can be used to code transparency data.

MUST

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 13

An FFV1 Frame using YCbCr use one of the following arrangements:

Y
Y, Transparency
Y, Cb, Cr
Y, Cb, Cr, Transparency

The Y Plane be coded first. If the Cb and Cr Planes are used, then they be coded after
the Y Plane. If a transparency Plane is used, then it be coded last.

MUST

•
•
•
•

MUST MUST
MUST

3.7.2. RGB

This color space allows three or four Planes.

An optional transparency Plane can be used to code transparency data.

JPEG 2000 RCT is a Reversible Color Transform that codes RGB (Red, Green, Blue) Planes
losslessly in a modified YCbCr color space . Reversible pixel transformations
between YCbCr and RGB use the following formulae:

Cb and Cr are positively offset by 1 << bits_per_raw_sample after the conversion from RGB to
the modified YCbCr, and they are negatively offset by the same value before the conversion from
the modified YCbCr to RGB in order to have only nonnegative values after the conversion.

When FFV1 uses the JPEG 2000 RCT, the horizontal Lines are interleaved to improve caching
efficiency since it is most likely that the JPEG 2000 RCT will immediately be converted to RGB
during decoding. The interleaved coding order is also Y, then Cb, then Cr, and then, if used,
transparency.

[ISO.15444-1.2019]

Figure 6: Description of the transformation of pixels from RGB color space to coded, modified YCbCr
color space.

Figure 7: Description of the transformation of pixels from coded, modified YCbCr color space to RGB
color space.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 14

As an example, a Frame that is two pixels wide and two pixels high could comprise the following
structure:

In JPEG 2000 RCT, the coding order is left to right and then top to bottom, with values interleaved
by Lines and stored in this order:

Y(1,1) Y(2,1) Cb(1,1) Cb(2,1) Cr(1,1) Cr(2,1) Y(1,2) Y(2,2) Cb(1,2) Cb(2,2) Cr(1,2) Cr(2,2)

+------------------------+------------------------+
| Pixel(1,1) | Pixel(2,1) |
| Y(1,1) Cb(1,1) Cr(1,1) | Y(2,1) Cb(2,1) Cr(2,1) |
+------------------------+------------------------+
| Pixel(1,2) | Pixel(2,2) |
| Y(1,2) Cb(1,2) Cr(1,2) | Y(2,2) Cb(2,2) Cr(2,2) |
+------------------------+------------------------+

3.7.2.1. RGB Exception
If bits_per_raw_sample is between 9 and 15 inclusive and extra_plane is 0, the following
formulae for reversible conversions between YCbCr and RGB be used instead of the ones
above:

Background: At the time of this writing, in all known implementations of the FFV1 bitstream,
when bits_per_raw_sample was between 9 and 15 inclusive and extra_plane was 0, Green
Blue Red (GBR) Planes were used as Blue Green Red (BGR) Planes during both encoding and
decoding. Meanwhile, 16-bit JPEG 2000 RCT was implemented without this issue in one
implementation and validated by one conformance checker. Methods to address this exception
for the transform are under consideration for the next version of the FFV1 bitstream.

MUST

Figure 8: Description of the transformation of pixels from RGB color space to coded, modified YCbCr
color space (in case of exception).

Figure 9: Description of the transformation of pixels from coded, modified YCbCr color space to RGB
color space (in case of exception).

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 15

3.8. Coding of the Sample Difference
Instead of coding the n+1 bits of the Sample Difference with Huffman or Range coding (or n+2
bits, in the case of JPEG 2000 RCT), only the n (or n+1, in the case of JPEG 2000 RCT) least
significant bits are used, since this is sufficient to recover the original Sample. In Figure 10, the
term bits represents bits_per_raw_sample + 1 for JPEG 2000 RCT or bits_per_raw_sample
otherwise:

Figure 10: Description of the coding of the Sample Difference in the bitstream.

3.8.1. Range Coding Mode

Early experimental versions of FFV1 used the Context-Adaptive Binary Arithmetic Coding
(CABAC) coder from H.264 as defined in , but due to the uncertain patent/
royalty situation, as well as its slightly worse performance, CABAC was replaced by a range coder
based on an algorithm defined by in 1979 .

[ISO.14496-10.2020]

G. Nigel N. Martin [Range-Encoding]

Ci

Bi

Ri

ri

Li

li

ti

bi

3.8.1.1. Range Binary Values
To encode binary digits efficiently, a range coder is used. A range coder encodes a series of binary
symbols by using a probability estimation within each context. The sizes of each of the two
subranges are proportional to their estimated probability. The Quantization Table is used to
choose the context used from the surrounding image sample values for the case of coding the
Sample Differences. The coding of integers is done by coding multiple binary values. The range
decoder will read bytes until it can determine into which subrange the input falls to return the
next binary symbol.

To describe Range coding for FFV1, the following values are used:

the i-th context.

the i-th byte of the bytestream.

the Range at the i-th symbol.

the boundary between two subranges of Ri: a subrange of ri values and a subrange Ri - ri
values.

the Low value of the Range at the i-th symbol.

a temporary variable to carry over or adjust the Low value of the Range between range
coding operations.

a temporary variable to transmit subranges between range coding operations.

the i-th range-coded binary value.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 16

S0, i

jn

the i-th initial state.

the length of the bytestream encoding n binary symbols.

The following range coder state variables are initialized to the following values. The Range is
initialized to a value of 65,280 (expressed in base 16 as 0xFF00) as depicted in Figure 11. The Low
is initialized according to the value of the first two bytes as depicted in Figure 12. ji tracks the
length of the bytestream encoding while incrementing from an initial value of j0 to a final value
of jn. j0 is initialized to 2 as depicted in Figure 13.

The following equations define how the range coder variables evolve as it reads or writes
symbols.

Figure 11: The initial value for the Range.

Figure 12: The initial value for Low is set according to the first two bytes of the bytestream.

Figure 13: The initial value for j, the length of the bytestream encoding.

Figure 14: This formula shows the positioning of range split based on the state.

Figure 15: This formula shows the linking of the decoded symbol (represented as bi), the updated
state (represented as Si+1,Ci

), and the updated range (represented as a range from li to ti).

Figure 16: If the value of k is unequal to the i-th value of context, in other words, if the state is
unchanged from the last symbol coding, then the value of the state is carried over to the next
symbol coding.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 17

Figure 17: This formula shows the linking of the range coder with the reading or writing of the
bytestream.

Figure 18: A pseudocode description of the initialization of range coder variables in Range binary
mode.

 range = 0xFF00;
 end = 0;
 low = get_bits(16);
 if (low >= range) {
 low = range;
 end = 1;
 }

Figure 19: A pseudocode description of refilling the binary value buffer of the range coder.

refill() {
 if (range < 256) {
 range = range * 256;
 low = low * 256;
 if (!end) {
 c.low += get_bits(8);
 if (remaining_bits_in_bitstream(NumBytes) == 0) {
 end = 1;
 }
 }
 }
}

Figure 20: A pseudocode description of the read of a binary value in Range binary mode.

get_rac(state) {
 rangeoff = (range * state) / 256;
 range -= rangeoff;
 if (low < range) {
 state = zero_state[state];
 refill();
 return 0;
 } else {
 low -= range;
 state = one_state[state];
 range = rangeoff;
 refill();
 return 1;
 }
}

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 18

3.8.1.1.1. Termination
The range coder can be used in three modes:

In Open mode when decoding, every symbol the reader attempts to read is available. In this
mode, arbitrary data can have been appended without affecting the range coder output. This
mode is not used in FFV1.
In Closed mode, the length in bytes of the bytestream is provided to the range decoder. Bytes
beyond the length are read as 0 by the range decoder. This is generally one byte shorter than
the Open mode.
In Sentinel mode, the exact length in bytes is not known, and thus the range decoder
read into the data that follows the range-coded bytestream by one byte. In Sentinel mode, the
end of the range-coded bytestream is a binary symbol with state 129, which value be
discarded. After reading this symbol, the range decoder will have read one byte beyond the
end of the range-coded bytestream. This way the byte position of the end can be determined.
Bytestreams written in Sentinel mode can be read in Closed mode if the length can be
determined. In this case, the last (sentinel) symbol will be read uncorrupted and be of value
0.

The above describes the range decoding. Encoding is defined as any process that produces a
decodable bytestream.

There are three places where range coder termination is needed in FFV1. The first is in the
Configuration Record, which in this case the size of the range-coded bytestream is known and
handled as Closed mode. The second is the switch from the Slice Header, which is range coded
to Golomb-coded Slices as Sentinel mode. The third is the end of range-coded Slices, which need
to terminate before the CRC at their end. This can be handled as Sentinel mode or as Closed mode
if the CRC position has been determined.

•

•

• MAY

SHALL

3.8.1.2. Range Nonbinary Values
To encode scalar integers, it would be possible to encode each bit separately and use the past bits
as context. However, that would mean 255 contexts per 8-bit symbol, which is not only a waste of
memory but also requires more past data to reach a reasonably good estimate of the
probabilities. Alternatively, it would also be possible to assume a Laplacian distribution and only
deal with its variance and mean (as in Huffman coding). However, for maximum flexibility and
simplicity, the chosen method uses a single symbol to encode if a number is 0, and if the number
is nonzero, it encodes the number using its exponent, mantissa, and sign. The exact contexts used
are best described by Figure 21.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 19

get_symbol is used for the read out of sample_difference indicated in Figure 10.

get_rac returns a boolean computed from the bytestream as described by the formula found in
Figure 14 and by the pseudocode found in Figure 20.

Figure 21: A pseudocode description of the contexts of Range nonbinary values.

int get_symbol(RangeCoder *c, uint8_t *state, int is_signed) {
 if (get_rac(c, state + 0) {
 return 0;
 }

 int e = 0;
 while (get_rac(c, state + 1 + min(e, 9)) { //1..10
 e++;
 }

 int a = 1;
 for (int i = e - 1; i >= 0; i--) {
 a = a * 2 + get_rac(c, state + 22 + min(i, 9)); // 22..31
 }

 if (!is_signed) {
 return a;
 }

 if (get_rac(c, state + 11 + min(e, 10))) { //11..21
 return -a;
 } else {
 return a;
 }
}

3.8.1.3. Initial Values for the Context Model
When the keyframe value (see Section 4.4) is 1, all range coder state variables are set to their
initial state.

3.8.1.4. State Transition Table
In Range Coding Mode, a state transition table is used, indicating to which state the decoder will
move based on the current state and the value extracted from Figure 20.

Figure 22: Description of the coding of the state transition table for a get_rac readout value of 1.

Figure 23: Description of the coding of the state transition table for a get_rac readout value of 0.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 20

3.8.1.5. default_state_transition
By default, the following state transition table is used:

Figure 24: Default state transition table for Range coding.

 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27,

 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42,

 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57,

 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,

 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,

 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99,100,101,102,103,

104,105,106,107,108,109,110,111,112,113,114,114,115,116,117,118,

119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,133,

134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,

150,151,152,152,153,154,155,156,157,158,159,160,161,162,163,164,

165,166,167,168,169,170,171,171,172,173,174,175,176,177,178,179,

180,181,182,183,184,185,186,187,188,189,190,190,191,192,194,194,

195,196,197,198,199,200,201,202,202,204,205,206,207,208,209,209,

210,211,212,213,215,215,216,217,218,219,220,220,222,223,224,225,

226,227,227,229,229,230,231,232,234,234,235,236,237,238,239,240,

241,242,243,244,245,246,247,248,248, 0, 0, 0, 0, 0, 0, 0,

3.8.1.6. Alternative State Transition Table
The alternative state transition table has been built using iterative minimization of frame sizes
and generally performs better than the default. To use it, the coder_type (see Section 4.2.3)
be set to 2, and the difference to the default be stored in the Parameters, see Section 4.2. At
the time of this writing, the reference implementation of FFV1 in FFmpeg uses Figure 25 by
default when Range coding is used.

MUST
MUST

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 21

Figure 25: Alternative state transition table for Range coding.

 0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,

 59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,

 40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,

 53, 74, 55, 57, 58, 58, 74, 60,101, 61, 62, 84, 66, 66, 68, 69,

 87, 82, 71, 97, 73, 73, 82, 75,111, 77, 94, 78, 87, 81, 83, 97,

 85, 83, 94, 86, 99, 89, 90, 99,111, 92, 93,134, 95, 98,105, 98,

105,110,102,108,102,118,103,106,106,113,109,112,114,112,116,125,

115,116,117,117,126,119,125,121,121,123,145,124,126,131,127,129,

165,130,132,138,133,135,145,136,137,139,146,141,143,142,144,148,

147,155,151,149,151,150,152,157,153,154,156,168,158,162,161,160,

172,163,169,164,166,184,167,170,177,174,171,173,182,176,180,178,

175,189,179,181,186,183,192,185,200,187,191,188,190,197,193,196,

197,194,195,196,198,202,199,201,210,203,207,204,205,206,208,214,

209,211,221,212,213,215,224,216,217,218,219,220,222,228,223,225,

226,224,227,229,240,230,231,232,233,234,235,236,238,239,237,242,

241,243,242,244,245,246,247,248,249,250,251,252,252,253,254,255,

3.8.2. Golomb Rice Mode

The end of the bitstream of the Frame is padded with zeroes until the bitstream contains a
multiple of eight bits.

3.8.2.1. Signed Golomb Rice Codes
This coding mode uses Golomb Rice codes. The VLC is split into two parts: the prefix and suffix.
The prefix stores the most significant bits or indicates if the symbol is too large to be stored (this
is known as the ESC case, see Section 3.8.2.1.1). The suffix either stores the k least significant bits
or stores the whole number in the ESC case.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 22

Figure 26: A pseudocode description of the read of an unsigned integer in Golomb Rice mode.

int get_ur_golomb(k) {
 for (prefix = 0; prefix < 12; prefix++) {
 if (get_bits(1)) {
 return get_bits(k) + (prefix << k);
 }
 }
 return get_bits(bits) + 11;
}

Figure 27: A pseudocode description of the read of a signed integer in Golomb Rice mode.

int get_sr_golomb(k) {
 v = get_ur_golomb(k);
 if (v & 1) return - (v >> 1) - 1;
 else return (v >> 1);
}

3.8.2.1.1. Prefix

ESC is an ESCape symbol to indicate that the symbol to be stored is too large for normal storage
and that an alternate storage method is used.

bits value

1 0

01 1

... ...

0000 0000 01 9

0000 0000 001 10

0000 0000 0001 11

0000 0000 0000 ESC

Table 1: Description of the coding of the
prefix of signed Golomb Rice codes.

3.8.2.1.2. Suffix

non-ESC the k least significant bits MSB first

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 23

ESC be used if the value can be coded as non-ESC.

ESC the value - 11, in MSB first order

Table 2: Description of the coding of the su�x of
signed Golomb Rice codes.

MUST NOT

3.8.2.1.3. Examples
Table 3 shows practical examples of how signed Golomb Rice codes are decoded based on the
series of bits extracted from the bitstream as described by the method above:

k bits value

0 1 0

0 001 2

2 1 00 0

2 1 10 2

2 01 01 5

any 000000000000 10000000 139

Table 3: Examples of decoded, signed Golomb
Rice codes.

3.8.2.2. Run Mode
Run mode is entered when the context is 0 and left as soon as a nonzero difference is found. The
Sample Difference is identical to the predicted one. The run and the first different Sample
Difference are coded as defined in Section 3.8.2.4.1.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 24

3.8.2.2.1. Run Length Coding
The run value is encoded in two parts. The prefix part stores the more significant part of the run
as well as adjusting the run_index that determines the number of bits in the less significant part
of the run. The second part of the value stores the less significant part of the run as it is. The
run_index is reset to zero for each Plane and Slice.

The log2_run array is also used within .

log2_run[41] = {
 0, 0, 0, 0, 1, 1, 1, 1,
 2, 2, 2, 2, 3, 3, 3, 3,
 4, 4, 5, 5, 6, 6, 7, 7,
 8, 9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,
24,
};

if (run_count == 0 && run_mode == 1) {
 if (get_bits(1)) {
 run_count = 1 << log2_run[run_index];
 if (x + run_count <= w) {
 run_index++;
 }
 } else {
 if (log2_run[run_index]) {
 run_count = get_bits(log2_run[run_index]);
 } else {
 run_count = 0;
 }
 if (run_index) {
 run_index--;
 }
 run_mode = 2;
 }
}

[ISO.14495-1.1999]

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 25

3.8.2.3. Sign Extension
sign_extend is the function of increasing the number of bits of an input binary number in two's
complement signed number representation while preserving the input number's sign (positive/
negative) and value, in order to fit in the output bit width. It be computed with the
following:

MAY

sign_extend(input_number, input_bits) {
 negative_bias = 1 << (input_bits - 1);
 bits_mask = negative_bias - 1;
 output_number = input_number & bits_mask; // Remove negative bit
 is_negative = input_number & negative_bias; // Test negative bit
 if (is_negative)
 output_number -= negative_bias;
 return output_number
}

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 26

3.8.2.4. Scalar Mode
Each difference is coded with the per context mean prediction removed and a per context value
for k.

get_vlc_symbol(state) {
 i = state->count;
 k = 0;
 while (i < state->error_sum) {
 k++;
 i += i;
 }

 v = get_sr_golomb(k);

 if (2 * state->drift < -state->count) {
 v = -1 - v;
 }

 ret = sign_extend(v + state->bias, bits);

 state->error_sum += abs(v);
 state->drift += v;

 if (state->count == 128) {
 state->count >>= 1;
 state->drift >>= 1;
 state->error_sum >>= 1;
 }
 state->count++;
 if (state->drift <= -state->count) {
 state->bias = max(state->bias - 1, -128);

 state->drift = max(state->drift + state->count,
 -state->count + 1);
 } else if (state->drift > 0) {
 state->bias = min(state->bias + 1, 127);

 state->drift = min(state->drift - state->count, 0);
 }

 return ret;
}

3.8.2.4.1. Golomb Rice Sample Difference Coding
Level coding is identical to the normal difference coding with the exception that the 0 value is
removed as it cannot occur:

 diff = get_vlc_symbol(context_state);
 if (diff >= 0) {
 diff++;
 }

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 27

Note that this is different from JPEG-LS (lossless JPEG), which doesn't use prediction in run mode
and uses a different encoding and context model for the last difference. On a small set of test
Samples, the use of prediction slightly improved the compression rate.

3.8.2.5. Initial Values for the VLC Context State
When keyframe (see Section 4.4) value is 1, all VLC coder state variables are set to their initial
state.

 drift = 0;
 error_sum = 4;
 bias = 0;
 count = 1;

4. Bitstream
An FFV1 bitstream is composed of a series of one or more Frames and (when required) a
Configuration Record.

Within the following subsections, pseudocode as described in Section 2.2.1 is used to explain the
structure of each FFV1 bitstream component. Table 4 lists symbols used to annotate that
pseudocode in order to define the storage of the data referenced in that line of pseudocode.

The following be provided by external means during the initialization of the decoder:

frame_pixel_width is defined as Frame width in pixels.

frame_pixel_height is defined as Frame height in pixels.

Default values at the decoder initialization phase:

ConfigurationRecordIsPresent is set to 0.

symbol definition

u(n) Unsigned, big-endian integer symbol using n bits

br Boolean (1-bit) symbol that is range coded with the method described in Section
3.8.1.1

ur Unsigned scalar symbol that is range coded with the method described in Section
3.8.1.2

sr Signed scalar symbol that is range coded with the method described in Section
3.8.1.2

sd Sample Difference symbol that is coded with the method described in Section 3.8

Table 4: Definition of pseudocode symbols for this document.

MUST

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 28

4.1. Quantization Table Set
The Quantization Table Sets store a sequence of values that are equal to one less than the count
of equal concurrent entries for each set of equal concurrent entries within the first half of the
table (represented as len - 1 in the pseudocode below) using the method described in Section
3.8.1.2. The second half doesn't need to be stored as it is identical to the first with flipped sign.
scale and len_count[i][j] are temporary values used for the computing of
context_count[i] and are not used outside Quantization Table Set pseudocode.

Example:

Table: 0 0 1 1 1 1 2 2 -2 -2 -2 -1 -1 -1 -1 0

Stored values: 1, 3, 1

QuantizationTableSet has its own initial states, all set to 128.

MAX_CONTEXT_INPUTS is 5.

pseudocode	type
QuantizationTableSet(i) { |
 scale = 1 |
 for (j = 0; j < MAX_CONTEXT_INPUTS; j++) { |
 QuantizationTable(i, j, scale) |
 scale *= 2 * len_count[i][j] - 1 |
 } |
 context_count[i] = ceil(scale / 2) |
} |

pseudocode	type
QuantizationTable(i, j, scale) { |
 v = 0 |
 for (k = 0; k < 128;) { |
 len - 1 | ur
 for (n = 0; n < len; n++) { |
 quant_tables[i][j][k] = scale * v |
 k++ |
 } |
 v++ |
 } |
 for (k = 1; k < 128; k++) { |
 quant_tables[i][j][256 - k] = \ |
 -quant_tables[i][j][k] |
 } |
 quant_tables[i][j][128] = \ |
 -quant_tables[i][j][127] |
 len_count[i][j] = v |
} |

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 29

4.1.1. quant_tables

quant_tables[i][j][k] indicates the Quantization Table value of the Quantized Sample
Difference k of the Quantization Table j of the Quantization Table Set i.

4.1.2. context_count

context_count[i] indicates the count of contexts for Quantization Table Set i.
context_count[i] be less than or equal to 32768.MUST

4.2. Parameters
The Parameters section, which could be in a global header of a container file that may or may
not be considered to be part of the bitstream, contains significant characteristics about the
decoding configuration used for all instances of Frame (in FFV1 versions 0 and 1) or the whole
FFV1 bitstream (other versions), including the stream version, color configuration, and
Quantization Tables. Figure 28 describes the contents of the bitstream.

Parameters has its own initial states, all set to 128.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 30

CONTEXT_SIZE is 32.

Figure 28: A pseudocode description of the bitstream contents.

pseudocode	type
Parameters() { |
 version | ur
 if (version >= 3) { |
 micro_version | ur
 } |
 coder_type | ur
 if (coder_type > 1) { |
 for (i = 1; i < 256; i++) { |
 state_transition_delta[i] | sr
 } |
 } |
 colorspace_type | ur
 if (version >= 1) { |
 bits_per_raw_sample | ur
 } |
 chroma_planes | br
 log2_h_chroma_subsample | ur
 log2_v_chroma_subsample | ur
 extra_plane | br
 if (version >= 3) { |
 num_h_slices - 1 | ur
 num_v_slices - 1 | ur
 quant_table_set_count | ur
 } |
 for (i = 0; i < quant_table_set_count; i++) { |
 QuantizationTableSet(i) |
 } |
 if (version >= 3) { |
 for (i = 0; i < quant_table_set_count; i++) { |
 states_coded | br
 if (states_coded) { |
 for (j = 0; j < context_count[i]; j++) { |
 for (k = 0; k < CONTEXT_SIZE; k++) { |
 initial_state_delta[i][j][k] | sr
 } |
 } |
 } |
 } |
 ec | ur
 intra | ur
 } |
} |

4.2.1. version

version specifies the version of the FFV1 bitstream.

Each version is incompatible with other versions: decoders reject FFV1 bitstreams due
to an unknown version.

SHOULD

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 31

Decoders reject FFV1 bitstreams with version <= 1 &&
ConfigurationRecordIsPresent == 1.

Decoders reject FFV1 bitstreams with version >= 3 &&
ConfigurationRecordIsPresent == 0.

* Version 2 was experimental and this document does not describe it.

SHOULD

SHOULD

value version

0 FFV1 version 0

1 FFV1 version 1

2 reserved*

3 FFV1 version 3

Other reserved for future use

Table 5: The definitions for version values.

4.2.2. micro_version

micro_version specifies the micro-version of the FFV1 bitstream.

After a version is considered stable (a micro-version value is assigned to be the first stable
variant of a specific version), each new micro-version after this first stable variant is compatible
with the previous micro-version: decoders reject FFV1 bitstreams due to an
unknown micro-version equal or above the micro-version considered as stable.

Meaning of micro_version for version 3:

value micro_version

0...3 reserved*

4 first stable variant

Other reserved for future use

Table 6: The definitions for micro_version
values for FFV1 version 3.

* Development versions may be incompatible with the stable variants.

SHOULD NOT

4.2.3. coder_type

coder_type specifies the coder used.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 32

Restrictions:

If coder_type is 0, then bits_per_raw_sample be > 8.

Background: At the time of this writing, there is no known implementation of FFV1 bitstream
supporting the Golomb Rice algorithm with bits_per_raw_sample greater than eight, and range
coder is preferred.

value coder used

0 Golomb Rice

1 Range coder with default state transition table

2 Range coder with custom state transition table

Other reserved for future use

Table 7: The definitions for coder_type values.

SHOULD NOT

4.2.4. state_transition_delta

state_transition_delta specifies the range coder custom state transition table.

If state_transition_delta is not present in the FFV1 bitstream, all range coder custom state
transition table elements are assumed to be 0.

4.2.5. colorspace_type

colorspace_type specifies the color space encoded, the pixel transformation used by the
encoder, the extra Plane content, as well as interleave method.

FFV1 bitstreams with colorspace_type == 1 && (chroma_planes != 1 ||
log2_h_chroma_subsample != 0 || log2_v_chroma_subsample != 0) are not part of this
specification.

value color space
encoded

pixel
transformation

extra Plane
content

interleave
method

0 YCbCr None Transparency Plane then Line

1 RGB JPEG 2000 RCT Transparency Line then Plane

Other reserved for
future use

reserved for future
use

reserved for future
use

reserved for
future use

Table 8: The definitions for colorspace_type values.

4.2.6. chroma_planes

chroma_planes indicates if chroma (color) Planes are present.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 33

value presence

0 chroma Planes are not present

1 chroma Planes are present

Table 9: The definitions for chroma_planes
values.

4.2.7. bits_per_raw_sample

bits_per_raw_sample indicates the number of bits for each Sample. Inferred to be 8 if not
present.

* Encoders store bits_per_raw_sample = 0. Decoders accept and interpret
bits_per_raw_sample = 0 as 8.

value bits for each Sample

0 reserved*

Other the actual bits for each Sample

Table 10: The definitions for
bits_per_raw_sample values.

MUST NOT SHOULD

4.2.8. log2_h_chroma_subsample

log2_h_chroma_subsample indicates the subsample factor, stored in powers to which the
number 2 is raised, between luma and chroma width (chroma_width = 2 ^ -
log2_h_chroma_subsample * luma_width).

4.2.9. log2_v_chroma_subsample

log2_v_chroma_subsample indicates the subsample factor, stored in powers to which the
number 2 is raised, between luma and chroma height (chroma_height = 2 ^ -
log2_v_chroma_subsample * luma_height).

4.2.10. extra_plane

extra_plane indicates if an extra Plane is present.

value presence

0 extra Plane is not present

1 extra Plane is present

Table 11: The definitions for extra_plane
values.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 34

4.2.11. num_h_slices

num_h_slices indicates the number of horizontal elements of the Slice raster.

Inferred to be 1 if not present.

4.2.12. num_v_slices

num_v_slices indicates the number of vertical elements of the Slice raster.

Inferred to be 1 if not present.

4.2.13. quant_table_set_count

quant_table_set_count indicates the number of Quantization Table Sets.
quant_table_set_count be less than or equal to 8.

Inferred to be 1 if not present.

 be 0.

MUST

MUST NOT

4.2.14. states_coded

states_coded indicates if the respective Quantization Table Set has the initial states coded.

Inferred to be 0 if not present.

value initial states

0 initial states are not present and are assumed to be all 128

1 initial states are present

Table 12: The definitions for states_coded values.

4.2.15. initial_state_delta

initial_state_delta[i][j][k] indicates the initial range coder state, and it is encoded
using k as context index for the range coder and the following pseudocode:

Figure 29: Predictor value for the coding of initial_state_delta[i][j][k].

Figure 30: Description of the coding of
initial_state_delta[i][j][k].

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 35

4.2.16. ec

ec indicates the error detection/correction type.

value error detection/correction type

0 32-bit CRC in ConfigurationRecord

1 32-bit CRC in Slice and ConfigurationRecord

Other reserved for future use

Table 13: The definitions for ec values.

4.2.17. intra

intra indicates the constraint on keyframe in each instance of Frame.

Inferred to be 0 if not present.

value relationship

0 keyframe can be 0 or 1 (non keyframes or keyframes)

1 keyframe be 1 (keyframes only)

Other reserved for future use

Table 14: The definitions for intra values.

MUST

4.3. Configuration Record
In the case of a FFV1 bitstream with version >= 3, a Configuration Record is stored in the
underlying container as described in Section 4.3.3. It contains the Parameters used for all
instances of Frame. The size of the Configuration Record, NumBytes, is supplied by the
underlying container.

pseudocode	type
ConfigurationRecord(NumBytes) { |
 ConfigurationRecordIsPresent = 1 |
 Parameters() |
 while (remaining_symbols_in_syntax(NumBytes - 4)) { |
 reserved_for_future_use | br/ur/sr
 } |
 configuration_record_crc_parity | u(32)
} |

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 36

4.3.1. reserved_for_future_use

reserved_for_future_use is a placeholder for future updates of this specification.

Encoders conforming to this version of this specification write
reserved_for_future_use.

Decoders conforming to this version of this specification ignore
reserved_for_future_use.

SHALL NOT

SHALL

4.3.2. configuration_record_crc_parity

configuration_record_crc_parity is 32 bits that are chosen so that the Configuration
Record as a whole has a CRC remainder of zero.

This is equivalent to storing the CRC remainder in the 32-bit parity.

The CRC generator polynomial used is described in Section 4.9.3.

4.3.3. Mapping FFV1 into Containers

This Configuration Record can be placed in any file format that supports Configuration
Records, fitting as much as possible with how the file format stores Configuration Records.
The Configuration Record storage place and NumBytes are currently defined and supported for
the following formats:

4.3.3.1. Audio Video Interleave (AVI) File Format
The Configuration Record extends the stream format chunk ("AVI ", "hdlr", "strl", "strf") with
the ConfigurationRecord bitstream.

See for more information about chunks.

NumBytes is defined as the size, in bytes, of the "strf" chunk indicated in the chunk header minus
the size of the stream format structure.

[AVI]

4.3.3.2. ISO Base Media File Format
The Configuration Record extends the sample description box ("moov", "trak", "mdia", "minf",
"stbl", "stsd") with a "glbl" box that contains the ConfigurationRecord bitstream. See

 for more information about boxes.

NumBytes is defined as the size, in bytes, of the "glbl" box indicated in the box header minus the
size of the box header.

[ISO.14496-12.2020]

4.3.3.3. NUT File Format
The codec_specific_data element (in stream_header packet) contains the
ConfigurationRecord bitstream. See for more information about elements.[NUT]

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 37

NumBytes is defined as the size, in bytes, of the codec_specific_data element as indicated in the
"length" field of codec_specific_data.

4.3.3.4. Matroska File Format
FFV1 use V_FFV1 as the Matroska Codec ID. For FFV1 versions 2 or less, the Matroska
CodecPrivate Element be used. For FFV1 versions 3 or greater, the Matroska
CodecPrivate Element contain the FFV1 Configuration Record structure and no other
data. See for more information about elements.

NumBytes is defined as the Element Data Size of the CodecPrivate Element.

SHOULD
SHOULD NOT
MUST

[Matroska]

4.4. Frame
A Frame is an encoded representation of a complete static image. The whole Frame is provided by
the underlaying container.

A Frame consists of the keyframe field, Parameters (if version <= 1), and a sequence of
independent Slices. The pseudocode below describes the contents of a Frame.

The keyframe field has its own initial state, set to 128.

pseudocode	type
Frame(NumBytes) { |
 keyframe | br
 if (keyframe && !ConfigurationRecordIsPresent { |
 Parameters() |
 } |
 while (remaining_bits_in_bitstream(NumBytes)) { |
 Slice() |
 } |
} |

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 38

The following is an architecture overview of Slices in a Frame:

+---+
| first Slice header |
+---+
| first Slice content |
+---+
| first Slice footer |
+---+
| --- |
+---+
| second Slice header |
+---+
| second Slice content |
+---+
| second Slice footer |
+---+
| --- |
+---+
| ... |
+---+
| --- |
+---+
| last Slice header |
+---+
| last Slice content |
+---+
| last Slice footer |
+---+

4.5. Slice
A Slice is an independent, spatial subsection of a Frame that is encoded separately from another
region of the same Frame. The use of more than one Slice per Frame provides opportunities for
taking advantage of multithreaded encoding and decoding.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 39

A Slice consists of a Slice Header (when relevant), a Slice Content, and a Slice Footer
(when relevant). The pseudocode below describes the contents of a Slice.

padding specifies a bit without any significance and used only for byte alignment. padding
be 0.

reserved specifies a bit without any significance in this specification but may have a significance
in a later revision of this specification.

Encoders fill reserved.

Decoders ignore reserved.

pseudocode	type
Slice() { |
 if (version >= 3) { |
 SliceHeader() |
 } |
 SliceContent() |
 if (coder_type == 0) { |
 while (!byte_aligned()) { |
 padding | u(1)
 } |
 } |
 if (version <= 1) { |
 while (remaining_bits_in_bitstream(NumBytes) != 0) {|
 reserved | u(1)
 } |
 } |
 if (version >= 3) { |
 SliceFooter() |
 } |
} |

MUST

SHOULD NOT

SHOULD

4.6. Slice Header
A Slice Header provides information about the decoding configuration of the Slice, such as its
spatial position, size, and aspect ratio. The pseudocode below describes the contents of the Slice
Header.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 40

Slice Header has its own initial states, all set to 128.

pseudocode	type
SliceHeader() { |
 slice_x | ur
 slice_y | ur
 slice_width - 1 | ur
 slice_height - 1 | ur
 for (i = 0; i < quant_table_set_index_count; i++) { |
 quant_table_set_index[i] | ur
 } |
 picture_structure | ur
 sar_num | ur
 sar_den | ur
} |

4.6.1. slice_x

slice_x indicates the x position on the Slice raster formed by num_h_slices.

Inferred to be 0 if not present.

4.6.2. slice_y

slice_y indicates the y position on the Slice raster formed by num_v_slices.

Inferred to be 0 if not present.

4.6.3. slice_width

slice_width indicates the width on the Slice raster formed by num_h_slices.

Inferred to be 1 if not present.

4.6.4. slice_height

slice_height indicates the height on the Slice raster formed by num_v_slices.

Inferred to be 1 if not present.

4.6.5. quant_table_set_index_count

quant_table_set_index_count is defined as the following:

1 + ((chroma_planes || version <= 3) ? 1 : 0)
 + (extra_plane ? 1 : 0)

4.6.6. quant_table_set_index

quant_table_set_index indicates the Quantization Table Set index to select the Quantization
Table Set and the initial states for the Slice Content.

Inferred to be 0 if not present.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 41

4.6.7. picture_structure

picture_structure specifies the temporal and spatial relationship of each Line of the Frame.

Inferred to be 0 if not present.

value picture structure used

0 unknown

1 top field first

2 bottom field first

3 progressive

Other reserved for future use

Table 15: The definitions for
picture_structure values.

4.6.8. sar_num

sar_num specifies the Sample aspect ratio numerator.

Inferred to be 0 if not present.

A value of 0 means that aspect ratio is unknown.

Encoders write 0 if the Sample aspect ratio is unknown.

If sar_den is 0, decoders ignore the encoded value and consider that sar_num is 0.

MUST

SHOULD

4.6.9. sar_den

sar_den specifies the Sample aspect ratio denominator.

Inferred to be 0 if not present.

A value of 0 means that aspect ratio is unknown.

Encoders write 0 if the Sample aspect ratio is unknown.

If sar_num is 0, decoders ignore the encoded value and consider that sar_den is 0.

MUST

SHOULD

4.7. Slice Content
A Slice Content contains all Line elements part of the Slice.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 42

Depending on the configuration, Line elements are ordered by Plane then by row (YCbCr) or by
row then by Plane (RGB).

pseudocode	type
SliceContent() { |
 if (colorspace_type == 0) { |
 for (p = 0; p < primary_color_count; p++) { |
 for (y = 0; y < plane_pixel_height[p]; y++) { |
 Line(p, y) |
 } |
 } |
 } else if (colorspace_type == 1) { |
 for (y = 0; y < slice_pixel_height; y++) { |
 for (p = 0; p < primary_color_count; p++) { |
 Line(p, y) |
 } |
 } |
 } |
} |

4.7.1. primary_color_count

primary_color_count is defined as the following:

1 + (chroma_planes ? 2 : 0) + (extra_plane ? 1 : 0)

4.7.2. plane_pixel_height

plane_pixel_height[p] is the height in pixels of Plane p of the Slice. It is defined as the
following:

chroma_planes == 1 && (p == 1 || p == 2)
 ? ceil(slice_pixel_height / (1 << log2_v_chroma_subsample))
 : slice_pixel_height

4.7.3. slice_pixel_height

slice_pixel_height is the height in pixels of the Slice. It is defined as the following:

floor(
 (slice_y + slice_height)
 * slice_pixel_height
 / num_v_slices
) - slice_pixel_y.

4.7.4. slice_pixel_y

slice_pixel_y is the Slice vertical position in pixels. It is defined as the following:

floor(slice_y * frame_pixel_height / num_v_slices)

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 43

4.8. Line
A Line is a list of the Sample Differences (relative to the predictor) of primary color components.
The pseudocode below describes the contents of the Line.

pseudocode	type
Line(p, y) { |
 if (colorspace_type == 0) { |
 for (x = 0; x < plane_pixel_width[p]; x++) { |
 sample_difference[p][y][x] | sd
 } |
 } else if (colorspace_type == 1) { |
 for (x = 0; x < slice_pixel_width; x++) { |
 sample_difference[p][y][x] | sd
 } |
 } |
} |

4.8.1. plane_pixel_width

plane_pixel_width[p] is the width in pixels of Plane p of the Slice. It is defined as the
following:

chroma_planes == 1 && (p == 1 || p == 2)
 ? ceil(slice_pixel_width / (1 << log2_h_chroma_subsample))
 : slice_pixel_width.

4.8.2. slice_pixel_width

slice_pixel_width is the width in pixels of the Slice. It is defined as the following:

floor(
 (slice_x + slice_width)
 * slice_pixel_width
 / num_h_slices
) - slice_pixel_x

4.8.3. slice_pixel_x

slice_pixel_x is the Slice horizontal position in pixels. It is defined as the following:

floor(slice_x * frame_pixel_width / num_h_slices)

4.8.4. sample_difference

sample_difference[p][y][x] is the Sample Difference for Sample at Plane p, y position
y, and x position x. The Sample value is computed based on median predictor and context
described in Section 3.2.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 44

4.9. Slice Footer
A Slice Footer provides information about Slice size and (optionally) parity. The pseudocode
below describes the contents of the Slice Footer.

Note: Slice Footer is always byte aligned.

pseudocode	type
SliceFooter() { |
 slice_size | u(24)
 if (ec) { |
 error_status | u(8)
 slice_crc_parity | u(32)
 } |
} |

4.9.1. slice_size

slice_size indicates the size of the Slice in bytes.

Note: this allows finding the start of Slices before previous Slices have been fully decoded and
allows parallel decoding as well as error resilience.

4.9.2. error_status

error_status specifies the error status.

value error status

0 no error

1 Slice contains a correctable error

2 Slice contains an uncorrectable error

Other reserved for future use

Table 16: The definitions for error_status values.

4.9.3. slice_crc_parity

slice_crc_parity is 32 bits that are chosen so that the Slice as a whole has a CRC remainder of
0.

This is equivalent to storing the CRC remainder in the 32-bit parity.

The CRC generator polynomial used is the standard IEEE CRC polynomial (0x104C11DB7) with
initial value 0, without pre-inversion, and without post-inversion.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 45

5. Restrictions
To ensure that fast multithreaded decoding is possible, starting with version 3 and if
frame_pixel_width * frame_pixel_height is more than 101376, slice_width *
slice_height be less or equal to num_h_slices * num_v_slices / 4. Note: 101376 is the
frame size in pixels of a 352x288 frame also known as CIF (Common Intermediate Format) frame
size format.

For each Frame, each position in the Slice raster be filled by one and only one Slice of the
Frame (no missing Slice position and no Slice overlapping).

For each Frame with a keyframe value of 0, each Slice have the same value of slice_x,
slice_y, slice_width, and slice_height as a Slice in the previous Frame.

MUST

MUST

MUST

6. Security Considerations
Like any other codec (such as), FFV1 should not be used with insecure ciphers or
cipher modes that are vulnerable to known plaintext attacks. Some of the header bits as well as
the padding are easily predictable.

Implementations of the FFV1 codec need to take appropriate security considerations into
account. Those related to denial of service are outlined in . It is extremely
important for the decoder to be robust against malicious payloads. Malicious payloads
cause the decoder to overrun its allocated memory or to take an excessive amount of resources
to decode. An overrun in allocated memory could lead to arbitrary code execution by an
attacker. The same applies to the encoder, even though problems in encoders are typically rarer.
Malicious video streams cause the encoder to misbehave because this would allow an
attacker to attack transcoding gateways. A frequent security problem in image and video codecs
is failure to check for integer overflows. An example is allocating frame_pixel_width *
frame_pixel_height in pixel count computations without considering that the multiplication
result may have overflowed the range of the arithmetic type. The range coder could, if
implemented naively, read one byte over the end. The implementation ensure that no read
outside allocated and initialized memory occurs.

None of the content carried in FFV1 is intended to be executable.

[RFC6716]

Section 2.1 of [RFC4732]
MUST NOT

MUST NOT

MUST

7. IANA Considerations
IANA has registered the following values.

7.1. Media Type Definition
This registration is done using the template defined in and following .[RFC6838] [RFC4855]

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 46

https://www.rfc-editor.org/rfc/rfc4732#section-2.1

Type name:

Subtype name:

Required parameters:

Optional parameters:

version:

micro_version:

coder_type:

colorspace_type:

bits_per_raw_sample:

max_slices:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

video

FFV1

None.

These parameters are used to signal the capabilities of a receiver
implementation. These parameters be used for any other purpose.

The version of the FFV1 encoding as defined by Section 4.2.1.

The micro_version of the FFV1 encoding as defined by Section 4.2.2.

The coder_type of the FFV1 encoding as defined by Section 4.2.3.

The colorspace_type of the FFV1 encoding as defined by Section 4.2.5.

The bits_per_raw_sample of the FFV1 encoding as defined by
Section 4.2.7.

The value of max_slices is an integer indicating the maximum count of Slices
within a Frame of the FFV1 encoding.

This media type is defined for encapsulation in several audiovisual
container formats and contains binary data; see Section 4.3.3. This media type is framed
binary data; see .

See Section 6 of this document.

None.

RFC 9043.

Any application that requires the transport of lossless
video can use this media type. Some examples are, but not limited to, screen recording,
scientific imaging, and digital video preservation.

N/A.

None.

Michael Niedermayer ()

COMMON

None.

Dave Rice ()

IETF CELLAR Working Group delegated from the IESG.

MUST NOT

Section 4.8 of [RFC6838]

mailto:michael@niedermayer.cc

mailto:dave@dericed.com

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 47

https://www.rfc-editor.org/rfc/rfc6838#section-4.8
mailto:michael@niedermayer.cc
mailto:dave@dericed.com

[ISO.9899.2018]

[RFC2119]

[RFC4732]

[RFC4855]

[RFC6838]

[RFC8174]

[AddressSanitizer]

[AVI]

[FFV1GO]

[FFV1_V0]

[FFV1_V1]

[FFV1_V3]

8. References

8.1. Normative References

,
, , June 2018.

, , ,
, , March 1997,
.

, , and ,
, , , December 2006,

.

, , ,
, February 2007, .

, , and ,
, , , , January 2013,

.

, ,
, , , May 2017,

.

8.2. Informative References

, , ,
.

, ,
.

, , 2019,
.

, , April
2006,

.

, , April 2009,

.

, , August
2013,

.

International Organization for Standardization "Information technology -
Programming languages - C" ISO/IEC 9899:2018

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Handley, M., Ed. Rescorla, E., Ed. IAB "Internet Denial-of-Service
Considerations" RFC 4732 DOI 10.17487/RFC4732 <https://
www.rfc-editor.org/info/rfc4732>

Casner, S. "Media Type Registration of RTP Payload Formats" RFC 4855 DOI
10.17487/RFC4855 <https://www.rfc-editor.org/info/rfc4855>

Freed, N. Klensin, J. T. Hansen "Media Type Specifications and Registration
Procedures" BCP 13 RFC 6838 DOI 10.17487/RFC6838 <https://
www.rfc-editor.org/info/rfc6838>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Clang Project "AddressSanitizer" Clang 12 documentation <https://
clang.llvm.org/docs/AddressSanitizer.html>

Microsoft "AVI RIFF File Reference" <https://docs.microsoft.com/en-us/windows/
win32/directshow/avi-riff-file-reference>

Buitenhuis, D. "FFV1 Decoder in Go" <https://github.com/dwbuiten/go-
ffv1>

Niedermayer, M. "Commit to mark FFV1 version 0 as non-experimental"
<https://git.videolan.org/?

p=ffmpeg.git;a=commit;h=b548f2b91b701e1235608ac882ea6df915167c7e>

Niedermayer, M. "Commit to release FFV1 version 1" <https://
git.videolan.org/?
p=ffmpeg.git;a=commit;h=68f8d33becbd73b4d0aa277f472a6e8e72ea6849>

Niedermayer, M. "Commit to mark FFV1 version 3 as non-experimental"
<https://git.videolan.org/?

p=ffmpeg.git;a=commit;h=abe76b851c05eea8743f6c899cbe5f7409b0f301>

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 48

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4732
https://www.rfc-editor.org/info/rfc4732
https://www.rfc-editor.org/info/rfc4855
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://docs.microsoft.com/en-us/windows/win32/directshow/avi-riff-file-reference
https://docs.microsoft.com/en-us/windows/win32/directshow/avi-riff-file-reference
https://github.com/dwbuiten/go-ffv1
https://github.com/dwbuiten/go-ffv1
https://git.videolan.org/?p=ffmpeg.git;a=commit;h=b548f2b91b701e1235608ac882ea6df915167c7e
https://git.videolan.org/?p=ffmpeg.git;a=commit;h=b548f2b91b701e1235608ac882ea6df915167c7e
https://git.videolan.org/?p=ffmpeg.git;a=commit;h=68f8d33becbd73b4d0aa277f472a6e8e72ea6849
https://git.videolan.org/?p=ffmpeg.git;a=commit;h=68f8d33becbd73b4d0aa277f472a6e8e72ea6849
https://git.videolan.org/?p=ffmpeg.git;a=commit;h=68f8d33becbd73b4d0aa277f472a6e8e72ea6849
https://git.videolan.org/?p=ffmpeg.git;a=commit;h=abe76b851c05eea8743f6c899cbe5f7409b0f301
https://git.videolan.org/?p=ffmpeg.git;a=commit;h=abe76b851c05eea8743f6c899cbe5f7409b0f301

[HuffYUV]

[ISO.14495-1.1999]

[ISO.14496-10.2020]

[ISO.14496-12.2020]

[ISO.15444-1.2019]

[Matroska]

[MediaConch]

[NUT]

[Range-Encoding]

[REFIMPL]

[RFC6716]

[Valgrind]

[YCbCr]

, , December 2003,
.

,

, , December 1999.

,
,

, December 2020.

,
,

, December 2020.

,
, ,

October 2019.

, , and ,
, , ,

12 April 2021,
.

, , 2018, .

, , December 2013,
.

,
,

, ,
July 1979.

,
, .

, , and , ,
, , September 2012,

.

, , .

, , 25 May 2021,
.

Rudiak-Gould, B. "HuffYUV revisited" <https://web.archive.org/
web/20040402121343/http://cultact-server.novi.dk/kpo/huffyuv/huffyuv.html>

International Organization for Standardization "Information technology --
Lossless and near-lossless compression of continuous-tone still images:
Baseline" ISO/IEC 14495-1:1999

International Organization for Standardization "Information technology --
Coding of audio-visual objects -- Part 10: Advanced Video Coding" ISO/IEC
14496-10:2020

International Organization for Standardization "Information technology --
Coding of audio-visual objects -- Part 12: ISO base media file format" ISO/IEC
14496-12:2020

International Organization for Standardization "Information technology --
JPEG 2000 image coding system: Core coding system" ISO/IEC 15444-1:2019

Lhomme, S. Bunkus, M. D. Rice "Matroska Media Container Format
Specifications" Work in Progress Internet-Draft, draft-ietf-cellar-matroska-07

<https://datatracker.ietf.org/doc/html/draft-ietf-cellar-
matroska-07>

MediaArea.net "MediaConch" <https://mediaarea.net/MediaConch>

Niedermayer, M. "NUT Open Container Format" <https://
ffmpeg.org/~michael/nut.txt>

Martin, G. N. N. "Range encoding: an algorithm for removing redundancy
from a digitised message" Proceedings of the Conference on Video and Data
Recording Institution of Electronic and Radio Engineers, Hampshire, England

Niedermayer, M. "The reference FFV1 implementation / the FFV1 codec in
FFmpeg" <https://ffmpeg.org/doxygen/trunk/ffv1_8h.html>

Valin, JM. Vos, K. T. Terriberry "Definition of the Opus Audio Codec" RFC
6716 DOI 10.17487/RFC6716 <https://www.rfc-editor.org/info/
rfc6716>

Valgrind Developers "Valgrind website" <https://valgrind.org/>

Wikipedia "YCbCr" <https://en.wikipedia.org/w/index.php?
title=YCbCr&oldid=1025097882>

Appendix A. Multithreaded Decoder Implementation
Suggestions
This appendix is informative.

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 49

https://web.archive.org/web/20040402121343/http://cultact-server.novi.dk/kpo/huffyuv/huffyuv.html
https://web.archive.org/web/20040402121343/http://cultact-server.novi.dk/kpo/huffyuv/huffyuv.html
https://datatracker.ietf.org/doc/html/draft-ietf-cellar-matroska-07
https://datatracker.ietf.org/doc/html/draft-ietf-cellar-matroska-07
https://mediaarea.net/MediaConch
https://ffmpeg.org/~michael/nut.txt
https://ffmpeg.org/~michael/nut.txt
https://ffmpeg.org/doxygen/trunk/ffv1_8h.html
https://www.rfc-editor.org/info/rfc6716
https://www.rfc-editor.org/info/rfc6716
https://valgrind.org/
https://en.wikipedia.org/w/index.php?title=YCbCr&oldid=1025097882
https://en.wikipedia.org/w/index.php?title=YCbCr&oldid=1025097882

The FFV1 bitstream is parsable in two ways: in sequential order as described in this document or
with the pre-analysis of the footer of each Slice. Each Slice footer contains a slice_size field so
the boundary of each Slice is computable without having to parse the Slice content. That allows
multithreading as well as independence of Slice content (a bitstream error in a Slice header or
Slice content has no impact on the decoding of the other Slices).

After having checked the keyframe field, a decoder should parse slice_size fields, from
slice_size of the last Slice at the end of the Frame up to slice_size of the first Slice at the
beginning of the Frame before parsing Slices, in order to have Slice boundaries. A decoder may
fall back on sequential order e.g., in case of a corrupted Frame (e.g., frame size unknown or
slice_size of Slices not coherent) or if there is no possibility of seeking into the stream.

Appendix B. Future Handling of Some Streams Created by
Nonconforming Encoders
This appendix is informative.

Some bitstreams were found with 40 extra bits corresponding to error_status and
slice_crc_parity in the reserved bits of Slice. Any revision of this specification should avoid
adding 40 bits of content after SliceContent if version == 0 or version == 1, otherwise a
decoder conforming to the revised specification could not distinguish between a revised
bitstream and such buggy bitstream in the wild.

Appendix C. FFV1 Implementations
This appendix provides references to a few notable implementations of FFV1.

C.1. FFmpeg FFV1 Codec
This reference implementation contains no known buffer overflow or cases where a
specially crafted packet or video segment could cause a significant increase in CPU load.

The reference implementation was validated in the following conditions:

Sending the decoder valid packets generated by the reference encoder and verifying that the
decoder's output matches the encoder's input.
Sending the decoder packets generated by the reference encoder and then subjected to
random corruption.
Sending the decoder random packets that are not FFV1.

In all of the conditions above, the decoder and encoder was run inside the Valgrind memory
debugger as well as the Clang AddressSanitizer , which tracks reads
and writes to invalid memory regions as well as the use of uninitialized memory. There were no
errors reported on any of the tested conditions.

[REFIMPL]

[REFIMPL]

•

•

•

[Valgrind] [AddressSanitizer]

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 50

C.2. FFV1 Decoder in Go
An FFV1 decoder was written in Go by Derek Buitenhuis during the work to develop
this document.

[FFV1GO]

C.3. MediaConch
The developers of the MediaConch project created an independent FFV1 decoder
as part of that project to validate FFV1 bitstreams. This work led to the discovery of three
conflicts between existing FFV1 implementations and draft versions of this document. These
issues are addressed by Section 3.3.1, Section 3.7.2.1, and Appendix B.

[MediaConch]

Authors' Addresses
Michael Niedermayer

 michael@niedermayer.cc Email:

Dave Rice
 dave@dericed.com Email:

Jérôme Martinez
 jerome@mediaarea.net Email:

RFC 9043 FFV1 August 2021

Niedermayer, et al. Informational Page 51

mailto:michael@niedermayer.cc
mailto:dave@dericed.com
mailto:jerome@mediaarea.net

	RFC 9043
	FFV1 Video Coding Format Versions 0, 1, and 3
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Notation and Conventions
	2.1. Definitions
	2.2. Conventions
	2.2.1. Pseudocode
	2.2.2. Arithmetic Operators
	2.2.3. Assignment Operators
	2.2.4. Comparison Operators
	2.2.5. Mathematical Functions
	2.2.6. Order of Operation Precedence
	2.2.7. Range
	2.2.8. NumBytes
	2.2.9. Bitstream Functions
	2.2.9.1. remaining_bits_in_bitstream
	2.2.9.2. remaining_symbols_in_syntax
	2.2.9.3. byte_aligned
	2.2.9.4. get_bits

	3. Sample Coding
	3.1. Border
	3.2. Samples
	3.3. Median Predictor
	3.3.1. Exception

	3.4. Quantization Table Sets
	3.5. Context
	3.6. Quantization Table Set Indexes
	3.7. Color Spaces
	3.7.1. YCbCr
	3.7.2. RGB
	3.7.2.1. RGB Exception

	3.8. Coding of the Sample Difference
	3.8.1. Range Coding Mode
	3.8.1.1. Range Binary Values
	3.8.1.1.1. Termination

	3.8.1.2. Range Nonbinary Values
	3.8.1.3. Initial Values for the Context Model
	3.8.1.4. State Transition Table
	3.8.1.5. default_state_transition
	3.8.1.6. Alternative State Transition Table

	3.8.2. Golomb Rice Mode
	3.8.2.1. Signed Golomb Rice Codes
	3.8.2.1.1. Prefix
	3.8.2.1.2. Suffix
	3.8.2.1.3. Examples

	3.8.2.2. Run Mode
	3.8.2.2.1. Run Length Coding

	3.8.2.3. Sign Extension
	3.8.2.4. Scalar Mode
	3.8.2.4.1. Golomb Rice Sample Difference Coding

	3.8.2.5. Initial Values for the VLC Context State

	4. Bitstream
	4.1. Quantization Table Set
	4.1.1. quant_tables
	4.1.2. context_count

	4.2. Parameters
	4.2.1. version
	4.2.2. micro_version
	4.2.3. coder_type
	4.2.4. state_transition_delta
	4.2.5. colorspace_type
	4.2.6. chroma_planes
	4.2.7. bits_per_raw_sample
	4.2.8. log2_h_chroma_subsample
	4.2.9. log2_v_chroma_subsample
	4.2.10. extra_plane
	4.2.11. num_h_slices
	4.2.12. num_v_slices
	4.2.13. quant_table_set_count
	4.2.14. states_coded
	4.2.15. initial_state_delta
	4.2.16. ec
	4.2.17. intra

	4.3. Configuration Record
	4.3.1. reserved_for_future_use
	4.3.2. configuration_record_crc_parity
	4.3.3. Mapping FFV1 into Containers
	4.3.3.1. Audio Video Interleave (AVI) File Format
	4.3.3.2. ISO Base Media File Format
	4.3.3.3. NUT File Format
	4.3.3.4. Matroska File Format

	4.4. Frame
	4.5. Slice
	4.6. Slice Header
	4.6.1. slice_x
	4.6.2. slice_y
	4.6.3. slice_width
	4.6.4. slice_height
	4.6.5. quant_table_set_index_count
	4.6.6. quant_table_set_index
	4.6.7. picture_structure
	4.6.8. sar_num
	4.6.9. sar_den

	4.7. Slice Content
	4.7.1. primary_color_count
	4.7.2. plane_pixel_height
	4.7.3. slice_pixel_height
	4.7.4. slice_pixel_y

	4.8. Line
	4.8.1. plane_pixel_width
	4.8.2. slice_pixel_width
	4.8.3. slice_pixel_x
	4.8.4. sample_difference

	4.9. Slice Footer
	4.9.1. slice_size
	4.9.2. error_status
	4.9.3. slice_crc_parity

	5. Restrictions
	6. Security Considerations
	7. IANA Considerations
	7.1. Media Type Definition

	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Multithreaded Decoder Implementation Suggestions
	Appendix B. Future Handling of Some Streams Created by Nonconforming Encoders
	Appendix C. FFV1 Implementations
	C.1. FFmpeg FFV1 Codec
	C.2. FFV1 Decoder in Go
	C.3. MediaConch

	Authors' Addresses

